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Chapter 13

Recursion

Topics

• Simple Recursion

• Recursion with a Return Value

• Binary Search Revisited

• Recursion Versus Iteration

Simple Recursion

• When solving a problem using recursion, the idea 

is to transform a big problem into a smaller, 

similar problem.

• Eventually, as this process repeats itself and the 

size of the problem is reduced at each step, we 

will arrive at a very small, easy-to-solve problem.

• That easy-to-solve problem is called the base 

case.

• The formula that reduces the size of a problem is 

called the general case. 

Recursive Methods

• A recursive method calls itself, i.e. in the body of 

the method, there is a call to the method itself. 

• The arguments passed to the recursive call are 

smaller in value than the original arguments.
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Simple Recursion

• When designing a recursive solution for a 

problem, we need to do two things:

– Define the base case.

– Define the rule for the general case.

Printing “Hello World” n Times 

Using Recursion

• In order to print “Hello World” n times (n is 

greater than 0), we can do the following:

– Print “Hello World”

– Print “Hello World” (n – 1) times

• This is the general case.

• We have reduced the size of the problem from size 

n to size (n – 1).

Printing “Hello World” n Times 

Using Recursion

• Printing “Hello World” (n – 1) times will be done 

by 

– Printing “Hello World” 

– Printing “Hello World” (n – 2) times

• … and so on 

• Eventually, we will arrive at printing “Hello 

World” 0 times: that is easy to solve; we do 

nothing. That is the base case.

Coding the Recursive Method

public static void printHelloWorldNTimes( int n )

{ 

if ( n > 0 )

{

System.out.println( “Hello World” );

printHelloWorldNTimes( n – 1 );

}

// if n is 0 or less, do nothing

}

• See Example 13.1 RecursiveHelloWorld.java
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Recursion with a Return Value

• A recursive  method is a method; as such, it can be 

a value-returning method.

• In a value-returning method, the return statement 

can include a call to another value-returning 

method.

• For example,

public int multiplyAbsoluteValueBy3( int n )

{

return ( 3 * Math.abs( n ) );

}

Recursion with a Return Value

• In a recursive value-returning method, the return

statement can include a call to the method itself.

• The return value of a recursive value-returning 

method often consists of an expression that 

includes a call to the method itself:

return ( expression including a   

recursive call to the method );

Factorial

• The factorial of a positive number is defined as 

factorial( n ) = n! 

= n * ( n – 1 ) * ( n – 2 ) * … 3 * 2 * 1

– By convention, 

factorial( 0 ) = 0! = 1

– The factorial of a negative number is not 

defined.

• Can we find a relationship between the problem at 
hand and a smaller, similar problem?

Factorial

factorial( n ) = n! 

= n * ( n – 1 ) * ( n – 2 ) * … 3 * 2 * 1

factorial( n - 1 ) = ( n – 1 )! 

= ( n – 1 ) * ( n – 2 ) * … 3 * 2 * 1

• So we can write

factorial( n ) = n * factorial( n – 1 )

• That formula defines the general case.



4

Factorial

factorial( n ) = n * factorial( n – 1 )

• At each step, the size of the problem is reduced by 

1: we progress from a problem of size n to a 

problem of size (n – 1)

• A call to factorial( n ) will generate a call to 

factorial( n – 1 ), which in turn will generate a call 

to factorial( n – 2 ), ….

• Eventually, a call to factorial( 0 ) will be 

generated; this is our easy-to-solve problem. We 
know that factorial( 0 ) = 1. That is the base case.

Code for a Recursive 

Factorial Method

public static int factorial( int n )

{ 

if ( n <= 0 ) // base case

return 1;

else          // general case

return ( n * factorial( n – 1 ) );

}

• See Example 13.2 RecursiveFactorial.java

Common Error

Trap

When coding a recursive method, failure to code 

the base case will result in a run-time error.

If the base case is not coded, when the method is 

called, the recursive calls keep being made 

because the base case is never reached.

This eventually generates a StackOverflowError.

Recursion Versus Iteration

• A recursive method is implemented using decision 

constructs (if/else statements) and calls itself.

• An iterative method is implemented with looping 

constructs (while or for statements) and repeatedly 

executes the loop.

• Printing “Hello World” n times and calculating a 

factorial can easily be coded using iteration.

• Other problems, such as the Towers of Hanoi and 

Binary Search, are more easily coded using 

recursion.
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Recursion Versus Iteration

• Considerations when deciding to use recursion or 

iteration include:

– Efficiency of the method at execution time: 

often, recursion is slower due to overhead 

associated with method calls.

– Readability and maintenance: often, a recursive 

formulation is easier to read and understand 

than its iterative equivalent.

Back Up

Slides

Recursive Binary Search

• Our Recursive Binary Search will implement a 

Binary Search using recursion.

• Review: A Binary Search searches a sorted array 

for a search key value.

– If the search key is found, we return the index 

of the element with that value.

– If the search key is not found, we return -1.

The Binary Search Algorithm

• We begin by comparing the middle element of the 

array with the search key. 

• If they are equal, we found the search key and

return the index of the middle element.

• That is a base case.
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Binary Search (con't)

• If the middle element's value is greater than the 

search key, then the search key cannot be found in 

elements with higher array indexes. So, we

continue our search in the left half of the array. 

• If the middle element's value is less than the 

search key, then the search key cannot be found in 

elements with lower array indexes lower. So, we

continue our search in the right half of the array. 

The Binary Search Algorithm (con't)

• Searching the left or right subarray is made via a 

recursive call to our Binary Search method. We 

pass the subarray to search as an argument. Since 

the subarray is smaller than the original array, we 

have progressed from a bigger problem to a 

smaller problem. That is our general case.

• If the subarray to search is empty, we will not find 

our search key in the subarray, and we return –1. 

That is another base case.

Example of a Recursive Binary 

Search

• For example, we will search for the value 7 in this 

sorted array:

• To begin, we find the index of the center element, 

which is 8, and we compare our search key (7) 

with the value 45.

Recursive Binary Search Example 

(con't)

• A recursive call is made to search the left 

subarray, comprised of the array elements with 

indexes between 0 and 7 included. 

• The index of the center element is now 3, so we 

compare 7 to the value 8.
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Recursive Binary Search Example 

(con't)

• A recursive call is made to search the left 

subarray, comprised of the array elements with 

indexes between 0 and 2 included. 

• The index of the center element is now 1, so we 

compare 7 to the value 6.

Binary Search: Finding the Search Key

• A recursive call is made to search the right 

subarray, comprised of the only array element 

with index between 2 and 2 included. 

• The value of the element at index 2 matches the 

search key, so we have reached a base case and we 

return the index 2 (successful search).

Recursive Binary Search Example 2

• This time, we search for a value not found in the 

array, 34. Again, we start with the entire array and 

find the index of the middle element, which is 8. 

• We compare our search key (34) with the value 

45.

Recursive Binary Search Example 2 

(con't)

• A recursive call is made to search the left 

subarray, comprised of the array elements with 

indexes between 0 and 7 included. 

• The index of the center element is now 3, so we 

compare 34 to the value 8.
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Recursive Binary Search Example 2 

(con't)

• A recursive call is made to search the right 

subarray, comprised of the array elements with 

indexes between 4 and 7 included. 

• The index of the center element is now 5, so we 

compare 34 to the value 15.

Recursive Binary Search Example 2 

(con't)

• A recursive call is made to search the right 

subarray, comprised of the array elements with 

indexes between 6 and 7 included. 

• The index of the center element is now 6, so we 

compare 34 to the value 22.

Recursive Binary Search 2: Search Key 

is Not Found

• A recursive call is made to search the right 
subarray, comprised of the only array element 
with index between 7 and 7 included. 

• The index of the center (only) element is now 7, 
so we compare 34 to the value 36.

• A recursive call is made to search the left 
subarray, but that left subarray is empty. We have 
reached the other base case, and we return –1, 
indicating an unsuccessful search.

Recursive Binary Search Method

• How many and what parameters does our 

recursive binary search method take?

• Our non-recursive method, in Chapter 8, took only 

two parameters: the array and the search key. The 

subarray being searched is defined inside the 

method by two local variables, start and end, 

representing the indexes of the first and last 

elements of the subarray 



9

Recursive Binary Search Method

• When we make a recursive call to search the left 

or the right subarray, our recursive call will define 

the subarray that we search.

• Thus, our recursive Binary Search method will 

have two extra parameters, representing the 

indexes of the first and last elements of the 

subarray to search.

Binary Search Code
public int recursiveBinarySearch

( int [] arr, int key, int start, int end )

{ 

if ( start <= end )

{

int middle = ( start + end ) / 2;  

if ( arr[middle] == key ) // key found

return middle;   // one base case 

else if ( arr[middle] > key ) // look left

return recursiveBinarySearch

( arr, key, start, middle – 1 );  

else // look right

return recursiveBinarySearch

( arr, key, middle + 1, end );

}

else // key not found

return -1;  // another base case

}

Recursion with Two Base Cases

• Complex recursive formulations can involve more 

than one recursive call, with each call being made 

with different arguments.

• This, in turn, means that we can have more than 

one base case.

Combinations

• How many different ways can we choose p players 

among n players?

• We assume that n is greater than or equal to p

(otherwise the answer is 0).

• Call that number Combinations( n, p ).

• We want to come up with a recursive solution to 

this problem.
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Analyzing the Combinations

Problem
• Let’s consider some easy cases:

• If p is equal to n, we have no choice but to pick all 

the players; there is only one way to do that. 

So Combinations( n, n ) = 1.

• If p is equal to 0, then we do not pick any players; 

there is only one way to do that. 

So Combinations( n, 0 ) = 1. 

• What is the answer in the general case?

Combinations( n, p ) = ?

Analyzing the Combinations

Problem
• Let’s focus on one player, call him Louis.

• We can either pick Louis or not pick Louis, and 

these two options are mutually exclusive.

• So Combinations( n, p ) =

number of different ways of picking p players 

among n, picking Louis.

+

number of different ways of picking p players 

among n, not picking Louis.

Analyzing the Combinations

Problem
• If we pick Louis, we will have to pick ( p – 1 ) 

more players among ( n – 1 ) players (we cannot 

pick Louis twice). That number, by definition, is 

Combinations( n – 1, p – 1 ).

• If we do not pick Louis, we will have to pick p

players among ( n – 1 ) players (we do not pick 

Louis). That number, by definition, is

Combinations( n – 1, p ).

Combinations: The General Case

• Therefore,

Combinations( n, p ) =

Combinations( n - 1, p - 1 ) 

+

Combinations( n - 1, p )

• That is our formula for the general case. Note that 

we are progressing from one large problem to two 

smaller problems.
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Defining the First Base Case

• Consider the first term of the right side of the 

equation, Combinations( n - 1, p - 1 ) 

• Both parameters, n and p, decrease by 1. 

• Since n is greater than or equal to p, eventually p

will reach 0.

• We know that Combinations( n, 0 ) = 1.

• That is our first base case.

Defining the Second Base Case

• Consider the second term of the right side of the 

equation, Combinations( n - 1, p ) 

• The first parameter, n, decreases by 1, whereas p

is unchanged. 

• Since n is greater than or equal to p, eventually n

will reach p.

• We know that Combinations( n, n ) = 1.

• That is our second base case.

Combinations Code

public static int combinations( int n, int p )

{ 

if ( p == 0 )      // base case # 1

return 1;

else if ( n == p ) // base case # 2

return 1;

else               // general case

return ( combinations( n – 1, p - 1 ) 

+ combinations( n – 1, p ) );

}

• See Example 13.6 RecursiveCombinations.java

Greatest Common Divisor

• The Greatest Common Divisor (gcd) of two 

numbers is the greatest positive integer that 

divides evenly into both numbers.

• The Euclidian algorithm finds the gcd of two 

positive numbers a and b.

– It is based on the fact that:

gcd( a, b ) = gcd ( b, remainder of a / b ) 

(assuming a is greater than b and b is different

from 0)
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GCD: Euclidian Algorithm

Step 1:

r0 = a % b

if ( r0 is equal to 0 )

gcd( a, b ) = b

stop

else

go to Step 2

Step 2:

Repeat Step 1 with b and r0, instead of a and b.

GCD Example: Euclidian Algorithm

If a = 123450 and b = 60378, then …

60378 % 123450 = 2694 (different from 0)

60378 % 2694 = 1110 (different from 0)

2694 % 1110 = 474 (different from 0)

1110 % 474 = 162 (different from 0)

474 % 162 = 150 (different from 0)

162 % 150 = 12 (different from 0)

150 % 12 = 6 (different from 0)

12 % 6 = 0 

� gcd( 123450, 60378 ) = 6

GCD Code

public static int gcd( int dividend, int divisor )

{ 

if ( dividend % divisor ==  0 ) 

return divisor;

else          // general case

return ( gcd( divisor, dividend % divisor ) );

}

• See Example 13.4 RecursiveGCD.java

Animation Using Recursion

• We can use recursion to move an object on the 

screen from one location to another.

• A recursive formulation for the general case is:

1. move the object one pixel.

2. move the object the rest of the distance.
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Animation Using Recursion

• At every step, the distance to move the object 

decreases by 1.

• Eventually, the distance reaches 0, in which case 

we do nothing. That is the base case.

• See Example 13.11 AstronautClient.java


