
Finite State Machines and Regular Expressions

Illinois Institute of Technology Mattox Beckman

Finite State Machines and Regular
Expressions

Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

Finite State Machines and Regular Expressions – p. 1

Finite State Machines and Regular Expressions
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

Be able to explain the problem of parsing.

Know how to recognize a word using an NFA or a DFA.

Know the difference between a DFA and an NFA

Be able to convert a NFA into a DFA

Vocabulary to know: deterministic, nondeterministic, lexing,
scanning, accept state, transition.

Know the syntax of regular expressions.

Know how to convert between regular expressions and state
machines.

Know the limitations of regular languages.

For further reading see the Dragon Book, §3.1 and 3.6.

Finite State Machines and Regular Expressions – p. 2

Finite State Machines and Regular Expressions
§1 Parsing

Illinois Institute of Technology Mattox Beckman

The Problem

Computer programs are entered as a stream of ASCII (usually)
characters.

4 + if x > 4 then 5 else 0

We want to convert them into an Abstract Syntax Tree

ML code
1 PlusExp(
2 IntExp 4,
3 IfExp(
4 GtExp(VarExp "x",
5 IntExp 4),
6 IntExp 5,
7 IntExp 0))

Plus

Int

4

If

Gt

Var

x

Int

4

Int

5

Int

0

Finite State Machines and Regular Expressions – p. 3

Finite State Machines and Regular Expressions
§1 Parsing

Illinois Institute of Technology Mattox Beckman

The Solution

Characters Lexer Tokens Parser Tree

The conversion from strings to trees is accomplished in two steps.

First, convert the stream of characters into a stream of tokens.
This is called lexing or scanning.
Turns characters into words and categorizes them.

Second, convert the stream of tokens into an abstract syntax
tree.

This is called parsing.
Turns words into sentences.

Finite State Machines and Regular Expressions – p. 4

Finite State Machines and Regular Expressions
§2 DFA

Illinois Institute of Technology Mattox Beckman

DFAs

Suppose I want to teach the
computer how to recognize a
word with the following
properties:

It consists only of the letters
a and b.

The letter b occurs twice,
once at the very end.

We can use a state
machine...

1 2 3

a

b

a

b

The circles represent states.
Start at the first one.

The arrows represent
transitions.

Consume a character from
the input. If it matches a
transition, follow it to the next
state. (Otherwise, fail.)

If you are in the double-circle
state when the input runs out,
succeed.

Finite State Machines and Regular Expressions – p. 5

Finite State Machines and Regular Expressions
§2 DFA

Illinois Institute of Technology Mattox Beckman

Example: parse aabab

Start at state 1:

1 2 3

a

b

a

b

Read the first two letters a,
and stay at state 1.

Read b, and go to state 2:

1 2 3

a

b

a

b

Read an a and stay at state 2.

Read b, and go to state 3:

1 2 3

a

b

a

b

Input is over, and we’re in the
final state. Accept the input.

Finite State Machines and Regular Expressions – p. 6

Finite State Machines and Regular Expressions
§2 DFA

Illinois Institute of Technology Mattox Beckman

Example

What kinds of strings will this state machine accept?

1 2

3 4

1

1

00 00

1

1

Finite State Machines and Regular Expressions – p. 7

Finite State Machines and Regular Expressions
§2 DFA

Illinois Institute of Technology Mattox Beckman

Example

What kinds of strings will this state machine accept?

1 2

3 4

1

1

00 00

1

1

Answer: Strings of 0s and 1s with an odd number of 0s and an odd
number of 1s.

Finite State Machines and Regular Expressions – p. 7

Finite State Machines and Regular Expressions
§3 NFA

Illinois Institute of Technology Mattox Beckman

Nondeterminism

State machines can be nondeterministic in two ways:

Way 1: Multiple edges from a state with the same label

2

1 4

3

a

a

b

c

e

d

Accepted strings:

a, any number of b, e

a, any number of c, d

When the first a is read, the
machine is in either state 2 or 3.

Only on the next input do you find out for sure which state is active.
Finite State Machines and Regular Expressions – p. 8

Finite State Machines and Regular Expressions
§3 NFA

Illinois Institute of Technology Mattox Beckman

Example: acd

2

1 4

3

a

a

b

c

e

d

Start at state 1

Finite State Machines and Regular Expressions – p. 9

Finite State Machines and Regular Expressions
§3 NFA

Illinois Institute of Technology Mattox Beckman

Example: acd

2

1 4

3

a

a

b

c

e

d

Start at state 1

Read an a — go to states 2 and 3

Finite State Machines and Regular Expressions – p. 9

Finite State Machines and Regular Expressions
§3 NFA

Illinois Institute of Technology Mattox Beckman

Example: acd

2

1 4

3

a

a

b

c

e

d

Start at state 1

Read an a — go to states 2 and 3

Read a c — go to state 3

Finite State Machines and Regular Expressions – p. 9

Finite State Machines and Regular Expressions
§3 NFA

Illinois Institute of Technology Mattox Beckman

Example: acd

2

1 4

3

a

a

b

c

e

d

Start at state 1

Read an a — go to states 2 and 3

Read a c — go to state 3

Read a d — go to state 4 Input is over, so w
accept.

Finite State Machines and Regular Expressions – p. 9

Finite State Machines and Regular Expressions
§3 NFA

Illinois Institute of Technology Mattox Beckman

Nondeterminism

Way 2: Epsilon (ǫ) transitions

An ǫ-transition says we can go from one state to another
without any input.

2

1 4

3

a

a

b

c

e

d

ǫ

When we are in state 2, we can
go to state 3 at any time, just
because we feel like it.
How does this change what
strings we can read?

Finite State Machines and Regular Expressions – p. 10

Finite State Machines and Regular Expressions
§3 NFA

Illinois Institute of Technology Mattox Beckman

Example: abd

2

1 4

3

a

a

b

c

e

d

ǫ

Start at state 1

Finite State Machines and Regular Expressions – p. 11

Finite State Machines and Regular Expressions
§3 NFA

Illinois Institute of Technology Mattox Beckman

Example: abd

2

1 4

3

a

a

b

c

e

d

ǫ

Start at state 1

Read an a — Go to state 2 and 3

Finite State Machines and Regular Expressions – p. 11

Finite State Machines and Regular Expressions
§3 NFA

Illinois Institute of Technology Mattox Beckman

Example: abd

2

1 4

3

a

a

b

c

e

d

ǫ

Start at state 1

Read an a — Go to state 2 and 3

Read a b — Go to state 2 and 3

Finite State Machines and Regular Expressions – p. 11

Finite State Machines and Regular Expressions
§3 NFA

Illinois Institute of Technology Mattox Beckman

Example: abd

2

1 4

3

a

a

b

c

e

d

ǫ

Start at state 1

Read an a — Go to state 2 and 3

Read a b — Go to state 2 and 3

Read a d — Go to state 4
Since input is over, we accept.

Finite State Machines and Regular Expressions – p. 11

Finite State Machines and Regular Expressions
§4 Translation

Illinois Institute of Technology Mattox Beckman

Using State Machines

With the exception of Prolog, computers have a hard time
dealing with nondeterministic state machines.

Solution: we can convert them!

How to do it:

1. Add set {1} to the queue.

2. Pop set of states L from the queue. If seen before, discard and
go to 1.

3. Take the epsilon closure of L to get L̂.

4. Create a new set of states for each input recognized, push
them onto the queue.

Finite State Machines and Regular Expressions – p. 12

Finite State Machines and Regular Expressions
§4 Translation

Illinois Institute of Technology Mattox Beckman

Example A

2

1 4

3

a

a

b

c

e

d

Start with a new state P = {1}. Inputs
on P go to states 2 and 3.
State Set a b c d e

P 1 2,3
So, we create a new state Q represent-
ing that set and add it to our table.
State Set a b c d e

P 1 2,3
Q 2,3

Finite State Machines and Regular Expressions – p. 13

Finite State Machines and Regular Expressions
§4 Translation

Illinois Institute of Technology Mattox Beckman

Example A, part 2

2

1 4

3

a

a

b

c

e

d

State Q goes to 2 on b, 3 on c, and 4 on
either d or e.
So, we create a new states representing
them and add them to our table.
State Set a b c d e

P 1 2,3
Q 2,3 2 3 4 4
R 2
S 3
T 4

Finite State Machines and Regular Expressions – p. 14

Finite State Machines and Regular Expressions
§4 Translation

Illinois Institute of Technology Mattox Beckman

Example A, Part 3

2

1 4

3

a

a

b

c

e

d

State R has inputs for b, and e. State S

has inputs for c, and d. State T has no
inputs.
State Set a b c d e

P 1 2,3
Q 2,3 2 3 4 4
R 2 2 4
S 3 3 4
T 4

This gives us the instructions to make a new state machine that is
deterministic.

Finite State Machines and Regular Expressions – p. 15

Finite State Machines and Regular Expressions
§4 Translation

Illinois Institute of Technology Mattox Beckman

Example A, Part 4

P Q R

S T

a b
b

c

c

d

d,e
e

State Set a b c d e

P 1 2,3
Q 2,3 2 3 4 4
R 2 2 4
S 3 3 4
T 4

Finite State Machines and Regular Expressions – p. 16

Finite State Machines and Regular Expressions
§4 Translation

Illinois Institute of Technology Mattox Beckman

Example B

1 2 3

4 5

a b

d d ǫ c

b

b

e

State Set a b c d e

P 1 2 4
Q 2
R 4

We add our initial state P , and see that we have inputs on a and d.

Finite State Machines and Regular Expressions – p. 17

Finite State Machines and Regular Expressions
§4 Translation

Illinois Institute of Technology Mattox Beckman

Example B, part 2

1 2 3

4 5

a b

d d ǫ c

b

b

e

State Set a b c d e

P 1 2 4
Q 2 2,3,4 4
R 4 5 4
S 2,3,4
T 5

Note that from Q, input b gives us states {2, 3}, but we add {2, 3, 4}
to our table because of the ǫ-closure rule.

Finite State Machines and Regular Expressions – p. 18

Finite State Machines and Regular Expressions
§4 Translation

Illinois Institute of Technology Mattox Beckman

Example B, part 3

Finishing the table, we get...
State Set a b c d e

P 1 2 4
Q 2 2,3,4 4
R 4 5 4
S 2,3,4 2,3,4,5 5 4 4
T 5
U 2,3,4,5 2,3,4,5 5 4 4

Finite State Machines and Regular Expressions – p. 19

Finite State Machines and Regular Expressions
§4 Translation

Illinois Institute of Technology Mattox Beckman

Example B, part 4

1 2 3

4 5

a b

d d ǫ
c

b

b

e

P Q S U

R T

a b b
b

d
d

e

cd,e c

b

d,e

Note well: we have two accept states.

Finite State Machines and Regular Expressions – p. 20

Finite State Machines and Regular Expressions
§5 Activity

Illinois Institute of Technology Mattox Beckman

Activity!

1. (129) Draw an NFA that accepts even binary numbers.

2. (130) Draw a DFA that accepts even binary numbers.

3. (131) Convert this example into a DFA.

2

1 4

3

a

a

b

c

e

d

ǫ

Finite State Machines and Regular Expressions – p. 21

Finite State Machines and Regular Expressions
§5 Activity

Illinois Institute of Technology Mattox Beckman

Draw an NFA that accepts even binary numbers.

1 2

0,1

0

Draw a DFA that accepts even binary numbers.

1 2

1

0

1

0

Finite State Machines and Regular Expressions – p. 22

Finite State Machines and Regular Expressions
§5 Activity

Illinois Institute of Technology Mattox Beckman

Convert this example into a DFA

2

1 4

3

a

a

b

c

e

d

ǫ State Set a b c d e

P 1 2,3
Q 2,3 2,3 3 4 4
R 3 3 4
S 4

Finite State Machines and Regular Expressions – p. 23

Finite State Machines and Regular Expressions
§5 Activity

Illinois Institute of Technology Mattox Beckman

The DFA

2

1 4

3

a

a

b

c

e

d

ǫ

becomes

Q

P S

R

a

b

c

d,e

c

d

Finite State Machines and Regular Expressions – p. 24

Finite State Machines and Regular Expressions
§6 Regular Expressions

Illinois Institute of Technology Mattox Beckman

Motivation

Regular Languages were developed by Noam Chomsky in his
quest to describe human languages.

Computer Scientists like them because they are able to
describe “words” or “tokens” very easily.

Examples:

Integers a bunch of digits

Reals an integer, a dot, and an integer

Past Tense English Verbs a bunch of letters ending with “ed”

Proper Nouns a bunch of letters, the first of which must be
capitalized

Finite State Machines and Regular Expressions – p. 25

Finite State Machines and Regular Expressions
§6 Regular Expressions

Illinois Institute of Technology Mattox Beckman

A bunch of digits?!

We need something a bit more formal if we want to
communicate properly.

We will use a pattern (or a regular expression) to represent the
kinds of words we want to describe.

As it will turn out, these expressions will correspond to NFAs.

Kinds of patterns we will use:
Single letters
Repetition
Grouping
Choices

Finite State Machines and Regular Expressions – p. 26

Finite State Machines and Regular Expressions
§7 Syntax of Regular Expressions

Illinois Institute of Technology Mattox Beckman

Single Letters

To match a single character, just write the character.

To match the letter “a”...

Regular Expression: a
State machine:

1 2
a

To match the character “8”...

Regular Expression: 8
State machine:

1 2
8

Finite State Machines and Regular Expressions – p. 27

Finite State Machines and Regular Expressions
§7 Syntax of Regular Expressions

Illinois Institute of Technology Mattox Beckman

Juxtaposition

To match longer things, just put two regular expressions
together.

To match the character “a” followed by the character “8”...
Regular expression: a8
State machine:

1 2 3
a 8

To match the string “hello”...
Regular expression: hello
State machine:

1 2 3 4 5 6
h e l l o

Finite State Machines and Regular Expressions – p. 28

Finite State Machines and Regular Expressions
§7 Syntax of Regular Expressions

Illinois Institute of Technology Mattox Beckman

Repetition

For zero or more occurrences, add a *

For one or more occurances, add a +

Zero or more copies of a...
Regular expression a*
State machine:

1 2
ǫ

a

One or more copies of x...
Regular expression x+

State machine:

1 2 3
x ǫ

x

For those of you who have used unix or DOS filename
matching, this should look familiar.

Finite State Machines and Regular Expressions – p. 29

Finite State Machines and Regular Expressions
§7 Syntax of Regular Expressions

Illinois Institute of Technology Mattox Beckman

Grouping

To groups things together, use parenthesis.

To match one or more copies of the word “hi”...
Regular expression: (hi)+
State machine:

1 2 3
h i

ǫ

Finite State Machines and Regular Expressions – p. 30

Finite State Machines and Regular Expressions
§7 Syntax of Regular Expressions

Illinois Institute of Technology Mattox Beckman

Choice

To make a choice, use the vertical bar (also called “pipe”).

To match an a or a b...
Regular expression: a|b
State machine:

2

1

3

a

b

Finite State Machines and Regular Expressions – p. 31

Finite State Machines and Regular Expressions
§7 Syntax of Regular Expressions

Illinois Institute of Technology Mattox Beckman

Examples

Expression (Some) Matches (Some) Rejects
ab*a aa, aba, abbba ba, aaba, abaa
(0|1)* any binary number, ǫ

(0|1)+ any binary number empty string
(0|1)*0 even binary numbers
(aa)*a odd number of as
(aa)*a(aa)* odd number of as
(aa|bb)*((ab|ba)(aa|bb)*(ab|ba)(aa|bb)*)*
even number of as and b

Finite State Machines and Regular Expressions – p. 32

Finite State Machines and Regular Expressions
§7 Syntax of Regular Expressions

Illinois Institute of Technology Mattox Beckman

Some Notational Shortcuts

A range of characters: [Xa-z] matches X and between a and
z (inclusively).

Any character at all: .

Escape: \

Expression (Some) Matches
[0-9]+ integers
X.*Y anything at all between an X and a Y

[0-9]*\.[0-9]* floating point numbers (positive, without exponents)

Finite State Machines and Regular Expressions – p. 33

Finite State Machines and Regular Expressions
§7 Syntax of Regular Expressions

Illinois Institute of Technology Mattox Beckman

Things to know...

They are greedy.
X.*Y will match XabaaYaababY entirely, not just XabaaY.

They cannot count very well.
They can only count as high as you have states in the
machine.
This regular expression matches some primes:

aa|aaa|aaaaa|aaaaaaa

You cannot match an infinite number of primes.
You cannot match “nested comments”. (*.**)

Finite State Machines and Regular Expressions – p. 34

Finite State Machines and Regular Expressions
§8 Converting to NFA

Illinois Institute of Technology Mattox Beckman

Converting via Thompson’s Construction

Regular Expression State Machine

Single letter a: 1 2
a

Juxtiposition of A and B 1 2 3
A B

Repitition of A 1 2 3 4
ǫ

A

ǫ
ǫ

ǫ

Finite State Machines and Regular Expressions – p. 35

Finite State Machines and Regular Expressions
§8 Converting to NFA

Illinois Institute of Technology Mattox Beckman

Converting via Thompson’s Construction, II

Regular Expression State Machine

Choice between A and B

2 3

1 6

4 5

ǫ

ǫ

A

B

ǫ

ǫ

Finite State Machines and Regular Expressions – p. 36

Finite State Machines and Regular Expressions
§8 Converting to NFA

Illinois Institute of Technology Mattox Beckman

Example: a(c|d)*e

4 5

1 2 3 8 9 10

6 7

a

c

d

eǫ

ǫ

ǫ

ǫ

ǫ

ǫ
ǫ

ǫ

These are highly unoptimized, but very easy to compose together.
You can use the techniques from last lecture to optimize it.

Finite State Machines and Regular Expressions – p. 37

Finite State Machines and Regular Expressions
§9 Activity

Illinois Institute of Technology Mattox Beckman

Problems I

Write a regular expression for the following kinds of words

hexadecimal numbers

numbers in scientific notation

file names ending in .C

numbers between 0 and 255

Describe in English the following regular expressions

[a-zA-Z][a-zA-Z0-9]+

[a-z]*(es|ed|ing)

<[a-z0-9]+@[a-z0-9]+(\.[a-z0-9]+)+>

Finite State Machines and Regular Expressions – p. 38

Finite State Machines and Regular Expressions
§9 Activity

Illinois Institute of Technology Mattox Beckman

Asnwers I

hexadecimal numbers: [0-9A-Fa-f]+

numbers in scientific notation:
[0-9]+\.[0-9]+E(+|-)[0-9]+

file names ending in .C: .*\.C

numbers between 0 and 255:
25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9]

[a-zA-Z][a-zA-Z0-9]+ like variable names

[a-z]*(es|ed|ing) words ending in “es”, “ed”, or “ing” (verb
forms)

<[a-z0-9]+@[a-z0-9]+(\.[a-z0-9]+)+> email
addresses

Finite State Machines and Regular Expressions – p. 39

Finite State Machines and Regular Expressions
§9 Activity

Illinois Institute of Technology Mattox Beckman

Problems II

Which of the following can be described by regular expressions?

All the words in the English language

All the Fibonacci numbers

“All Your Base Are Belong To Us” video

Numbers that are multiples of 4 (assume >= 2 digits)

Words that have exactly as many as as they have bs

Pallindromes

Finite State Machines and Regular Expressions – p. 40

Finite State Machines and Regular Expressions
§9 Activity

Illinois Institute of Technology Mattox Beckman

Answers II

All the words in the English language
Yes — it’s huge, but it works. (a|aardvark|abate|...

All the Fibonacci numbers
No — the set is infinite and requires computation

“All Your Base Are Belong To Us” video
Yes — again, huge, but it works

Numbers that are multiples of 4 (assume >= 2 digits)
Yes — [0-9]*([02468][048]|[13579][26])

Words that have exactly as many as as they have bs
No — requires unbounded counting

Pallindromes
No — requires unbounded memory
(aibohphobia = fear of pallindromes)

Finite State Machines and Regular Expressions – p. 41

	Objectives
	The Problem
	The Solution
	DFAs
	Example: parse 	exttt {aabab}
	Example
	Example

	Nondeterminism
	Example: acd
	Example: acd
	Example: acd
	Example: acd

	Nondeterminism
	Example: abd
	Example: abd
	Example: abd
	Example: abd

	Using State Machines
	Example A
	Example A, part 2
	Example A, Part 3
	Example A, Part 4
	Example B
	Example B, part 2
	Example B, part 3
	Example B, part 4
	Activity!
	Draw an NFA that accepts even binary numbers.
	Convert this example into a DFA
	The DFA
	Motivation
	A bunch of digits?!
	Single Letters
	Juxtaposition
	Repetition
	Grouping
	Choice
	Examples
	Some Notational Shortcuts
	Things to know...
	Converting via Thompson's Construction
	Converting via Thompson's Construction, II
	Example: 	exttt {a(c|d)*e}
	Problems I
	Asnwers I
	Problems II
	Answers II

