MP 3 — A Unification-Based Type Inferencer

CS 440 - Fall 2006

Revision 1.0

AssignedOctober 11, 2006
Due October 30, 2006
ExtensionNovember 1, 2006

1 Change Log

1.0 Initial Release.

2 Obijectives

Your objectives are:

e Become comfortable using record types and disjoint types.

Understand the unification algorithm.

Become comfortable with the notation for semantic speditioa.

Understand the type-inference algorithm.

3 Background

One of the major objectives of this course is to provide yothwhe skills necessary to implement a language. There
are three major components to a language implementatienpdtser, the internal representation, and the evaluator.
In this MP you will work on the middle piece, the internal repentation.

An interpreter or a compiler represents an expression imguiage with arbstract Syntax Tree (AST), usually
implemented by means of a user-defined type. Functions cawilien that use this type to perform evaluations,
preprocessing... anything that can or should be done withhguiage. In this MP, you will write some functions that
perform type inferencing using unification. This type-i&iecer will appear again as a component in several future
MPs.

3.1 Type Inferencing

The pattern for type inferencing will be similar to the prdaees you used in class to verify a type. The catch is that
you are not told the type ahead of time, you have to figure isytou go. The procedure is as follows:

1. Infer the types of all the subexpressions. For each subsgjon, you will get back a proof tree and a list of
constraints.

2. Create a new proof tree from the subexpressions.

3. Create a new set of constraints by taking the union of thmestcaints of the subexpressions. Add any new
constraints to this.

4. Return the new proof tree and new set of constraints.

The rules used for a type-inferencer are very similar to thesaised in class. They have one extra component, a
field for the constraints. Here’s an example:

Fl—el :7-1|Cl F}—eg 17'2|CQ
Phep+ex:int [{m=int;m=int }UC;UCy

The “|” is just some notation to separate the constraint from thEession. This rule says that if you add two
expressiong; andes, which have typer; andr, then the type of the entire expression is integer. But ireofdr
this to work, we constrain the types andr; to be of type integer. The final constraint is the union of thestraints
inferred from the subexpressions, along with the new caimgs for the addition rule.

For example, suppose you want to infer the typéwh x -> x + 2. In English, the reasoning would go like
this.

1. Letl = {}.

2. Examinefun x -> x + 2. We don't know whatx will be, so we let it have typé 1. Add that toI" and
infer the type of the body...

(a) Examinex + 2. We need to infer the subtypes.

i. Examinex. I" says thak has type 1. We do not need to add constraints here.
ii. Examine2. This is an integer. We don’t need to add constraints here.

(b) We combine these inferences together to make a new mme@fand say that the result type ist . Also,
we need to constraihl to be typei nt, andi nt to be typei nt . (Yes, that last one was trivial, but the
rule says we have to do it. It will be removed later.)

3. Now we're ready to set the type of the whole expression. VEn@blex has typ€ 1, and the output has type
i nt, sothe whole expression has type -> int.

4. Our constraints say to rewritel asi nt everywhere. We do that, and get a final typé of -> int.

Here’s a sample run from the MP for the same example.

nicelnfer Ganmma. enpty (FunBExp("x", ArithExp(PlusQOp, | ntExp 2,VarExp "x")));;
{} |- funx ->2 +x: ("1 ->int)

{x:"1; } |- 2+ x: int
{x:'1, } |- 2: int
{x:"1;, } |- x "1
Constraints: [int -->int; "1 -->int;]

Unifying...New Constraints: ['1 -->int;]
Substituting...

{} |- fun x -> 2 + x : (int ->int)
{x:int; } |- 2+ x: int
{x:int; } |- 2 : int
{x:int; } |- x i nt
- ounit = ()
4 Given Code

You are given some initial code in a fiexpr essi ons. nl . Do not modify this file. We may use our own version
for grading, or we may need to change some of the implementati

4.1 Types

Expressions

As mentioned above, an interpreter represents an expnegsing an AST. We define a tymxp to represent
our language. Not all the elements of the final language are yet, just enough to give you a feel for the
joys of type-checking. Most of the constructors should beesglanatory. The constructors that taker i ng
argumentsFunExp, Let | nExp, Let Recl nExp, andVar Exp) use the string to represent variable names.

There is a simultaneously defined typp that has two constructors, one for integer arithmetic, amel for
equality tests. The real interpreter will have a lot morehafsie, but for type checking this is sufficient.

There are companion functioshowOp andshowExp that convert these types into string representations.

Types

In order to express the type of an expression we need a typatibefito represent types. Again, these should
all be familiar. ThePol yType constructor takes an integer and represents thstyle polymorphic types.
The constructoBot Type represents a type called “bottom” (writtel) and can represent a type error or an
unknown type, depending on your mood.

Again, there is a display function for this type.

String Maps

We need an environment to store the types of variables. Weimjillement it using avap functor. See
http://caml.inria.fr/locaml/htmiman/libref/Map.Makeml| for more information about thdap functor. For now,
we will just say that a functor takes a module and defines anottodule. The name of the environment module
is Ganma, a map from strings to types.

There is ashowGanta function to display the contents of a type environment.

Type Judgments

From lecture, you know that a type judgment has the forme : 7. Thej udgnent type is a record that has
three fieldsganma, exp, andr esul t, representing’, e, andr, respectively.

The functionshowJudgnent returns a string representation.

Proof Trees

A proof tree is a list of assumptions followed by a conclusibhe assumptions are themselves proof trees, and
the conclusion is a type judgment. To represent this we hdypeit r ee which has two fieldsassune, a
tree |list,andconcl ude, ajudgment.

Guess whashowTr ee does? Actually, it's more complicated than the other digfilanctions. It shows the
conclusion first, and then the assumptions. FurthermoeesasBumptions are indented two spaces in, with help
from thespaces function.

4.2 Tests

The filet est . Ml has a bunch of tests in it. You will find it useful to go over tbasle. ThedoTest s function takes
a list of tests and runs them. There are a lot of tests in tleis fil

5 Problems

We will give you a filenp3- gi ven. nl that you should copy tap3. mi . There are a few functions inside it which
proved useful to the staff when writing the solution.

http://caml.inria.fr/ocaml/htmlman/libref/Map.Make.html

Add your functions to the file. To testthem, start up an OCaelractive session, tygeise "expressions.nl";;
to load the expressions file, and thamse " np3. m " toload your file. DANOT puta#use "expressions.m";;
inyournp3. nl file. If you really want to load both in one go, make a third fded put bothuse statements in that
instead.

5.1 Unification

The first thing you need to do to write a unification-based tyfferencer is to write a unifier. A unifier takes a list
of pairs of types that are supposed to be equal. Functiotegers, lists, etc. will be the terms in this system, and
Pol yTypes will represent variables.

You will remember from lecture that the unification algonititonsists of four transformations. These transforma-
tions can be expressed in terms of how an action on the finstezieof the unification problem affects the remaining
elements.

Given a unification problert’, consisting of a hea(k, ¢) and tailC’, there are five cases to consider.

1. If sis a variable, and does not occur im, output(s, t) as part of the solution. Substitutevith ¢ in C".
2. If tis a variable, and does not occur i, output(t, s) as part of the solution. Substitutevith s in C".

3. If s = FunType(s1, s2) andt = FunType(t1,t2) , then add sy, ¢1) and(ss, t2) to C’. Discard(s,t). You
will do similar things for list types and pair types.

4. If s andt are not variables or “functions” as above, and if they areakgliscard the pair.

5. If none of the above cases apply, it is a unification error.

Problems

1. Write a functioncontains : int -> ExpType -> bool . The first argument is the integer component
of aPol yType. The second is a target expression. The output indicatetheshthe variable occurs within the
target. This function is used in cases 1 and 2, and prevetussige types.

contains 1 (FunType(Pol yType 1, PolyType 1));;

- ! bool = true
contains 1 (FunType(Pol yType 2, PolyType 3));;
- ! bool = false

2. Write a functionsubstitute : int -> ExpType -> ExpType -> ExpType. The first argument is
the integer component ofRol yType, the second is the replacement value. The third argumem isxpression
in which to perform the substitution.

substitute 1 IntType (FunType(Pol yType 1, PolyType 1));;
- . expType = FunType (IntType, |ntType)

substitute 1 IntType (FunType(Pol yType 2, PolyType 3));;
- . expType = FunType (PolyType 2, Pol yType 3)

3. Now you are ready to write the unification function. Hem'sample run, based on the example given during the
unification lecture.

28

29

30

31

32

33

34

35

36

unify;;
- . (expType * expType) list -> (expType * expType) list = <fun>
unify [PolyType 1, ListType IntType;
FunType(Pol yType 1, Pol yType 1), FunType(Pol yType 1, Pol yType 2)];;
- ¢ (expType * expType) list =
[(Pol yType 1, ListType IntType); (PolyType 2, ListType IntType)]

5.2 Inferencing

You are now ready to start writing the type inferencer. Weegiou one rule for free, to help you get started. The
integer rule is:

Tkn:int | {}‘assummm is an integer.
The source code:

let rec infer gamma exp =
match exp with
| IntExp _ ->
{ assume = [];
conclude = { gamma = ganmmsg;
exp = exp;
result = IntType } },
[

| _ ->raise (Failure "Expression not recognized")

There are no assumptions, so tesune field is left blank. Also,gamra andexp are copied as-is. Also, the
final[] indicates that there are no constraints.
Here’s an example of usinignf er :

infer Gamma. enpty (I ntExp 3);;
- . tree * (expType * expType) list =
(assume = []; conclude = ganmma = <abstr>; exp = IntExp 3; result = IntType,

(1

There are two functionshowTr ee andshowConst r ai nt s which will print these out in a nicer format. There
is also a functiomi cel nf er which does the same thing, but prints a report of what's goimg

nicelnfer Ganma. enpty (I ntExp 3);;
{} |- 3: int

Constraints: []

Uni fying...New Constraints: []
Substituting...

{} |- 3: int

- ounit = ()

Problems

4. Implement the rule for booleans.

T+ n:bool |{}23ssumingisa boolean.

nicelnfer Gamma. enpty (Bool Exp true);;
{} |- true : bool

Constraints: []

Uni fying...New Constraints: []
Substituting...

{} |- true : bool

- oounit = ()

5. The Variable Rule is:
TheGama. nemandGanma. f i nd functions may prove to be useful to you.

let gl = Gamma. add "x" I nt Type Ganmma. enpty; ;
val gl : expType Gamma.t = <abstr>

nicelnfer g1 (VarExp "x");;

{x:int; } |- x : int

Constraints: []

Uni fying...New Constraints: []
Substituting...

{x:int; } |- x: int

- oounit = ()

6. Implement functions. The function rule is this:
Fru{z:m}ke : »|C
FHfunaz —>e; : 11— 1| C

Notice that you have to copy the constraint given by the agsiominto the conclusion.

You will need to create a nelRol y Ty pe to write this function. The given functiomewPol yType : unit -> expType
will do this for you. You can reset the counter witkeset Counter : unit -> unit.

nicelnfer gl (FunExp("y",VarExp "x"));:;

{x:int; } |- funy ->x: ("1 ->int)
{x:int; y:"1; } |- x: int

Constraints: []

Uni fying...New Constraints: []

Substituting...

{x:int; } |- funy ->x: ("1 ->int)
{x:int; y:'1;, } |- x : int

- oounit = ()

nicelnfer g1 (FunExp("y",VarExp "y"));;

{x:int; } |- funy ->y : ("1 ->"1)
{x:int; y:'1;, } |-y : "1

Constraints: []

Uni fying...New Constraints: []

Substituting...

{x:int; } |- funy ->y : ("1 ->"1)
{x:int; y:'1;, } |-y : "1

- ounit = ()

7. Implement arithmetic. There are two rules, one for addiind one for equals.

F|—€1:T1|01 F}—egiTQng

I'tej+ey :int |{71:int ;Tgiint }UClUCQ

F|_€12’7'1|Cl F}_€2:7—2|CQ
T'kep=ey : bool |{7'1:int ;ngint }U01UCQ

Notice that these are the first in which you will add constsain

nicelnfer gl (ArithExp(PlusQp, VarExp "x",IntExp 3));;
{x:int; } |- x +3: int
{xzint; } |- x : int
{x:int; } |- 3 : int
Constraints: [int -->int; int -->int;]
Uni fying...New Constraints: []
Substituting...

{x:int; } |- x +3: int
{xzint; } |- x : int
{x:int; } |- 3 : int

- ounit = ()

nicelnfer gl (ArithExp(EqQOp, VarExp "x",IntExp 3));;

At this point, you can do “real” type checking:

nicelnfer Gamma. enpty (FunExp("x", ArithExp(Pl usQp, Var Exp "x", VarExp "x")));;
{} |- fun x ->x +x: ("1 ->int)
{x:"1; } |- x +x: int
{x:"1; } |- x: "1
{x:"1;, } |- x: "1
Constraints: ['1 -->int; "1 -->int;]
Uni fying...New Constraints: ['1 -->int;]
Substituting...

{}]- fun x -> x + x : (int ->int)
{x:int; } |- x +x: int
{x:int; } |- x: int
{x:int; } |- x: int
- oounit = ()

8. The next rule to implement isf . The rule says that the conditional part must be booleantteatdhe second and
third subexpressions can be any type at all, as long as teahasame.

F}—el :71|Cl F|—€2 ZT2|CQ Fl—eg ZT3‘03

F'Hifetheneselsees : 73| {r =bool ;7 =73} UC;UCUCs

nicelnfer g1 (IfExp (ArithExp (EgqOp, VarExp "x", IntExp 3),
IntExp 2, IntExp 4));;
{x:int; } |- if x =3 then 2 else 4 : int
{x:int; } |- x =3 : bool

{x:int; } |- X i nt
{x:int; } |- 3 : int
{x:int; } |- 2: int
{xzint; } |- 4 : int
Constraints: [bool --> bool; int
Uni fying...New Constraints: []
Substituting...

-->int; int

{x:int; } |- if x =3 then 2 else 4 : int
{x:int; } |- x =3 : bool
{xzint; } |- x : int
{x:int; } |- 3 : int
{x:int; } |- 2: int
{x:int; } |- 4: int
- sounit = ()

9. Pairs are easy, because you can put anything into themlisBuihave to be checked to make sure that all the

elements have the same type.

F|—61:7’1|Cl F}_QQ:TQ|CQ
PF(61,€2)271XT2|01U02

Fke :m | Cy ke, 1| Cy

-->int;

i nt

-->int;

Lhlei;ren]:mlist [{m=mm=mn=7}UC -UC,

The rule for empty lists is slightly different, and as leftasexercise.

let x = VarExp "x";;

val x : exp = VarExp "x"

nicelnfer gl (PairExp(x,x));;

{x:int; } |- (Xx,X) (int = int)
{x:int; } |- x : int
{x:int; } |- x : int

Constraints: []
Uni fying...New Constraints: []
Substituting...

{x:int; } |- (x,X%) (int = int)
{x:int; } |- x : int

{x:int; } |- x : int

- ounit = ()

nicelnfer Gamma. enpty (ListExp []);;
{b1- 101 : "1list

Constraints: []
Uni fying...New Constraints: []
Substituting...

{b1- 01 : "1 1ist

- oounit = ()

nicelnfer gl (ListExp [IntExp 3; x]);;
{x:int; } |- [3; x;] : int list

{x:int; } |- 3 : int

]

{x:int; } |- x : int
Constraints: [int -->int;]
Uni fying...New Constraints: []
Substituting...

{x:int; } |- [3; x;] : int list
{x:int; } |- 3 : int

{x:int; } |- x : int

- oounit = ()

10. Implement function application. The rule is

1—‘}—61 : Tl‘Cl F|_62 : ’7'2|CQ
F|—€182 N T$|{T1=T2—>Tx}U01UCQ

,for some newr,

You will infer the type of the function and the argument, ahdrt add a constraint that the input of the function
needs to be the same type as the argument.

let g2 = Gamma. add "y" Bool Type 91;;

val g2 : expType Ganma.t = <abstr>

let g3 = Gamma. add "f" (FunType(lnt Type, Bool Type)) g2;;

val g3 : expType Gamma.t = <abstr>

nicelnfer g3 (AppExp(f, IntExp 3));;

{f:(int -> bool); x:int; y:bool; } |- f 3: "1
{f:(int -> bool); x:int; y:bool; } |- f (int -> bool)
{f:(int -> bool); x:int; y:bool; } |- 3 : int

Constraints: [(int -> bool) --> (int ->"1);]

Uni fying...New Constraints: ['1 --> bool;]

Substituting...

{f:(int -> bool); x:int; y:bool; } |- f 3 : bool
{f:(int -> bool); x:int; y:bool; } |- f : (int -> bool)
{f:(int -> bool); x:int; y:bool; } |- 3 : int

- oounit = ()
nicelnfer Gamua. enpty (AppEXp(FunExp("x", VarExp "x"), IntExp 3));;
{} 1- fun x ->x 3 : '2

{3 1- fun x ->x: ("1 ->"1)

{x:"1; } |- x: "1

{} - 3: int
Constraints: [("1 ->"1) --> (int ->"2);]
Uni fying...New Constraints: ['1 -->int; "2 -->int;]
Substituting...

{} |- fun x ->x 3 : int
{} |- fun x -> x : (int ->int)
{x:int; } |- x: int
{}1- 3: int
- oounit = ()

11. Finally, implement et andl et rec.

Fke:m |Cy TU{z:m}the:m]|Cy Tu{z:mtte:m|Cy TU{z:m}Fer:m]|Cy

F"'Et.ﬁzelin(ig :7'2|01U02 T'Hlet rer:elineg:7'2|{7'1.:7'1}UC’1UC’2
nicelnfer Gamma. enpty (LetlnExp("x", IntExp 3, VarExp "x"));;
{} 1- let x =3 inx: int
{} |- 3: int

{x:int; } |- x : int
Constraints: []
Uni fying...New Constraints: []
Substituting...

{} |- let x =3 1inx i nt
{} |- 3: int
{x:int; } |- x: int
- oounit = ()
nicelnfer Gamma. enpty (LetReclnExp("x", IntExp 3, VarExp "x"));;
{} |- let rec x =3inx:"'1

{x:"1; } |- 3 : int

{x:"1; } |- x: "1

Constraints: ['1 -->int;]

Uni fying...New Constraints: ['1 -->int;]
Substituting...

{}]- let rec x =3 inx : int

{x:int; } |- 3 : int

{x:int; } |- x : int

- oounit = ()

6 Conclusions

Congratulations! You now have a Hindley-Milner type systemry much like the one used in OCaml. By doing
this, we hope you have learned not only about type-checkidguaification, but also will be able to understand what
happens when you give code to the compiler to type-checkwdnad the error messages mean. For that matter, one
thing to think about is just how difficult it is to write cohereerror messages relating to type errors.

10

	Change Log
	Objectives
	Background
	Type Inferencing

	Given Code
	Types
	Tests

	Problems
	Unification
	Inferencing

	Conclusions

