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Objectives

You can often tell what the language designers thought about their
language by the libraries that are included with it. Many of Prolog’s
involve the analysis of structres. In this lecture we will go over some
of the builtin predicates of Prolog.

Know how to use call and assert

Know how to use findall and checklist.
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Two useful list predicates

findall(X,T,Y) finds all values of X that make T true, and
puts them into Y.

checklist(P,Y) is true if predicate P is true for all values in
list Y.

1 ?- findall(X,possible(X),Xs).
2 X = _G306
3 Xs = [anna, beth, cindy, david, ernest, frank, gloria,
4 ?- checklist(student,[anna,beth]).
5 Yes
6 24 ?- checklist(student,[anna,harry]).
7 No
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Pairs

The term socrates is a pattern. But patterns can have
structure....

1 pair((X,Y)).
2 key((X,Y),X).
3 value((X,Y),Y).
4 assoc(X,Y,[H|T]) :- key(H,X), value(H,Y);
5 assoc(X,Y,T).
6 ?- assoc(2,X,[(3,hi),(4,there),(2,guys)]).
7 X = guys
8 ?- assoc(X,there,[(3,hi),(4,there),(2,guys)]).
9 X = 4
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Trees

Here we use a pattern called bst, which is a functor.

1 find(X,bst(X,_,_)).
2 find(X,bst(Y,A,_)) :- X < Y, find(X,A).
3 find(X,bst(Y,_,B)) :- X >= Y, find(X,B).
4 ?- find(3,bst(4,bst(5,null,null),bst(3,null,null))).
5 No
6 ?- find(3,bst(4,bst(3,null,null),bst(5,null,null))).
7 Yes
8 ?- find(X,bst(4,bst(3,null,null),bst(5,null,null))).
9 X = 4 ;

10 ERROR: Arguments are not sufficiently instantiated
11 Exception: (6) find(_G474, bst(4, bst(3, null, null),
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Tree Example

1 bstgt(X,null).
2 bstgt(X,bst(A,_,_)) :- X > A.
3 bstle(X,null).
4 bstle(X,bst(A,_,_)) :- X =< A.
5 isbst(null).
6 isbst(bst(X,A,B)) :- bstgt(X,A), isbst(A),
7 bstle(X,B), isbst(B).
8 ?- isbst(bst(4,bst(3,null,null),bst(5,null,null))).
9 Yes

10 ?- isbst(bst(4,bst(5,null,null),bst(3,null,null))).
11 No
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Examine Thyself

One power that Prolog programs have is the ability to examine and
modify themselves.

Used for AI — real learning requires the ability to “examine
yourself”.

Prolog structures and prolog programs have the same form.
Assembly language: bit patterns
Scheme and Lisp: lists
Prolog: structures

1 likes(john,mary).
2 ?- isbst(bst(5,null,null)).

Functors: likes,isbst, and bst.
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Types of a term

We have predicates that will determine the type of a term.

1 ?- atom(3).
2 No
3 ?- atom(hi).
4 Yes
5 ?- atomic(3).
6 Yes
7 ?- integer(3).
8 Yes
9 ?- integer(f).

10 No

1 ?- X = 20, integer(X).
2 X = 20
3 Yes
4 ?- var(X).
5 Yes
6 ?- X = 20, var(X).
7 No
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Name

The name predicate turns a term into a string (and back).

1 ?- name(foo,X).
2 X = [102, 111, 111]
3 ?- name(X,"foo").
4 X = foo
5 chop(X,Y) :- name(X,[_|S]), name(Y,S).
6 ?- chop(asymmetric,X).
7 X = symmetric

This will be very useful for natural language processing.
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Look what you’ve done!

The listing predicate will print out the definitions we have so
far.

1 ?- listing(mortal).
2

3 mortal(A) :-
4 human(A).
5

6 Yes
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Accessing Parts of Functors

functor(T,F,N) — F will contain the name of the functor, N
will contain the number of arguments.

arg(N,T,A) — A will be argument number N of T

1 -? functor(isbst(5,null,null),F,N).
2 F = isbst
3 N = 3
4 -? arg(1,isbst(5,null,null),A).
5 A = 5
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The =.. operator

Another way to deconstruct terms is with “=..”.

1 ?- bst(5,null,null) =.. L.
2 L = [bst, 5, null, null] ;
3 ?- L =.. [likes,john,X].
4 L = likes(john, _G276)
5 X = _G276
6 (mortal(X) :- human(X)) =.. L.
7 X = _G324
8 L = [ (:-), mortal(_G324), human(_G324)]

Note that :- is a functor!
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Database modification

assert allows you to modify things while prolog is running.

This only works for “dynamic” procedures, though.

retract allows you to undo an assertion.

1 ?- assert(prime(2)).
2 ?- assert(prime(3)).
3 ?- assert(prime(5)).
4 ?- assert(prime(7)).
5 ?- prime(3).
6 Yes
7 ?- retract(prime(3)).
8 ?- prime(3).
9 No
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Making things dynamic

1 ?- dynamic likes/2.
2 ?- likes(john,mary).
3 No
4 ?- assert(likes(X,Y) :- likes(Y,X)).
5 ?- assert(likes(john,mary)).
6 ?- likes(mary,X).
7 ERROR: Out of local stack
8 ?- retract(likes(john,mary)).
9 Yes

10 ?- asserta(likes(john,mary)).
11 Yes
12 ?- likes(mary,X).
13 X = john
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Executing Code

The call predicate will execute its argument.

Note that implications are asserted, not called.

1 ask_about(X,Y) :- Q =.. [Y,X], call(Q).
2 ?- ask_about(socrates,mortal).
3 Yes
4 ?- call(funny(X) :- human(X)). See, I told you....
5 ERROR: Undefined procedure: (:-)/2
6 ?- assert(funny(X) :- human(X)).
7 X = _G324
8 Yes
9 ?- funny(X).

10 X = socrates
11 X = muller
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Example: answer

Now you can use prolog to keep track of students’ questions.

1 answer(X) :- question(X,Q), !, write(Q),
2 retract(question(X,Q)), call(Q).
3 ?- assert(question(jonny,mortal(muller))).
4 ?- assert(question(jonny,mortal(socrates))).
5 ?- answer(jonny).
6 mortal(muller)
7 Yes
8 ?- answer(jonny).
9 mortal(socrates)

10 Yes
11 ?- answer(jonny).
12 No
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Problems

1. Write a function “says” that takes two arguments. The first is
the name of a person making the implication. The second is a
prolog expression. Record the claim, and then tell the prolog.

2. Next, suppose we can find out later that some people aren’t
reliable, and we should no longer believe anything they say.
Write a function “disbelieve” that takes the name of a person
and retracts everything they said before.

1 ?- says(frank,likes(john,mary)).
2 ?- likes(john, mary).
3 Yes
4 ?- disbelieve(frank).
5 ?- likes(john, mary).
6 No
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Answers

1 says(P,X) :- assert(claims(P,X)), assert(X).
2 disbelieve(X) :- findall(Y,claims(X,Y),YL),
3 checkall(retract,YL).
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