Infinite Data Whenever

Infinite Data

Mattox Beckman

beckman@it. edu

lllinois Institute of Technology

lllinois Institute of Technology Mattox Beckman ifinte Data - p. 1

Infinite Data Whenever
Objectives 80 Objectives

There are many choices available to the language designer when a
function call is made. The choices made will have a significant
effect on the language.

Your objectives for this lecture:

Show how to implement thunks by using local state and
user-defined types.

Show how thunks can implement the call-by-need
parameter-passing style.

Show how to create virtually-infinite data-structures by using
lazy evaluation.

lllinois Institute of Technology Mattox Beckman ifinte Data — p. 2

Infinite Data Whenever
Considerations about CBV 81 Call By Value vs. Call By Name

We like call-by-value because

o It's efficient — we usually want the value soon anyway.
it's easy to implement.

But, there’s a cost...

|t can perform unnecessary computations.

... Infact, it could cause non-termination.

1|let rec foo x = foo (x + 1);;
ollet fTrue a b = a;;
3|fTrue 5 (foo 10);;

lllinois Institute of Technology Mattox Beckman ifinte Data - p. 3

© o0 ~N oo o b~ w NP

Infinite Data
Running Example

Consider the following code:

Whenever
81 Call By Value vs. Call By Name

a -> I nt

let plus a b = print_string "Plus"; atb;;
-> | nt

= <fun>

= <fun>

val plus : int ->1Int

let foo ab =a=* a=* a;;
val foo : Iint ->

foo (plus 2 3) (plus 5 5);;
Pl us

Pl us

- o 1nt =125

#

What is the optimal number of times to run pl us?

lllinois Institute of Technology Mattox Beckman

Infinite Data — p. 4

A W N P

Infinite Data Whenever
Implementation 81 Call By Value vs. Call By Name

OCaml is already CBV, so do what you normally do to get that.

You can use functions to delay evaluation to get CBN.
s Letfun () -> ebe adelayed expression.
s To extract the information, apply the delayed expression to

().
Runni ng Exanpl e

let foo a b =
(a () =~ (a()) = (a());;
val foo : (unit ->1int) ->’a ->int = <fun>
foo (fun () -> plus 2 3) (fun () -> plus 5 5);;

How many times will you see Pl us printed to the screen?

lllinois Institute of Technology Mattox Beckman ifinte Data — p. 5

© o0 N o o b~ w NP

[EEY
o

[EEN
[EEY

Infinite Data Whenever
Call By Need 81 Call By Value vs. Call By Name
We can use the local state technigue to perform an
optimization.
type 'a status = Value of ’'a
| Susp of (unit -> ’'a);;
let delay f =
l et status = ref (Susp f)
fun () -> match (!status) wth
| Value a -> a
| Susp f ->let result =1 ()
(status := (Value result);
result);;
val delay : (unit ->"a) -> unit <f un>

let force f =1 ();;

lllinois Institute of Technology Mattox Beckman

Infinite Data — p. 6

o A~ W N

Infinite Data Whenever
Our Running Example 81 Call By Value vs. Call By Name

Runni ng Exanmpl e

let foo a b =
(force a) = (force a) = (force a);;
val foo : (unit ->1int) ->"a ->1nt = <fun>
foo (delay (fun () -> plus 2 3))
(delay (fun () -> plus 5 5));;

® (delay (fun () -> plus 2 3)) iscalled a suspension,
or sometimes a thunk.

How many times will pl us be printed to the screen?

lllinois Institute of Technology Mattox Beckman infinie Data —p. 7

Infinite Data Whenever
The Lazy Module 82 Force and Delay

Keyword | azy will create a suspension for us.

1|# et foo = lazy (plus 2 3);;
2|val foo : Int Lazy.status ref =
3 contents = Lazy. Del ayed <fun>

The Lazy module defines a f or ce function.

1|# Lazy.force;;

2|- . "a Lazy.t ->'"a = <fun>
3|# Lazy.force foo;;

4| Pl us

s[- - Int =5

s|# Lazy.force foo;;

71- - 1nt =5

lllinois Institute of Technology Mattox Beckman ifinte Data - p.

o o b~ wWw N P

Infinite Data Whenever
Lazy Lists 83 Infinite Data

>

We can create a new list type that takes advantage of the lazy
data...

type "a llist = Cons of "a "a llist Lazy.t | NI
To display these we can convert back to normal lists.
Convert Lazy List to OCanl Li st
let rec ftake n [list =
match n,llist wth

LN ->]

0,_ ->1[]

,(Cons (x,xs)) ->x .. ftake (n-1) (force xs)
val ftake : int ->’"a llist ->"a list = <fun>

lllinois Institute of Technology Mattox Beckman ifinte Data — p. 9

A W N P

o A~ W N P

Infinite Data

Whenever

Infinite Lists 83 Infinite Data

OCaml will—if you ask nicely—allow you to make infinite data.

Del ayed

let rec ones = Cons(1, |azy ones);;

val ones : int Ilist = Cons (1, contents =

let rec nunmsfromn = Cons(n, |lazy (nunmsfrom (n+l1
val nunsfrom: int ->int |[list = <fun>

)

® Note that ones isn’t even a function.
Infinite Mappi ng

let rec lmap f |list =

match [li1st wth
Cons (X, Xs) ->

Cons (f x, lazy (lmap f (force xs)))
Nil -> Nil

lllinois Institute of Technology Mattox Beckman

Infinite Data — p. 10

Infinite Data
Other Functions

Whenever
83 Infinite Data

1|# let rec lmap2 f Istl Ist2 =

2| match Istl,lst2 wth

3| | Cons(x,xs), Cons(y,ys) ->

4 Cons(f x vy, lazy (lmap2 f (force xs)

5 (force ys)));;
sival lmap2 : ("a ->"b ->"c) ->"a llist

7 ->"pb llist ->7"c Ilist = <fun>

We also define f head and ft ai | . Now watch this....

1|# let rec fib = Cons(1, |azy

2 (Cons(1, |azy

3 (Il map2 plus fib (ftail fib)))));;
sival fib : 1int Ilist = Cons (1, contents = Del ayed

lllinois Institute of Technology Mattox Beckman

Infinite Data — p. 11

© o0 ~N oo o M~ w NP

Infinite Data Whenever
An Application.... 83 Infinite Data
We can make a Newton’s method approximator.
For square root of n, x;4+1 = (x; +n/x;)/2.
let rec approx err alist =
| f abs((fhead alist) -
(fhead (ftail alist))) < err

then (fhead alist)

el se approx err (ftail alist);;
let next nxi = (xi +. n/. xi) [/. 2.0
let nkSeq n =

let rec seq = Cons(1.0, lazy (Il map (next n) seq

I N seq; ;

lllinois Institute of Technology Mattox Beckman

Infinite Data — p. 12

Infinite Data Whenever
Activity 84 Activity

1. Write another version of nat s (the list of natural numbers)
without using a function.

2. Write a function ci r cul ar that takes a normal list and returns
an infinite circular list with the same data. (This one is a bit
tricky.)

let ott = circular [1;2;3];;

val ott : int Ilist = Cons (1, contents = Del aygec

1

2

s|# ftake 10 ott;;

/- o int list =[1;, 2; 3;, 1, 2; 3; 1, 2; 3; 1]

3. What happens ifwe pass|[] tocircul ar?

lllinois Institute of Technology Mattox Beckman infinte Data - p. 13

Infinite Data Whenever
Problem 1 84 Activity

© o0 ~N oo o M~ w NP

[
= O

[EEN
N

let rec nats = Cons(1, lazy (lmap (plus 1) nats)

val nats : int Ilist = Cons (1, contents = Del ayed| -
ftake 2 nats;;

Pl us

Pl us

- . int list =[1;, 2]

ftake 4 nats;;

Pl us

Pl us

- oint list =[1;, 2; 3; 4]
ftake 4 nats;;

- ant list =[1;, 2; 3; 4]

lllinois Institute of Technology Mattox Beckman ininte Data — p. 14

Infinite Data Whenever
Problem 2 84 Activity

let rec circular Ist =
let rec result = lazy (aux |st)
and aux | st =
match I st wth
| [] -> force result
| Xx::xs -> Cons(x, l|lazy (aux Xxs))
In force result;;
val circular : "alist ->"a llist = <fun>

This one is tricky, because we had to delay the resul t inline 2 to
convince OCaml that this was a safe thing to do.

lllinois Institute of Technology Mattox Beckman infnte Data - p. 15

Infinite Data Whenever
Problem 3 84 Activity

1|# circular [];;
2|EXception: Lazy. Undefi ned.

The real version of Lazy has an extra constructor for this case.

1| # et delay f =

2 let status = ref (Susp f) In

3 fun () -> match (!status) wth

4 Value a -> a

5 Undefined -> raise (Failure "delay")

6 Susp f -> (status := Undefli ned,

7 let result =f () In

8 (status := (Value result);
9 result));;

lllinois Institute of Technology Mattox Beckman infnte Data - p. 16

	Objectives
	Considerations about CBV
	Running Example
	Implementation
	Call By Need
	Our Running Example
	The Lazy Module
	Lazy Lists
	Infinite Lists
	Other Functions
	An Application....
	Activity
	Problem 1
	Problem 2
	Problem 3

