CS 440 References and Local State

1 Objectives

The lack of mutable variables gives us the ability to perform many analyses using mathematics. In this
lecture we talk about equational reasoning and references, and see techniques for limiting the scope of the
state to improve the reliability of your code.

e Be able to explain equational reasoning and give an example.

e Know the syntax of references in OCaml.

Know the tradeoffs between imperative and functional features.

Know the constructions to define a function with local state.

Be able to state the benefits of local state and give an example.

Be able to use tuples to allow multiple functions access to the same state.

2 Examples

Counter, version 1.

let ct = ref O;;
val ct : int ref = {contents=0}
let counter ()
ct := lct + 1;
Ict;;
val counter : unit -> int = <fun>
counter ();;

- : int =1
counter ();;
- : int = 2

Counter, version 2.

let counter =

let ct = ref 0 in

fun () -> ct := lct + 1; lct;;
val counter : unit -> int = <fun>
counter ();;

- : int =1
counter ();;
- : int = 2

Why is version 2 okay but version 1 is bad?

3 Problems

Try the following problems. In a few minutes the instructor will go over the solutions. Feel free to work with
the person next to you!

1. Supposing you wanted a counter that did not use references, how would you go about writing it?

Mattox Beckman Page 1 Illinois Institute of Technology

CS 440 References and Local State

2. The random number function generator does not have a way to reset the state. We would also like
to be able to ask “what was the last random number generated” without changing the seed. Write a
(group of) functions to do this.

3. Suppose we want a more generic way to represent counters—in fact, suppose you want several counters
in your program. You could just repeat the code several times, but there are serious flaws to that
approach. What are they? How might you go about fixing them?

Mattox Beckman Page 2 Illinois Institute of Technology

	Objectives
	Examples
	Problems

