LR Parsing

Mattox Beckman
<beckman@iit.edu>

July 4, 2006

1 Introduction

Recursive descent parsers are easy to write, but
they need an LL grammar to work. If the gram-
mar is not LL, it can be transformed (usually!),
but the transformation itself may make it diffi-
cult to use the results of a parse.

LR parsing techniques allow any context-free
grammar to be used in the parse, but the tech-
nique is more complex.

1.1 Objectives

e Be able to explain how LR parsing is differ-
ent than LL parsing.

e Know how to generate the Characteristic Fi-
nite State Automata for a grammar.

e Know what the item sets mean.

e Know how to create the LR Action and
Goto tables

e Know what a Shift-reduce conflict is, and
how to fix it

e Know what a reduce-reduce conflict is, and
how to fix it

e Know how to use the parse tables to gener-
ate an “execution trace” of a parse.

2 Top-Down Parsing

An LR parser solves the same problem as an LL
parser, but it uses a different approach. Both
scan the input from left to right (this is what
the first L indicates), and build a parse tree out
of the input.

The LL parsers we covered earlier are called
top-down parsers: they start with the start
symbol of the grammar as the root of the tree,
and then build the tree by filling in the branches,
from left to right.

For a quick review, here is an example of LL
parsing.
Suppose we have the following grammar:

S — aFz
E — xvy

The language described by this grammar can
only recognize one sentence: a x y z. Let’s see
what happens when it is parsed.

The LL parser will start with the symbol S.
Upon reading a, it will select the appropriate
rule’, and will create a partial parse tree:

S

/

a

The second two branches have not been filled
in yet. In reality, the first one hasn’t either. The
parse tree is being built by a recursive-descent
parser. The function calls needed to create the
S node are still being made: the first one has re-
turned (the one that gets a), but the rest are still
pending. But that is an implementation detail:
the construction of the tree is the abstraction we
are representing.

The parser will then start to build the middle
branch. This will generate the E node. It will
then read the x token. At this point, our tree
looks like this:

Notice how the tree is being filled in from the
left side first. This is called a leftmost deriva-
tion, and this is what the second L in LL repre-
sents.

1 Actually, since there is only one rule, this could occur
before the a is seen.

LR Parsing Guide

3 BOTTOM UP PARSING

After the parser reads the next token, it has
enough information to really build the E node
of the parse tree. The function building that
node returns the tree to the caller: the function
building the S. Our tree now looks like this:

S

a E
T Y
Finally, the parser reads the z, filling in the

last branch of the S node, and returning the
parse tree to whoever asked for it.

S

a/[l?\z
/\
x oy
3 Bottom Up Parsing

In contrast to LL parsers, LR parsers work by
reading the input one token at a time, push-
ing the tokens onto a stack. This operation is
called shifting. These tokens are the leaves
of the parse tree. When enough leaves have
been pushed onto the stack, the parser creates
a tree branch representing the appropriate non-
terminal symbol, pops the leaves off the stack
and makes them children of the new branch, and
then pushes the branch back onto the stack. This
operation is called reduction.

The LR parse is conducted by using a push-
down automata, a state machine that has a
stack. The NFAs and DFAs we discussed during
the lexical analysis did not have a stack, and this
severely limited the kinds of things they could
express. These state machines will be more pow-
erful.

An automata for parsing LR grammars is
called a Characteristic Finite State Ma-
chine (abbreviated CFSM), or sometimes a
Characteristic Finite State Automata (ab-
breviated CFSA). The two terms are inter-
changeable.

The machine is represented in the computer by
a LR Parsing Table. The rows of the table will
be the states. The columns of the table will be
the terminal and non-terminal symbols; these act

as the transitions for our state machine. There
will be three kinds of entries in the table.

e “S n” means to shift the token and go to
state n.

e “R n” means to reduce by rule n.
e “n” by itself means to go to state n.

e A blank entry indicates an error.

Let’s see how it would work for the grammar
above. Here is the LR table corresponding to the
grammar in section 2.

’State\a \x \y \z \$ \S\E‘
0 S1

1 S3 2
2 S4

3 S5

4 R1

5 R 2

The $ entry represents the end of the input.
We can diagram the state machine.

OO0

E
O—O
To use this we need to keep track of our current
state, the states we’ve been to before (since this
is a push-down automata), the symbols we've
read, and of course the input.
Using the same grammar as above, here is how
the parse will run. We start off in state 0, an

empty symbol stack, an empty state stack, and
a full input queue.

(3)—2
©

State: 0

Input: axyz$
State Stack:

Symbol Stack:

We look at the input and see the initial a. The
LR table tells us (look at row 0, column a) to
shift the input, then go to state 1.

State: 1
Input: xyz$
State Stack: 0
Symbol Stack: a

LR Parsing Guide

4 GENERATING THE CHARACTERISTIC FINITE STATE MACHINE

Now the parser looks at the input and sees
the x. The LR table tells us (row 1, column x)
to shift, and then go to state 3.

State: 3
Input: yz$
State Stack: 01
Symbol Stack: a x

Next, the parser shifts y, and moves to state
5.

State: 5
Input: z$
State Stack: 013
Stack: azry

At this point, the LR table has a reduce action.
The “2” says to use rule 2 (i.e., E — =z y) for the
reduction. There are two symbols on the RHS
of this rule, so the parser will pop two symbols
off the symbol stack, and also pop two states off
the state stack.

This causes the x and y to be reduced to an
FE, and the machine to back up to state 1.

State: 1
Input: z
State Stack: 0
Symbol Stack: a

$

After a reduction occurs, the parser checks the
LR table for the non-terminal symbol we just
reduced. Row 1, column F has a 2 in it, so we
go to state 2.

State: 2
Input: z$
State Stack: 01

Symbol Stack: a g
x Yy

Next, the parser shifts z, and moves to state
4.

State: 4

Input: $

State Stack: 01 2
Stack: a [z

The entry in the table for this state says to
reduce by rule 1. Since rule 1 (S — a F z) has
three symbols on the RHS, we pop three symbols
from the symbol stack and combine them into
the S node, and pop three states off the state
stack. This gives up this

State: 0

Input: $

State Stack:

Symbol Stack: S

a E z
T Yy
At this point, the parse is complete. Notice
how the parser started with the leaves and built

the branches from them. For this reason, LR
parsing is also called bottom-up parsing.

4 Generating the Character-
istic Finite State Machine

This section explains how the table is actu-
ally generated, and the meaning of the different
states.

4.1 The Algorithm

Fach state of the CFSM represents a cer-
tain amount of progress in constructing a non-
terminal. In order to generate the table (and
thus the state machine) we need a way of rep-
resenting what progress has been made in each
state, and what remains to be done.

To do this, we will use a textual representation
called an item. An item is a rule from the gram-
mar annotated with a “cursor” symbol e. The
cursor represents where the parser is in build-
ing the non-terminal. For example, the item
S — a E e zshows that the parser is building
an S, that an ¢ and an E are on the stack, and
that the next thing on the input is expected to
be a z.

An initial item for a production A — « is
the item A — e . If the cursor is in front of any
symbol, we will say that the item is advance-
able.

Each state in the machine will have one or
more items associated with it. These will be
called item sets.

LR Parsing Guide

4 GENERATING THE CHARACTERISTIC FINITE STATE MACHINE

Here is the algorithm. It will create the item
sets and fill in the rows of the parsing table.

1. Take all the productions for the start sym-
bol, create initial items for them, take the
transitive closure of the non-terminals?, and
put them into state 0.

2. For each advanceable item i in state s;:

(a) Create a new state s,. Suppose the
cursor in item ¢ is in front of some sym-
bol x.

If z is a terminal symbol:

e Add the action “Shift s,,” to row
s;, column x of the parsing table.

e For each item j in s; where the
cursor is in front of x, create a
new item by advancing the cursor
across z in item j. Add these new
items to state s,,.

(b)

If « is a non-terminal symbol:

e Add the number s, to row s;, col-
umn x in the parsing table. This
is a “goto” action.

e For each item j in s; where the
cursor is in front of x, create a
new item by advancing the cursor
across z in item j. Add these new
items to state s,,.

Take the transitive closure of s,.

(e) If s, is a duplicate of a state already in
our set of states, discard it, and update
the table accordingly.

3. If the state is not advanceable, then let X
be the non-terminal the item is construct-
ing, and let r be the corresponding rule
from the grammar. Add the action “Re-

duce 7" to row s;, and to every column
¢ € FOLLOW (X).

4. Repeat until all items have been considered.

Here are the item sets for the grammar we used
in the parsing example above. It is customary to
label state n as I,,.

Iy, S — eaklz
Ii S — ae Ez
E — exy
Ihb S — aFE ez
Is; E — x ey
I, S — aFEze
Is FE — xye

2We'll explain this shortly.

4.2 Examples

Here are some simple examples to illustrate the
concepts.

4.2.1 A Grammar with a Single Rule

Consider the following simple grammar.

1.A — xy.
During the parse, there will be three distinct
stages.

To start, we create a table with a column for
each of the symbols that appear on the RHS of
our rules, together with $, the end of input sym-
bol.

Now we create our first state, making an initial
item from the rule.

Iy A — ezxy

This state indicates that no input has been
read.

Visiting State 0 Looking at the item in state
0, we advance the cursor across x and create
state 1. We also put “shift 1” into the x col-
umn of row 0 of the parsing table.

Our item set now looks like:

Iy A — ezxy
I, A — =z ey

and our LR table now looks like:

’State\m \y\$‘
0 S1
1

Visiting State 1 Now we visit the item in
state 1. We advance the cursor across y, cre-
ating state 2. We also put “shift 2” into the y
column of row 1 of the parsing table.

Our item set now looks like:

Iy A — exy
I, A — z ey
Ih A — zxzye

and our LR table now looks like:

’State\x \y \$‘
0 S1
1 S2
2

LR Parsing Guide

4 GENERATING THE CHARACTERISTIC FINITE STATE MACHINE

Visiting State 2 State 2 has a reduce opera-
tion, because the cursor is at the end of its item.
The follow set of A is {$}, so we add “Reduce
17 (the “1” is the rule number) to the $ column
of the second row. We now have the following
parsing table.

[State [z [y [$ |
0 S1
1 S2
2 R1

The state machine diagram corresponding to
the CFSM looks like:

O—0—0

In practice we will not diagram these ma-
chines.

4.2.2 Two Productions for the Same

Symbol
Consider the grammar
1. A— zvy
2. A— z

Create State 0 We create state 0 by adding
the initial items for the start symbol A.

I()A—>
A —

ey
ez

Visit State 0 The first item in state 0 creates
state 1 when we shift the x. The second item in
state 0 creates state 2 when we shift the z.

Iy A — exy
A — ez
L, A — z ey

Ih A — ze

[State [z [y[z [$]
0 S1 S2
1
2

Visit State 1 The item in state 1 creates state
3 when we shift the y.

Iy A — euxy
A — ez
I, A — =z ey
Ih A — ze
Is A — zxzye

Visit State 2 The item in state 2 is a reduc-
tion by rule 2. Follow(A) = {$}, so we add
“reduce 2” to the $ column of state 2.

[State [[y [z [$ |
0 S1 S2

1 S3
2 R2
3

Visit State 3 The item in state 3 is a reduc-
tion by rule 1. Follow(A) = {$}, so we add
“reduce 1”7 to the $ column of state 3.

[State [z [y [z [$ |
0 S1 S2

1 S3
2 R2
3 R1

We are out of items, so we are done.

You will notice that, except for the initial
state, all the states are created from an item
from a previous state. The order in which we vis-
ited the states is a canonical order. We started
with the item at the top and visited each one in
order. So, for example, we visited both of the
items in state 0 before we visited the item in
state 1. While the order doesn’t matter as far
as correctness is concerned, everyone who looks
at your CFSM will expect it to be done in this
order, and it will cause unnecessary confusion if
you use a different order instead.

4.2.3 Solving the Common Prefix Prob-
lem

This grammar is not LL, because it has the com-
mon prefix problem. Here’s how the LR table
handles it.

LR Parsing Guide

4 GENERATING THE CHARACTERISTIC FINITE STATE MACHINE

1.LA— zy
2.A— ¢
3.A— x2z

Create State 0 We create state 0 by adding
the initial items of A to it.

Iy A — euxy
A — egq
A — exz

[State [z [y [z]q]$

|
o T[T T[]

Visit State 0 We shift the x for the first item
in state 0. But, the third item also has a cursor
in front of x. This means that we could be pro-
ducing A according to the first rule, or we could
be producing A according to the third rule. So,
state 1 needs to have both of these items in it.
Think about how the result is similar to the left-
factoring technique we used for fixing common
prefixes for LL parsers.

Also, the second item in state 0 creates state
2 when we shift g.

Iy A — euxy
A — egq
A — exz

L A — x ey
A — 1z ez

Ih A — qe

[State |o [y[z]q [S]
0 S1 S2
1
2

Visit State 1 Using the first item in state 1,
we shift y and create state 3. Using the second
item in state 1, we shift z and create state 4.

Iy A — exy
A — .q
A — ezxz

L A — z ey
A — 1z ez

Ih A — qe

I3 A — xye

I, A — zze

[State [a [y [z [q [$]
0 S1 S2

S3 |54

1
2
3
4

Visit State 2, 3, and 4 State 2 reduces rule 2.
So we put “reduce 2” in the $ column of state 2
(since {$} is the follow set of A.) State 3 reduces
rule 1. So we put “reduce 1”7 in the $ column of
state 3. State 4 reduces rule 3. So we put “reduce
3” in the $ column of state 4.

’State‘x ‘y ‘z ‘q ‘$ ‘

0 S1 S2

1 S3 | 54

2 R2
3 R1
4 R3

At this point we are done.

4.2.4 Multiple Non-Terminals

In the grammars we have seen so far, we have
used only terminal symbols in the RHS of the
rules. When you have a non-terminal symbol,
things are a little different. Here is an example.
Consider the grammar
lL.A—zy A
2. A—z

Create State 0 We create state 0 by adding
the initial items for the start symbol A.

I()A—>
A —

erxy A
°z

| State [z [y [=z][8] A

|
o T [T T T

Visit State 0 The first item creates state 1
when we shift the x. The second item creates
state 2 when we shift the z.

Iy, A — exyA
A — ez

L A — xeyA

Ih A — ze

LR Parsing Guide

4 GENERATING THE CHARACTERISTIC FINITE STATE MACHINE

’State\x \y\z \$\A‘
0 S1 S2
1
2

Visit State 1 State 3 is created when we shift
the y in the item of state 1. State 3 is complex.
It represents that there are two things going on.
On one hand, we are trying to create an A out of
an x, a y, and another A. On the other hand, we
are about to start creating that second A, and
there are two ways that it could be done. So,
in addition to the A — x y e A item, we
need also the two items where the cursor is at
the beginning of A.

Iy A — exyA
A — ez

L A — zeyA

Ih A — ze

Is A — xzyeA
A — exyA
A — ez

’State\m \y \z \$\A‘

0 S1 S2

1 S3

2

3

Visiting State 2 State 2 reduces rule 2, so we
put “reduce 2”7 in the $ column of the table.

’State\x\y\z\$ \A‘
0 S1 S2

1 S3

2 R2

3

Visiting State 3 In the first item of state 3,
the cursor will move across the A. This transi-
tion occurs after the A on the RHS has just been
reduced, and creates state 4.

In the second item, shifting A — e z y A re-
sults in A — = e y A. This is exactly the same
as state 1, so we will recycle state 1 rather than
make a new state. Similarly, if shifting A — e z
in the third item results in an item that is just
like state 2, so we recycle that one as well.

Ipn, A — exyA

A — ez
I, A — zxzeyA
Ih A — ze
I3 A — zyeA

A — exyA

A — ez
Iy A — xyAe
’State\x \y \z \$ \A‘
0 S1 S2
1 S3
2 R2
3 S1 S2 4
4

Visiting State 4 The item of state 4 reduces
rule 1, so we add “reduce 1”7 to the $ column of
row 4.

’State‘x ‘y ‘Z ‘$ ‘A‘
0 S1 S2

1 S3

2 R2

3 S1 S2 4
4 R1

We are out of items, so we are finished.

4.2.5 Transitive Closures

As you saw from the last example, when we have
an item like X — a e B ¢, then you have to
add the initial items for all the B rules to the
state as well. It could happen, though, that the
initial B items also have the cursor in front of a
non-terminal. In that case, you add the initial
items for that non-terminal as well. Every time
you add an item to the state, you have to check if
more items need to be added. Rather that saying
“keep going until there’s nothing more to do,”
we more formally call it “taking the transitive
closure.”
Here’s an illustrative example.

1.S—xzAlq
22A—Bc
3.B—dA|d

Creating State 0 As before, we create state 0
by adding the initial items for the start symbol.

Iy S — ez A
| egq

LR Parsing Guide

4 GENERATING THE CHARACTERISTIC FINITE STATE MACHINE

[State [c[d]q[xz|$]A][B]S

|
o [T I T I T 1]

Visiting State 0 State 1 is where the transi-
tive closure takes place. Weadd S — z e A to
state 1 because we shift x in state 0. This causes
us to have to add the initial A item, which in
turn caused us to have to add the initial B item.

State 2 is derived by shifting q in the second
item of state 0.

ex A
®q
r e A
e Bc
ed A
o d

qe

Iy S

I

SV}

L A A

I, S

’State\c\d\q\m \$\A\B\S‘
0 S1
1
2

Visiting State 1 State 3 is derived by moving
A in the first item of state 1. State 4 is derived
by moving B in the second item of state 1. The
third and fourth items of state 1 shift d to create
state 5. This state also has a transitive closure.

ex A
°q
r e A
e Bc
ed A
o d
qe
rAe
B e ¢
de A
de
e B¢
ed A
o d

Iy

93]

I

W= »n

Iy
I3
I,

o
e Txunn

S e

| State [c|d [q |o [$]A[B]S]
0 52| S1
S5 3 |4

U | W DN =

Visiting States 2 and 3 These states also
have reduction items. State 2 reduces rule 2.
The follow set of S is {$}. State 3 reduces rule
1.

’State\c\d\q \x\$ \A\B\S‘
0 S2 1 51

1 S5 3|4

2 R2

3 R1

4

5

Visiting State 4 State 4 shifts ¢ to make state
6.

In S — ez A
| eq
L S — xe A
A — eBec¢
B — edA
| ed
Ib, S — qe
13 S — xAe
I, A — Bec
15 B — de A
| de
A — eDBc
B — edA
| od
Is A — Bce
’State‘c ‘d ‘q ‘x ‘$ ‘A‘B‘S‘
0 S2 |51
1 S5 3 4
2 R2
3 R1
4 S6
5
6

Visiting State 5 State 5 recycles several en-
tries, including itself. The forth item in it,
B — e d A, when visited, generates state 5 all
over again.

The A is moved to make state 7, a B is moved
to go to state 4, and d is shifted to to go back to
state 5.

Further, rule 5 is reduced. The follow set of B

is {c}.

LR Parsing Guide

5 AMBIGUITIES

Iy S — ex A
| egq
Ii S — xe A
A — eBec¢
B — edA
| od
Ih S — qe
Is S — xAe
I, A — Bec
15 B — de A
| de
A — eBec¢
B — edA
| ed
Is A — DBce
I7 B — dAO
’State\c \d\q \x\$ \A\B\S‘
0 S2 |51
1 S5 3 |4
2 R2
3 R1
4 S6
5 R5 | S5 7|4
6
7

Visiting State 6 and 7 These are reductions.
State 6 reduces rule 3. The follow set of A is
{$,c}, so we put a reduction in both of those.
State 7 reduces rule 4.

So, our final CFSM is as above, and our final
LR Parsing table follows.

’State\c \d \q \x \$ \A\B\S‘
0 S2 | S1

1 S5 3 14

2 R2

3 R1

4 S6

5 R5 | S5 714

6 R3 R3

7 R4

5 Ambiguities

If the grammar is ambiguous, we will detect it
during the generation of the LR table, because
our algorithm will want to put two actions in
the same location. If the algorithm tries to put
a shift action and a reduce action in the same
spot, then the result is a shift-reduce conflict.
These are fairly common. Much more rare is to

have two reduce actions in the same spot. These
are called reduce-reduce conflicts.

Here is a grammar for expression that has a
common ambiguity.

+ F
* B

It O
SRR
1
S X

See if you can create the CFSM and the LR
Parsing tables. Note that the follow set of F is
{+, *,; }, and the follow set of S is {$}.

LR Parsing Guide

5 AMBIGUITIES

Here are the CFSM and LR Parsing Table.

Iy, S — ekFE,;
E — eFE + E
E | eE x E
E | ew
L, S — Eoe;
EFE — FE e+ F
E | E e xFE
Ih, E — ve
Is; S — FE ;e
I, E — E + eF
F — eoF + FE
E | oFE x E
E | evw
Is E — E xeF
E — eF + FE
E | oFE x E
E | ew
I¢ E — E + Eoe
E — FEF e+ FE
E ‘EO*E
I;. E — FE x Ee
EFE — FE e+ F
E | E e xFE
’State\, \—i— * \v \$ \E\S‘
0 S2 1
1 S3 | S4 S5
2 R4 | R4 R4
3 R1
4 S2 6
5 S2 7
6 R2 | S4/R2 | S5/R2
7 R3 | S4/R3 | S5/R3

The trouble happens in states 6 and 7. The
algorithm depends on the follow set of a symbol
to determine if it is ready to reduce. But, the
same symbol appears inside the rule as well.

From a higher level point of view, the prob-
lem occurs because we do not have precedence
information about + and *. In modern parser
generators, you can annotate the grammar to
indicate which symbol should have precedence.
If we chose the standard precedence, then when
the parser has a choice between shifting * and
reducing +, it will chose to shift.

If there is no indication given at all, then
parser generators will shift, because in practice
it is more likely to give correct results.

10

