CS 440 Type Derivations

1 Objectives

In order to express the meaning of a program, we need a formal language to capture these meanings.
One way to express meaning is to say something about the types of the expressions. By the end of
lecture, you should know

e what the word “semantics” means.

e how to structure a proof-tree

how use the type rules to prove the type of an expression

e write your own type rule for an expression

2 Type Rules

I'ke:int T'Feg:int
Arithmetic

I'kes ®es:int

I'kep:int I'Fey:int
Relations

I'ke; ~ ey :bool

I'Fe; :bool TI'Fey:bool
Booleans

I'e1&& e5 : bool

I'te; :bool TI'F es:bool

I'keill es:bool

It I'ep:bool T'kFeg:7 I'heg:T

I'Hif e; then ey elsees: T
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CS 440 Type Derivations

3 Problems

Try these problems. In a few minutes the instructor will go over the solutions. Feel free to work
with the person next to you!

e Provethat '+ let f = funa—>z+2inlet g = funax—>x+3in (if 4 > 6 then f elseg) 10:
int

e Write a type judgment rule for the list operator : :.
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