
Recursion January 24, 2007

Illinois Institute of Technology Mattox Beckman

Recursion
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

Recursion – p. 1

Recursion January 24, 2007
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

Recursion is one of the most powerful ideas in Computer Science
and in Mathematics. A proper understanding of it is essential. All
the lectures from here on out will really be about recursion.

Understand how recursion is related to induction

Know four patterns of recursion:
Iterating, Mapping, Folding, Accumulating

Know how to determine the time complexity of a recursive
operation

Know how to turn a linear recursion into an exponential
recursion

Recursion – p. 2

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Induction

A proof by induction works by making two steps do the work of an
infinite number of steps. It’s really a way of being very lazy!

Pick a property P (n) which you’d like to prove for all n.

Base case: Prove P (n), for n = 1, or whatever n’s smallest
value should be.

Induction Case: You want to prove P (n), for some general n.
To do that, assume that P (n − 1) is true, and use that
information to prove that P (n) has to be true.

The idea is that there are an infinite number of n such that P (n) is
true. But with this technique you only had to prove two cases.

Recursion – p. 3

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Induction Example

To Prove: Let P (n) = “The sum of the first n odd numbers is n2.”

Base Case: Let n = 1. Then n2 = 1, and the sum of the list {1} is 1;
therefore the base case holds.

Induction Case: Suppose you need to show that this property is true
for some n. First, pretend that somebody else already did all
the work of proving that P (n − 1) is true. Now use that to show
that P (n) is true, and take all the credit.

If {1, 3, 5, . . . , 2n − 3} = (n − 1)2, then add 2n − 1 . . .

{1, 3, 5, . . . , 2n − 3, 2n − 1} = (n − 1)2 + 2n − 1

⇒ n2 − 2n + 1 + 2n − 1 ⇒ n2

Recursion – p. 4

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Recursion

A recursive routine has a similar structure. You have a base case, a
recursive case, and a conditional to check which case is
appropriate.

Pick a function f(n) which you’d like to compute for all n.

Base case: Compute f(n), for n = 1, or whatever n’s smallest
value should be.

Recursive Case: Assume that someone else already
computed f(n − 1) for you. Use that information to compute
f(n), and then take all the credit.

Recursion – p. 5

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Iterating Recursion Example

Suppose you want a recursive routine that computes the nth
square.

1 # let rec nthsq n = (* note the rec keyword! *)
2 match n with
3 | 0 -> 0
4 | n -> (2*n-1) + (nthsq (n-1));;
5 val nthsq : int -> int = <fun>
6 # nthsq 3;;
7 - : int = 9

The patterns are the conditional to check which case is active.

Line 3 is the base case — it stops the recursion.

Line 4 is the recursive case.
Recursion – p. 6

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Important things about recursion

1 # let rec nthsq n = match n with
2 | 0 -> 0
3 | n -> (2*n-1) + (nthsq (n-1));;

Your base case has to stop the computation.

Your recursive case has to call the function with a smaller
argument than the original call.

Your if statement has to be able to tell when the base case is
reached.

Failure to do any of the above will cause an infinite loop.

Recursion – p. 7

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Watching recursion work. . .

let rec nthsq n =

match n with

| 0 -> 0

| n -> (2*n-1) + (nthsq (n-1))

nthsq 3

Recursion – p. 8

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Watching recursion work. . .

let rec nthsq n =

match n with

| 0 -> 0

| n -> (2*n-1) + (nthsq (n-1))

nthsq 3 ⇒ (2*3-1) + (nthsq (3-1))

Recursion – p. 8

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Watching recursion work. . .

let rec nthsq n =

match n with

| 0 -> 0

| n -> (2*n-1) + (nthsq (n-1))

nthsq 3 ⇒ 5 + (nthsq 2)

Recursion – p. 8

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Watching recursion work. . .

let rec nthsq n =

match n with

| 0 -> 0

| n -> (2*n-1) + (nthsq (n-1))

nthsq 3 ⇒ 5 + (nthsq 2)
nthsq 2

Recursion – p. 8

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Watching recursion work. . .

let rec nthsq n =

match n with

| 0 -> 0

| n -> (2*n-1) + (nthsq (n-1))

nthsq 3 ⇒ 5 + (nthsq 2)
nthsq 2 ⇒ (2*2-1) + (nthsq (2-1))

Recursion – p. 8

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Watching recursion work. . .

let rec nthsq n =

match n with

| 0 -> 0

| n -> (2*n-1) + (nthsq (n-1))

nthsq 3 ⇒ 5 + (nthsq 2)
nthsq 2 ⇒ 3 + (nthsq 1)

Recursion – p. 8

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Watching recursion work. . .

let rec nthsq n =

match n with

| 0 -> 0

| n -> (2*n-1) + (nthsq (n-1))

nthsq 3 ⇒ 5 + (nthsq 2)
nthsq 2 ⇒ 3 + (nthsq 1)
nthsq 1 ⇒ (2*1-1) + (nthsq (1-1))

Recursion – p. 8

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Watching recursion work. . .

let rec nthsq n =

match n with

| 0 -> 0

| n -> (2*n-1) + (nthsq (n-1))

nthsq 3 ⇒ 5 + (nthsq 2)
nthsq 2 ⇒ 3 + (nthsq 1)
nthsq 1 ⇒ 1 + (nthsq 0)

Recursion – p. 8

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Watching recursion work. . .

let rec nthsq n =

match n with

| 0 -> 0

| n -> (2*n-1) + (nthsq (n-1))

nthsq 3 ⇒ 5 + (nthsq 2)
nthsq 2 ⇒ 3 + (nthsq 1)
nthsq 1 ⇒ 1 + (nthsq 0)
nthsq 0 ⇒ 0

Recursion – p. 8

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Watching recursion work. . .

let rec nthsq n =

match n with

| 0 -> 0

| n -> (2*n-1) + (nthsq (n-1))

nthsq 3 ⇒ 5 + (nthsq 2)
nthsq 2 ⇒ 3 + (nthsq 1)
nthsq 1 ⇒ 1 + 0

Recursion – p. 8

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Watching recursion work. . .

let rec nthsq n =

match n with

| 0 -> 0

| n -> (2*n-1) + (nthsq (n-1))

nthsq 3 ⇒ 5 + (nthsq 2)
nthsq 2 ⇒ 3 + 1

Recursion – p. 8

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Watching recursion work. . .

let rec nthsq n =

match n with

| 0 -> 0

| n -> (2*n-1) + (nthsq (n-1))

nthsq 3 ⇒ 5 + 4

Recursion – p. 8

Recursion January 24, 2007
§1 Recursion and Induction

Illinois Institute of Technology Mattox Beckman

Watching recursion work. . .

let rec nthsq n =

match n with

| 0 -> 0

| n -> (2*n-1) + (nthsq (n-1))

nthsq 3 ⇒ 9

Recursion – p. 8

Recursion January 24, 2007
§2 Recursion and Lists

Illinois Institute of Technology Mattox Beckman

Lists

Because lists are recursive, functions that deal with lists tend to be
recursive.

1 # let rec length lst = match lst with
2 | [] -> 0
3 | x::xs -> 1 + length xs;;
4 val length : ’a list -> int = <fun>
5 # length [2;3;4;6];;
6 - : int = 4

The base case [] stops the computation.

Your recursive case calls itself with a smaller argument (xs)
than the original call.

Recursion – p. 9

Recursion January 24, 2007
§2 Recursion and Lists

Illinois Institute of Technology Mattox Beckman

Mapping Recursion

One common form maps a function to each of the elements.

1 # let rec doubleList lst = match lst with
2 | [] -> []
3 | x::xs -> 2 * x :: doubleList xs;;
4 val doubleList : int list -> int list = <fun>
5 # doubleList [4;6;8];;
6 - : int list = [8; 12; 16]

Recursion – p. 10

Recursion January 24, 2007
§2 Recursion and Lists

Illinois Institute of Technology Mattox Beckman

Watching the easy way

Don’t trace the whole thing. Just trace out the last step.

1 let rec length lst = match lst with
2 | [] -> 0
3 | x::xs -> 1 + length xs

length [2;4;6;8]
⇒ 1 + length [4;6;8]
⇒ 1 + 3

Recursion – p. 11

Recursion January 24, 2007
§2 Recursion and Lists

Illinois Institute of Technology Mattox Beckman

Trace doubleList

1 let rec doubleList lst = match lst with
2 | [] -> []
3 | x::xs -> 2 * x :: doubleList xs

doubleList [2;4;6;8]
⇒ 2*2 :: doubleList [4;6;8]
⇒ 2*2 :: [8;12;16]

Recursion – p. 12

Recursion January 24, 2007
§2 Recursion and Lists

Illinois Institute of Technology Mattox Beckman

Folding Recursion

Another common form “folds” a list via some function.

1 # let rec multList lst = match lst with
2 | [] -> 1
3 | x::xs -> x * multList xs;;
4 val multList : int list -> int = <fun>
5 # multList [2;4;6];;
6 - : int = 48

This computes (2 ∗ (4 ∗ (6 ∗ 1))).

Recursion – p. 13

Recursion January 24, 2007
§3 Complexity

Illinois Institute of Technology Mattox Beckman

How long will it take?

Remember the big-O notation from other CS courses.

The question: if we have an input of size n, how long will it take
to generate the output?

Express the output time in terms of the input size, omit
constants, and take the largest power.

Common big-O times:
Constant time O(1) — input size doesn’t matter
Linear time O(n) — double input ⇒ double output

Quadratic time O(n2) — double input ⇒ quadruple output
Exponential time O(2n) — increment input ⇒ double output

Recursion – p. 14

Recursion January 24, 2007
§3 Complexity

Illinois Institute of Technology Mattox Beckman

Linear Time

Expect most list operations to take linear time (O(n)).

Each step of the recursion can be done in constant time.

Each step makes exactly one recursive call.

List example: multList, append

Integer example: factorial

Recursion – p. 15

Recursion January 24, 2007
§3 Complexity

Illinois Institute of Technology Mattox Beckman

Quadratic Time

Each step of the recursion takes time proportional to the input.

Each step of the recursion makes exactly one recursive call.

List example: badly written “reverse”.

Integer example: Twelve days of Christmas.

1 # let rec badReverse lst = match lst with
2 | [] -> []
3 | x::xs -> (badReverse xs) @ [x];;
4 val badReverse : ’a list -> ’a list = <fun>

Recursion – p. 16

Recursion January 24, 2007
§3 Complexity

Illinois Institute of Technology Mattox Beckman

Exponential Time

Hideous running times.

Each step of the recursion takes constant time.

But each recursion makes two recursive calls.

Worst part: it is very simple to make a linear function into an
exponential one!

Examples: näive Fibonacci sequence (1,1,2,3,5,8,13,21,34. . .)

1 # let rec badFib n = match n with
2 | 0 -> 0
3 | 1 -> 1
4 | _ -> badFib (n-1) + badFib (n-2);;
5 val badFib : int -> int = <fun>

Recursion – p. 17

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

Tail Calls

Tail Position A subexpression s of expressions e, if it is evaluated,
will be taken as the value of e.

if (x>3) then x + 2 else x - 4

let x = 5 in x + 4

f (x * 3) — no tail position here.

Tail Call A function call that occurs in tail position.
if (h x) then h x else (x + g x)

Recursion – p. 18

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A non-tail-call

1 let start z = f z
2 let f a1 =
3 let a2 = a1 + 1 in
4 2 + g a2
5 let g a3 =
6 let a4 = a3 + 2 in
7 4 + h a4
8 let h a5 =
9 let a6 = a5 + 12 in

10 6 + a6

Call start 5. What happens?

Recursion – p. 19

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A non-tail-call

1 let start z = f 5
2 let f a1 =
3 let a2 = a1 + 1 in
4 2 + g a2
5 let g a3 =
6 let a4 = a3 + 2 in
7 4 + h a4
8 let h a5 =
9 let a6 = a5 + 12 in

10 6 + a6

Recursion – p. 20

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A non-tail-call

1 let start z = f 5
2 let f a1 =
3 let a2 = 6 in
4 2 + g 6
5 let g a3 =
6 let a4 = a3 + 2 in
7 4 + h a4
8 let h a5 =
9 let a6 = a5 + 12 in

10 6 + a6

Recursion – p. 21

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A non-tail-call

1 let start z = f 5
2 let f a1 =
3 let a2 = 6 in
4 2 + g 6
5 let g a3 =
6 let a4 = 8 in
7 4 + h 8
8 let h a5 =
9 let a6 = a5 + 12 in

10 6 + a6

Recursion – p. 22

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A non-tail-call

1 let start z = f 5
2 let f a1 =
3 let a2 = 6 in
4 2 + g 6
5 let g a3 =
6 let a4 = 8 in
7 4 + h 8
8 let h a5 =
9 let a6 = 20 in

10 6 + 20

Recursion – p. 23

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A non-tail-call

1 let start z = f 5
2 let f a1 =
3 let a2 = 6 in
4 2 + g 6
5 let g a3 =
6 let a4 = 8 in
7 4 + h 8
8 let h a5 =
9 let a6 = 20 in

10 26

Recursion – p. 24

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A non-tail-call

1 let start z = f 5
2 let f a1 =
3 let a2 = 6 in
4 2 + g 6
5 let g a3 =
6 let a4 = 8 in
7 4 + h 8
8 let h a5 = 26

What does the stack look like now?
At this point, we start returning.

Recursion – p. 25

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A non-tail-call

1 let start z = f 5
2 let f a1 =
3 let a2 = 6 in
4 2 + g 6
5 let g a3 =
6 let a4 = 8 in
7 4 + 26
8 let h a5 = ...

Recursion – p. 26

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A non-tail-call

1 let start z = f 5
2 let f a1 =
3 let a2 = 6 in
4 2 + g 6
5 let g a3 =
6 let a4 = 8 in
7 30
8 let h a5 = ...

Recursion – p. 27

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A non-tail-call

1 let start z = f 5
2 let f a1 =
3 let a2 = 6 in
4 2 + 30
5 let g a3 = ...
6 let h a5 = ...

Recursion – p. 28

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A non-tail-call

1 let start z = f 5
2 let f a1 =
3 let a2 = 6 in
4 32
5 let g a3 = ...
6 let h a5 = ...

Recursion – p. 29

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A non-tail-call

1 let start z = 32
2 let f a1 = ...
3 let g a3 = ...
4 let h a5 = ...

We’re done. But what if things were a little different?

Recursion – p. 30

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A tail-call

1 let start z = f z
2 let f a1 =
3 let a2 = a1 + 1 in
4 g a2
5 let g a3 =
6 let a4 = a3 + 2 in
7 h a4
8 let h a5 =
9 let a6 = a5 + 12 in

10 a5

Call start 5. What happens?

Recursion – p. 31

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A tail-call

1 let start z = f 5
2 let f a1 =
3 let a2 = a1 + 1 in
4 g a2
5 let g a3 =
6 let a4 = a3 + 2 in
7 h a4
8 let h a5 =
9 let a6 = a5 + 12 in

10 a5

Recursion – p. 32

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A tail-call

1 let start z = f 5
2 let f a1 =
3 let a2 = 6 in
4 g 6
5 let g a3 =
6 let a4 = a3 + 2 in
7 h a4
8 let h a5 =
9 let a6 = a5 + 12 in

10 a5

We propagate our value to the end as before.

Recursion – p. 33

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A tail-call

1 let start z = f 5
2 let f a1 =
3 let a2 = 6 in
4 g 6
5 let g a3 =
6 let a4 = 8 in
7 h 8
8 let h a5 =
9 let a6 = a5 + 12 in

10 a5

Each step takes us closer to the “base case”.

Recursion – p. 34

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A tail-call

1 let start z = f 5
2 let f a1 =
3 let a2 = 6 in
4 g 6
5 let g a3 =
6 let a4 = 8 in
7 h 8
8 let h a5 =
9 let a6 = 20 in

10 20

Once we hit the bottom, the result propagates back.

Recursion – p. 35

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

A tail-call

1 let start z = 20
2 let f a1 =
3 let a2 = 6 in
4 20
5 let g a3 =
6 let a4 = 8 in
7 20
8 let h a5 =
9 let a6 = 20 in

10 20

Note that it is never touched! What happens on the stack?

Recursion – p. 36

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

An important optimization

Normal call:
f
g
h
...

g tail calls h:
f
h
...

When you make a function call, you have to save
the return address on the stack, so we know
where to return.

Suppose f calls g, and then g calls h. What if the
call to h was the very last thing g did?

Such a call is called a tail call. We don’t need to
save the stack frame of the function making the
tail call in such a case.

This optimization can allow recursive programs to
run with the same efficiency as imperative pro-
grams.

Recursion – p. 37

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

Forward Recursion

In recursion, you split the input into the “first piece” and the “rest
of the input”.

In forward recursion: the recursive call computes the result for
the rest of the input, and then the function combines the result
with the first piece.

In other words, you wait until the recursive call is done to
generate your result.

1 # let rec badReverse lst = match lst with
2 | [] -> []
3 | x::xs -> (badReverse xs) @ [x];;
4 val badReverse : ’a list -> ’a list = <fun>

Recursion – p. 38

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

Accumulating Recursion

In accumulating recursion: generate an intermediate result
now, and give that to the recursive call.

Usually this requires an auxiliary function.

1 # let rec goodRevAux lst acc = match lst with
2 | [] -> acc
3 | x::xs -> goodRevAux xs (x::acc);;
4 (* notice that this one is tail recursive! *)
5 val goodRevAux : ’a list -> ’a list -> ’a list = <fun>
6 # let goodReverse lst = goodRevAux lst [];;
7 val foo : ’a list -> ’a list = <fun>

What is the running time?

Recursion – p. 39

Recursion January 24, 2007
§4 Accumulating Recursion

Illinois Institute of Technology Mattox Beckman

Comparison

Bad Reverse

1 2 3 4 5

2 3 4 5 1

3 4 5 2 1

4 5 3 2 1

5 4 3 2 1
Combining steps . . .

5 4 3 2 1

Good Reverse
L A

1 2 3 4 5

2 3 4 5 1

3 4 5 2 1

4 5 3 2 1

5 4 3 2 1

5 4 3 2 1

Recursion – p. 40

Recursion January 24, 2007
§5 Activity

Illinois Institute of Technology Mattox Beckman

Activity

1. Write an OCaml function that returns the maximum element of
a list. Use forward recursion. (Assume the list always has at
least 1 element.)

2. Now write the same function, but use tail recursion.

3. What is the running time of the following function?

1 # let rec doubleSum lst = match lst with
2 | [] -> 0
3 | x::xs -> doubleSum xs + doubleSum xs;;
4 val doubleSum : ’a list -> int = <fun>

4. Fix the above function to make it run in linear time.

Recursion – p. 41

Recursion January 24, 2007
§5 Activity

Illinois Institute of Technology Mattox Beckman

Problem 1

Write a function that returns the maximum element of a list. Use
forward recursion. (Assume the list always has at least 1 element,
and assume you have a max function.)

1 # let rec maxlist lst = match lst with
2 | [x] -> x
3 | x::xs -> max x (maxlist xs);;
4 Warning: this pattern-matching is not exhaustive.
5 Here is an example of a value that is not matched:
6 []
7 val maxlist : ’a list -> ’a = <fun>

Recursion – p. 42

Recursion January 24, 2007
§5 Activity

Illinois Institute of Technology Mattox Beckman

Problem 2

Now write the same function, but use tail recursion.

1 # let rec maxlistaux lst a = match lst with
2 | [] -> a
3 | x::xs -> maxlistaux xs (max x a);;
4 val maxlistaux : ’a list -> ’a -> ’a = <fun>
5 # let maxlist (x::xs) = maxlistaux xs x;;
6 Warning: this pattern-matching is not exhaustive.
7 Here is an example of a value that is not matched:
8 []
9 val maxlist : ’a list -> ’a = <fun>

Recursion – p. 43

Recursion January 24, 2007
§5 Activity

Illinois Institute of Technology Mattox Beckman

Problem 3

What is the running time of the following function?

1 # let rec doubleSum lst = match lst with
2 | [] -> 0
3 | x::xs -> doubleSum xs + doubleSum xs;;
4 val doubleSum : ’a list -> int = <fun>

It is O(2n)

Recursion – p. 44

Recursion January 24, 2007
§5 Activity

Illinois Institute of Technology Mattox Beckman

Problem 4

Fix the above function to make it run in linear time.

1 # let rec doubleSum lst = match lst with
2 | [] -> 0
3 | x::xs -> 2 * doubleSum xs;;
4 val doubleSum : ’a list -> int = <fun>

Recursion – p. 45

Recursion January 24, 2007
§5 Activity

Illinois Institute of Technology Mattox Beckman

Further Reading

Forward recursion can be made to traverse a list at return time
rather than call time, forming a pattern called “There and Back
Again,” which can do some interesting things. . . .

Example: write a function convolve : int list -> int
list -> int list which takes two lists [x1; x2; · · · ; xn] and
[y1; y2; · · · ; yn] and produces an output list [x1yn; x2yn−2; · · ·xny1]
where n is unknown. Use only n recursive calls, and no
temporary lists.

For the solution, see Olivier Danvy’s paper
There and Back Again.

Recursion – p. 46

http://doi.acm.org/10.1145/581478.581500

	Objectives
	Induction
	Induction Example
	Recursion
	Iterating Recursion Example
	Important things about recursion
	Watching recursion workldots
	Watching recursion workldots
	Watching recursion workldots
	Watching recursion workldots
	Watching recursion workldots
	Watching recursion workldots
	Watching recursion workldots
	Watching recursion workldots
	Watching recursion workldots
	Watching recursion workldots
	Watching recursion workldots
	Watching recursion workldots
	Watching recursion workldots

	Lists
	Mapping Recursion
	Watching the easy way
	Trace doubleList
	Folding Recursion
	How long will it take?
	Linear Time
	Quadratic Time
	Exponential Time
	Tail Calls
	A non-tail-call
	A non-tail-call
	A non-tail-call
	A non-tail-call
	A non-tail-call
	A non-tail-call
	A non-tail-call
	A non-tail-call
	A non-tail-call
	A non-tail-call
	A non-tail-call
	A non-tail-call
	A tail-call
	A tail-call
	A tail-call
	A tail-call
	A tail-call
	A tail-call
	An important optimization
	Forward Recursion
	Accumulating Recursion
	Comparison
	Activity
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Further Reading

