
Variables and Binding

Illinois Institute of Technology Mattox Beckman

Variables and Binding
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

Variables and Binding – p. 1

Variables and Binding
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

Variables have many different attributes. These attributes can
become bound to the variable at different times.

Know the difference between static and dynamic binding...
of value
of types
of location
of scoping (!)

Know the difference between implicit and explicit declaration.

Know what aliasing is.

Variables and Binding – p. 2

Variables and Binding
§1 Static vs. Dynamic Binding

Illinois Institute of Technology Mattox Beckman

Variables

What is a variable anyway?

Mathematical variables represent a (possibly unknown)
quantity or value. They usually are part of a model (or
abstraction) of some concept or system. f(x) = 2iπ − x

Programming variables are implementations of mathematical
variables. (Has anyone here read Plato?)

Q: What is the difference between the mathematical variable
i and a C++ variable i?
A programming variable has the following attributes:

Location
Type
Value
Scope

Variables and Binding – p. 3

Variables and Binding
§1 Static vs. Dynamic Binding

Illinois Institute of Technology Mattox Beckman

Static vs. Dynamic Binding

A variable’s attributes can be assigned (or bound) to the variable at
various times.

Static binding — the attribute is determined at compile time.
Allows the compiler to “hard code” information about the
variable into the executable code
Allows the compiler to perform optimizations based on its
knowledge of the variable.

Dynamic Binding — the attribute is determined at run time.
A variable’s attribute could change during the course of
execution, or remain undetermined—very flexible.
Information about the variable is usually stored with it.
Sometimes we don’t know the value of the attribute at
compile time.

Variables and Binding – p. 4

Variables and Binding

§2 Value

Illinois Institute of Technology Mattox Beckman

Value

The value attribute of a variable is most likely to be dynamic.

Sometimes we want the value to be static. (Not to be confused
with the static keyword in C.)

1 const int i = 2;
2

3 int foo(int j) { return i * j; }
4

5 int bar() {
6 int i = 10;
7 i = foo(i);
8 return i;
9 }

Variables and Binding – p. 5

Variables and Binding

§2 Value

Illinois Institute of Technology Mattox Beckman

Identifiers vs. Variables

This is the OCaml program is roughly equivalent to the
previous.

“Variables” in OCaml are immutable — there is no assignment
statement.

1 let i = 2;;
2

3 let foo j = i * j;;
4

5 let bar () =
6 let i = 10 in
7 let i = foo (i) in
8 i;;

Variables and Binding – p. 6

Variables and Binding
§3 Typing

Illinois Institute of Technology Mattox Beckman

Static Typing

Static Typing: the type of variables are known at compile time.

This makes many operations very efficient.

1 int sqr(int i) {
2

3 return i * i;
4 }

1 movi r1, val(i)
2 movi r2, val(i)
3 multi r1,r2,r3
4 pushi r3

The compiler can catch errors: improving programmer reliability.

1 string s = "hi";
2 bool b = true;
3 if s then printf("4") else printf("9");

Variables and Binding – p. 7

Variables and Binding
§3 Typing

Illinois Institute of Technology Mattox Beckman

Dynamic Typing

Some languages (e.g., BASIC, Perl, most shell, TCL) use dynamic
typing.

1 #!/usr/bin/perl
2

3 $i = "The answer is ";
4 print "$i";
5

6 $i = 42;
7 print "$i\n";

Actually, Perl types are partially dynamic. Scalars, arrays, and
hashes are represented with different syntax.

Variables and Binding – p. 8

Variables and Binding
§3 Typing

Illinois Institute of Technology Mattox Beckman

Polymorphism

Sometimes you want to be able to have both the advantages of
strong typing and dynamic typing all at the same time.

Methods include overloading, templates, and automatic
polymorphism.

overloading
1 int identity(int i) { return i; }
2 double identity(double x) { return x; }

templates
1 template <class T>
2 T ident(T &i) return i;

automatic (ML)
1 # let id x = x;;
2 val id : ’a -> ’a = <fun>

Variables and Binding – p. 9

Variables and Binding

§4 Location

Illinois Institute of Technology Mattox Beckman

Location

Heap allocated variables — completely dynamic

Stack allocated variables — partially static “stack relative”
allocation

1 int length() {
2 int i = 10;
3 String s = new String("hello");
4 return i + length(s);
5 }

There is one language in which all variables — even function
arguments — are allocated statically!

Variables and Binding – p. 10

Variables and Binding

§4 Location

Illinois Institute of Technology Mattox Beckman

Fortran

Developed during a time with 4k was a lot of memory and
processor speeds were measured in kHz.

Looking up a memory location each time a variable is used is
expensive!

The problem: how do we get scientists to use a high level
language rather than machine code?

Solution: Variable locations are hard-coded.

This made Fortran almost as fast as assembly.

Still the language of choice for numerical computation.

Downside—you don’t get recursion. (Modern Fortran fixes this.)

Variables and Binding – p. 11

Variables and Binding

§4 Location

Illinois Institute of Technology Mattox Beckman

Aliasing

It is possible for multiple variables to refer to the same location.

1 int i = 20;
2

3 void inc(int &x) {
4 x = x + 1;
5 }
6

7 ... inc(i) ... // i and x will be the same thing

Use with extreme caution!

Variables and Binding – p. 12

Variables and Binding

§4 Location

Illinois Institute of Technology Mattox Beckman

Bad Aliasing

Knowing about aliasing and storage is critical. Never forget that
your variables are representations only.

1 int a[10];
2 int j;
3

4 void main () {
5 int i;
6 j = 42;
7 for(i = 0; i<=10; i++) a[i] = i;
8 printf("%d",j);
9 }

What will this print?

Variables and Binding – p. 13

Variables and Binding
§5 Scoping

Illinois Institute of Technology Mattox Beckman

Lifetime

Variables have a certain scope in the program for which they
are valid.

This allows us to have multiple variables with the same name.

Usually the scope (or lifetime) is determined syntactically.

1 int foo(int i) {
2 int j = 10;
3 return j + 10;
4 }
5

6 int bar(int i) {
7 int j = 20;
8 return foo(j) + foo(i);
9 }

Variables and Binding – p. 14

Variables and Binding
§5 Scoping

Illinois Institute of Technology Mattox Beckman

Example in C

Consider the following program:

1 int i = 2;
2

3 int foo() { return i * i; }
4

5 int bar() {
6 int i = 10;
7 return foo();
8 }

What value will function bar return?
4
100

Variables and Binding – p. 15

Variables and Binding
§5 Scoping

Illinois Institute of Technology Mattox Beckman

Example in Emacs Lisp

1 (setq i 2) ;; global variable i = 2
2

3 (defun foo ()
4 (* i i))
5

6 (defun bar ()
7 (let ((i 10)) ;; local variable i = 10
8 (foo))) ;; call function foo

What value will expression (bar) return?
4
100

Variables and Binding – p. 16

Variables and Binding
§5 Scoping

Illinois Institute of Technology Mattox Beckman

Static vs. Dynamic Scoping

Most languages use static scoping.

Common LISP introduced dynamic scoping.
“It seemed like a good idea at the time.”

It is considered to be a Bad ThingTM by most sentient
life-forms.

It’s too easy to modify the behavior of a function.

Correct use requires knowledge of a function’s internals.

Still used by Lisp, some Scheme, and Emacs Lisp.

Variables and Binding – p. 17

Variables and Binding
§6 Activity

Illinois Institute of Technology Mattox Beckman

Problems

(qdb 171) Which of the following is an advantage of dynamic
typing that cannot be found with static typing?
1. You don’t have to declare types.
2. No runtime type errors can occur.
3. Dynamically typed code will run faster than statically typed

code.
4. None of these are advantages.

(qdb 172) A C++ method can be either static or dynamic. How
is this accomplished?

Variables and Binding – p. 18

Variables and Binding
§6 Activity

Illinois Institute of Technology Mattox Beckman

Answers

Which of the following is an advantage of dynamic typing that
cannot be found with static typing?
1. You don’t have to declare types.
2. No runtime type errors can occur.
3. Dynamically typed code will run faster than statically typed

code.
4. Solution: None of these are advantages.

A C++ method can be either static or dynamic. How is this
accomplished?
Syntactically: A method is made dynamic via the virtual
keyword. Implementation: the compiler uses a structure called
a vtable.

Variables and Binding – p. 19

Variables and Binding
§6 Activity

Illinois Institute of Technology Mattox Beckman

Thanks

Proofreading help given by Eric Smith.

Variables and Binding – p. 20

http://sunrise.cs.iit.edu/qdb/qdb.py/index?dir=Number/171
http://sunrise.cs.iit.edu/qdb/qdb.py/index?dir=Number/172

	Objectives
	Variables
	Static vs. Dynamic Binding
	Value
	Identifiers vs. Variables
	Static Typing
	Dynamic Typing
	Polymorphism
	Location
	Fortran
	Aliasing
	Bad Aliasing
	Lifetime
	Example in C
	Example in Emacs Lisp
	Static vs. Dynamic Scoping
	Problems
	Answers
	Thanks

