
CS 440 Higher Order Functions January 31, 2007

1 Objectives

The purpose of this lecture is to give you an introduction to higher order functions. As a result of this
lecture, you should. . .

• know how to create higher order functions

• understand the concept of closures

• know how to use and write the following kinds of higher order functions:

– function combination — twice, compose

– interface changes — curry, uncurry

– list processing — fold right, map, zip with

2 Examples

1 # let double x = x * 2;;

2 val double : int -> int = <fun>

3 # let inc x = x + 1;;

4 val inc : int -> int = <fun>

5 # let compose f g = fun x -> f (g x);;

6 val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b

2.1 map and fold

1 # let rec map f lst = match lst with

2 | [] -> []

3 | x::xs -> f x :: map f xs;;

4 val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

5 # map inc [2;3;4];;

6 - : int list = [3; 4; 5]

7 # let rec zip f alst blst =

8 match alst,blst with

9 | [],_ -> []

10 | _,[] -> []

11 | a::aa, b::bb -> f a b :: zip f aa bb;;

12 val zip : (’a -> ’b -> ’c) -> ’a list -> ’b list

13 -> ’c list = <fun>

14 # let rec fold_right f lst z = match lst with

15 | [] -> z

16 | x::xs -> f x (fold_right f xs z);;

17 val fold_right : (’a -> ’b -> ’b) -> ’a list

18 -> ’b -> ’b = <fun>

19 # fold_right (+) [2;3;4] 0;;

20 - : int = 9

2.2 curry and uncurry

1 # let curry f a b = f (a,b);;

2 val curry : (’a * ’b -> ’c) -> ’a -> ’b -> ’c = <fun>

Mattox Beckman Page 1 Illinois Institute of Technology



CS 440 Higher Order Functions January 31, 2007

3 # let uncurry f (a,b) = f a b;;

4 val uncurry : (’a -> ’b -> ’c) -> ’a * ’b -> ’c = <fun>

3 Problems

Here are some practice/study problems. We might do some of these in class.

1. What is a higher order function?

2. Write the function twice : (’a -> ’a) -> ’a -> ’a function, that takes a parameter f and a
victim x, and applies f to x two times.

3. Write the thrice function.

4. Write curry and uncurry.

5. Write flip : (’a * ’b -> ’c) -> ’b * ’a -> ’c.

6. Write a function flipuc that flips uncurried functions. Do this using only flip, curry, and uncurry.

7. Write the function that has the type
(’a -> ’b) -> ’a * ’c -> ’b

8. Write the code for map.

9. What are the properites of a mapping recursion?

10. Using map, write a function that increments every element of a list.

11. Using map, write a function that doubles every element of a list.

12. Write the code for fold right.

13. What are the properties of a folding recursion?

14. Use fold right to write a function that takes a list and then returns it.

15. Use fold right to write a function that sums up a list.

16. Use fold right to write a function that takes the product of a list.

17. Use fold right to write a function that takes the minimum of a list. Assume that every list has at
least one element.

18. Using fold right, write a function that increments every element of a list.

19. Using fold right, write a function that doubles every element of a list.

20. Use fold right to write a function that takes a list and removes all elements less than zero.

21. Use fold right to write map.

22. Why can’t map be used to write fold right?

Mattox Beckman Page 2 Illinois Institute of Technology


