
Transition Semantics

Illinois Institute of Technology Mattox Beckman

Transition Semantics
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

Transition Semantics – p. 1

Transition Semantics
§0 Objectives for Today

Illinois Institute of Technology Mattox Beckman

Objectives

Previous semantics both used proof trees:

Type derivations specified the type of an expression.

Natural semantics specified the value of an expression.

Today’s semantics will use transitions to specify the value of an
expression. By the end of lecture, you should know how to use
transitional semantics to

determine the value of an expression (i.e., be able to read)

specify the meaning of a language (i.e., be able to write).

You should also know the Church-Rosser property and be able to
give examples of languages that have it and languages that don’t
have it.

Transition Semantics – p. 2

Transition Semantics
§0 Objectives for Today

Illinois Institute of Technology Mattox Beckman

Transformations

There are many ways we can specify the meaning of an
expression. One way is to specify the steps that the computer
will take during an evaluation.

An evaluation has the following form:

e1 → e2

where e is some expression, and e2 is another expression,
possibly a value.
Examples:

if true then 4 else 38 → 4

13 + 4 * 5 → 13 + 20

Note well: → indicates exactly one step of evaluation.

Transition Semantics – p. 3

Transition Semantics
§1 Transition Semantics

Illinois Institute of Technology Mattox Beckman

Preliminaries

In transition semantics we need to be able to distinguish
between values and expressions.

A value is a valid expression that can not be evaluated any
further.
(Note, the converse is not true.)

Use letters U , V , and W to represent values.

Use letters M , N , and L to represent expressions.

Transition Semantics – p. 4

Transition Semantics
§1 Transition Semantics

Illinois Institute of Technology Mattox Beckman

If Statements

Here are three semantic rules for the if statement.

if true then M else N → M

if false then M else N → N

L → L′

if L then M else N → if L′ then M else N

In English:

If the conditional part is true, evaluate the first branch.

If the conditional part is false, evaluate the second branch.

Otherwise, if the conditional part is not yet evaluated, evaluate it
one step.

Transition Semantics – p. 5

Transition Semantics
§1 Transition Semantics

Illinois Institute of Technology Mattox Beckman

&& and ||

These rules are for the short-circuit version of the boolean
operators.

and
true && N → N
false && N → false

M → M ′

M && N → M ′ && N

or
true || N → true
false || N → N

M → M ′

M || N → M ′ || N

Transition Semantics – p. 6

Transition Semantics
§1 Transition Semantics

Illinois Institute of Technology Mattox Beckman

&& and || , version 2

These versions are for the “long” versions.

and
M → M ′

M && N → M ′ && N

N → N ′

U && N → U && N ′

true && V → V
false && V → false

or
M → M ′

M || N → M ′ || N

N → N ′

U || N → U || N ′

false || V → V
true || V → true

Transition Semantics – p. 7

Transition Semantics
§1 Transition Semantics

Illinois Institute of Technology Mattox Beckman

Obvious Rules

These rules are boring. But we need to include them anyway.

M → M ′

M ⊕ N → M ′
⊕ N

N → N ′

V ⊕ N → V ⊕ N ′

Where ⊕ is +, -, >, <, . . .

These rules are so boring that we don’t include them.
0 + 0 → 0 0 + 1 → 1 . . .
1 + 0 → 1 1 + 1 → 2 . . .
et cetera. . .

Transition Semantics – p. 8

Transition Semantics
§1 Transition Semantics

Illinois Institute of Technology Mattox Beckman

Example Evaluation

Evaluate: if 3 > 2 then 5 + 9 else 2 * 4
if 3 > 2 then 5 + 9 else 2 * 4

→ if true then 5 + 9 else 2 * 4

→ 5 + 9

→ 14

Another common notation:
→

∗ means “zero or more transitions”, so for example 3 →
∗ 3, and

if 3 > 2 then 5 + 9 else 2 * 4 →
∗ 14

Transition Semantics – p. 9

Transition Semantics
§1 Transition Semantics

Illinois Institute of Technology Mattox Beckman

Substituting for Variables

Choice 1 — Call By Value
N → N ′

let x = N in M → let x = N ′ in M

let x = V in M → [V/x] M

(fun x−>M) V → [V/x] M

N → N ′

(fun x−>M) N → (fun x−>M) N ′

Choice 2 — Call By Name
let x = N in M → [N/x] M

(fun x−>M) N → [N/x] M

Transition Semantics – p. 10

Transition Semantics
§1 Transition Semantics

Illinois Institute of Technology Mattox Beckman

Example

Evaluate: let x = 2 + 3 in let y = x * x in x + y

let x = 2 + 3 in let y = x * x in x + y

→ let x = 5 in let y = x * x in x + y

→ let y = 5 * 5 in 5 + y

→ let y = 25 in 5 + y

→ 5 + 25

→ 30

Transition Semantics – p. 11

Transition Semantics
§2 Church Rosser Property

Illinois Institute of Technology Mattox Beckman

Term Rewriting Systems

Transition semantics can be thought of as a term-rewriting system.
Common questions:

Does an expression always terminate?

Can we tell if two expressions are equal?

Church-Rosser Property : If x →
∗ y and y →

∗ x then x and y
normalize to the same value.

x y

z

∗

∗ ∗

Transition Semantics – p. 12

Transition Semantics
§2 Church Rosser Property

Illinois Institute of Technology Mattox Beckman

Example

Confluence : If x → y1 and x → y2 then y1 and y2 normalize to the
same value. (Confluence and the Church-Rosser Property
coincide.)

x = 2 + 3 + 5

y1 = 5 + 5 y2 = 2 + 8

10

This is also known as the “diamond property”

Transition Semantics – p. 13

Transition Semantics
§2 Church Rosser Property

Illinois Institute of Technology Mattox Beckman

Who has it?

Alonzo Church and J. Barkley Rosser proved that the
λ-calculus has these properties in 1936.

Very important for theorem provers.

Most programming languages have this property... some of the
time...

One Benefit: you can check for equality of x and y by evaluating
them.

Not Church-Rosser
1 int i = 10;
2 int sum(int x, int y) { return x + y; }
3

4 cout << sum(i++, i*=2); // 11 + 22 or 21 + 20?

Transition Semantics – p. 14

Transition Semantics
§3 Activity

Illinois Institute of Technology Mattox Beckman

Problems

1. Use transition semantics to calculate the value of
let f = fun x -> x * x in f 5

2. Suppose we add a match/with type statement to λ-calculus.
Will it still have the Church-Rosser property?

3. Suppose we specify the order of evaluations for arguments in
C++. Does that restore the Church-Rosser property?

Transition Semantics – p. 15

Transition Semantics
§3 Activity

Illinois Institute of Technology Mattox Beckman

Answers

1. Evaluate: let f = fun x -> x * x in f 5
let f = fun x -> x * x in f 5

→ (fun x -> x * x) 5

→ 5 * 5

→ 25

2. Suppose we add a match/with type statement to λ-calculus.
Will it still have the Church-Rosser property? Yes

3. Suppose we specify the order of evaluations for arguments in
C++. Does that restore the Church-Rosser property? No

1 char *i = new char(’x’);
2 cout << (int) i; // different each time

Transition Semantics – p. 16

	Objectives
	Transformations
	Preliminaries
	If Statements
	kwand and kwor
	kwand and kwor , version 2
	Obvious Rules
	Example Evaluation
	Substituting for Variables
	Example
	Term Rewriting Systems
	Example
	Who has it?
	Problems
	Answers

