Unification

Unification

Mattox Beckman

beckman@i t. edu

lllinois Institute of Technology

lllinois Institute of Technology Mattox Beckman Unifcation - p. 1
Unification
The Domain §1 The Problem

Terms Have name and arity
The name will be in western alphabet
Arity = “number of arguments” — may be zero
o Examples: x, z, f(x,y), x(y,f,z)
variables Written using Greek alphabet, may be subscripted
® Represent a target for substitution
® Examples: a, f12,77

Substitutions Mappings from Variables to Terms
® Examples: 0 = {a+— £(x,0),0 — v}
Substitutions are applied: o(g(3)) — g(y)

Note: arguments to terms may have non-zero arity, or may be
variables.

lllinois Institute of Technology Mattox Beckman Unifcation - p. 3

Unification

Objectives 80 Objectives

Unification is a third major topic that will appear many times in this
course. It is used in languages such as OCaml and Prolog, and
also in theoretical discussions.

Be able to describe the problem of unification.

Be able to solve a unification problem.

Know how to use unification to implement pattern matching.

#® Know how to use unification to check types of functions.

lllinois Institute of Technology Mattox Beckman Unifcaion - p. 2
Unification
The Problem §1 The Problem

Giventerms s and ¢, try to find a substitution o such that
o(s) =o(t).

If such a substitution exists, it is said that s and ¢ unify.

A unification problem is a set of equations
S = {Sl =7 t1, S92 =’ to, .. }

A unification problem S = {1 =" t;, 29 =" t,...} is in solved
form if
o the terms z; are distinct variables
o nhone of them occur in ¢;.

Our approach: given a unification problem S, we want to find the
most general unifier o that solves it. We will do this by transforming
the equations.

lllinois Institute of Technology Mattox Beckman Unifcation - p. 4

Unification

Four Operations §2 The Algorithm

Start with a unification problem S = {s; =’ t1,s9 =" t5,...} and
apply the following transformations as necessary:

Delete A trivial equation ¢ =’ ¢ can be deleted.
Decompose An equation f(Z,) =" f(@,) can be replaced by the set

{t1 ="y, ...ty =" upn}
orient An equation ¢t =’ z can be replaced by = =’ t if = is a variable
and ¢ is not.

Eliminate an equation z =" ¢ can be used to substitute all
occurrences of z in the remainder of S.

lllinois Institute of Technology Mattox Beckman Unifcation - p. 5
Unification
Example §2 The Algorithm

(Stolen from “Term Rewriting and All That”)

{a =" f(2), g(a,a) =" g(a, B)}

We can use the Eliminate method, replace « with f(z) on the right
sides of the equations.

lllinois Institute of Technology Mattox Beckman Unifcation - p. &

Unification

Example §2 The Algorithm
(Stolen from “Term Rewriting and All That”)
{a="f(x), g(ay) =" g(a, B)}

lllinois Institute of Technology Mattox Beckman Unifcation—p. 6

Unification

Example §2 The Algorithm

(Stolen from “Term Rewriting and All That”)

{a =" f(2), g(a,a) =" g(a, B)}

We can use the Eliminate method, replace « with f(z) on the right
sides of the equations.

{a =" f(2). g(f(2), f(x)) =" 9(f(x),)}

We can use the Decompose method, and get rid of the ¢ functions.

lllinois Institute of Technology Mattox Beckman Unifcation - p. &

Unification

Example §2 The Algorithm

(Stolen from “Term Rewriting and All That”)

{a =" f(2), g(a,0) =" g(a, B)}

We can use the Eliminate method, replace « with f(x) on the right
sides of the equations.

{a =" f(2), 9(f(2), f(x)) =" 9(f(2),0)}

We can use the Decompose method, and get rid of the ¢ functions.
{a="f(x), f(x) =" [(2), f(x) =" B}

We can delete the f(z) = f(x) equation.

lllinois Institute of Technology Mattox Beckman

Unification — p. 6

Unification

Example §2 The Algorithm

(Stolen from “Term Rewriting and All That”)

{a =7 f(2), g(a,0) =" g(a, B)}

We can use the Eliminate method, replace « with f(z) on the right
sides of the equations.

{o =" f(2), 9(f(2), f(x)) =" 9(f(2),0)}

We can use the Decompose method, and get rid of the ¢ functions.
{a =" f(x), f(z) =" f(x), f(z) =" B}

We can delete the f(z) = f(x) equation.

{a =" f(x), f(z) =77}

Now we can reorient to make the variables show up on the left side.

{a =" f(z), 8="f(2)}

Now we are done....

S=A{am f(z), B f(x)}

lllinois Institute of Technology Mattox Beckman

Unification - p. 6

A W NP

Unification

Example §2 The Algorithm

(Stolen from “Term Rewriting and All That”)

{a =" f(2), g(a,0) =" g(a,B)}

We can use the Eliminate method, replace « with f(x) on the right
sides of the equations.

{a =" f(x), g(f(2), f(x)) =" 9(f (), 0)}

We can use the Decompose method, and get rid of the ¢ functions.
{a="f(x), f(x) =" [(2), f(x) =" B}

We can delete the f(z) = f(x) equation.

{a =" f(2), f(z) =" 5}

Now we can reorient to make the variables show up on the left side.

lllinois Institute of Technology Mattox Beckman

Unification - p. 6

Unification
Example — Pattern Matching §3 Examples
Pattern Matching is one form of unification.
let Ist = 3::4::5::[];;
match Ist with
| [1->...
| X::xs ->
» We want to unify st with [] or z :: zs.
s LetS) ={[|="ai, g ="3::4::5::[]}
o Let Sy ={oyops =" apy, g = 3::4::5:[]}

o What is the solution?

lllinois Institute of Technology Mattox Beckman

Unification - p. 7

Unification

Pattern Matching Solution §3 Examples
o letS ={="oy, au="3:4::5::[]}

s Substitution: S; = {[]="3::4::5::[]}

» Fails to unify.
® LetSy={oyops="apy, og=3:4::5:[]}

» Substitution: {oy = aps ="3::4::5::[]}

» Decomposition: {a, =73, azs='4::5::[]}
lllinois Institute of Technology Mattox Beckman Unifcation - p. 8
Unification
Example — Types §3 Examples

Type checking is also a form of unification.

map : ("a->'b) ->"alist ->"b |ist
inc : int ->int
foo : int list

i

N

w

Willmap i nc foo work?

S={(a— B)="int — int, (o list)='int list}

lllinois Institute of Technology Mattox Beckman Unificaton — p. 10

Unification

Example — Compatibility §3 Examples

Your advisor wants you to take CS 440 and some theory class.

Your mom wants you to take CS 536 and some languages
class.

Can both your advisor and your mom be happy?

This is a problem we can solve using unification:

Let f be a “schedule function”, the first argument is a language
class, the second argument is a theory class.

® s = f(cs440,) (where 3 is a theory class)

® t= f(a,cs536) (Where « is a language class)
® leto = {awr cs440, [+ csbH36}

lllinois Institute of Technology Mattox Beckman Unifcation - p. 9

Unification

Type Checking Solution §3 Examples

S={(a— B)="int — int, (o list)='int list}

Decompose: {o« =" int, [="int, (alist)="1int list}
Substitute: {o =7 int, [="int, (int list)="int list}
® Delete: {o =" int, [="1int}

The original type of map was (o — () — «a list — [list

We can use our pattern to get the output type:
S(f list) = int list

lllinois Institute of Technology Mattox Beckman Unifcation —p. 11

Unification
Example 2 — Types

83 Examples

Here’s an example that fails.

imap : ("a->"b) ->"alist ->"b list
2linc : string -> int
sifoo @ int list

Willmap i nc foo work?

S ={(a— 3) =’ string — int, (a list)='int list}

lllinois Institute of Technology Mattox Beckman

Unification
Problem

84 Activity

Try to unify the following:
» {fla,y) = f(z,B)}

® {f(a,y) = f(z,a)}
® {fla,p) =7, ~v=f(x,0), B=gk)}
E {f(aaﬁ):’% ’)/:f(l’,(S)}

lllinois Institute of Technology Mattox Beckman

Unification - p. 14

Unification
Type Checking 2 Solution

83 Examples

S ={(a — 3) =" string — int, (a list)='int list}

® Decompose: {a =’ string, [="int, (alist)="1int list}

® Substitute:

{a =" string, [="int, (stringlist)='int list}

® Error: (string list) #7 int list!

lllinois Institute of Technology Mattox Beckman

Unification
Answers

84 Activity

® {flo,y) = f(z,0)}

Leta—2x, [B—uy

® {f(a,y) = f(z,a)}
This one cannot be unified.
® {fla,p)=7, v=f(x,0), B=gy}
Let {3,0 —g(y), awr—wz, v f(z,9(y)}
® {f(,B)=7, ~v=f(x,0)}

Let{f—0d, a—uz, v~ f(z,0)}
Unifies, but not completely solved.

lllinois Institute of Technology Mattox Beckman

	Objectives
	The Domain
	The Problem
	Four Operations
	Example
	Example
	Example
	Example
	Example
	Example

	Example --- Pattern Matching
	Pattern Matching Solution
	Example --- Compatibility
	Example --- Types
	Type Checking Solution
	Example 2 --- Types
	Type Checking 2 Solution
	Problem
	Answers

