A-Calculus

A-Calculus

Mattox Beckman

beckman@it. edu

lllinois Institute of Technology

lllinois Institute of Technology Mattox Beckman A-Calculus - p. 1

A-Calculus

The \-Calculus 81 \-Calculus

Contains three kinds of things:
1. Variables: =
2. Functions: \z.x
3. Application: (Az.x) y
... and nothing else!

“We don’'t need no stinking integers!”

o

This language is Turing Complete.

Used extensively in research. The “little white mouse” of
computer science.

#® We can implement this very easily in OCaml.
Ar.x=fun x -> X

lllinois Institute of Technology Mattox Beckman A-Calculus - p. 3

A-Calculus

Objectives 80 Objectives

Subtitle: “Everything is Really a Function”

The purposes of this lecture is to demonstrate how functions
themselves can represent arbitrary data structures.

Know the three constructs of A-calculus.
Know the competitive advantage of A-calculus.

Know how to use functions to represent integers.
» Know how to write addition, multiplication, and
exponentiation.
Know how to use functions to represent arbitrary types.
s booleans
o _pairs
lllinw s list8ute of Technology Mattox Beckman Acaleus—p.2

A-Calculus

Semantic Rules version 1 §1 M\-Calculus

The semantics of A-calculus are very easy. Remember that M,N,P
are expressions, V is a value.

Variables v |z

Functions .. zs U Ao M
M| xP NV
M N | [V/z]P

Application

What can you tell about this language?

lllinois Institute of Technology Mattox Beckman A-Calctlus - p. 4

AW N P

A-Calculus

Semantic Rules version 2 §1 \-Calculus

Here's another version of \-calculus.

Variables z |z

Functions .. A U .M
M |} \x.P
M N | [N/z|P

Application

What is different about this version of the language?
MUy XN NIV
M | \z.V
This is known as reduction, as opposed to evaluation. Can you see
why this rule is not valid?

We will add one “rule” to these:

lllinois Institute of Technology Mattox Beckman

A-Calculus —p. 5

A-Calculus

Incrementing Church Numerals §2 Church Numerals

® To increment a Church Numeral...

let flnc mf x
val flnc : (('a ->
fShow (flnc f3)
- int =4

"a ->"b)

» First, apply f mAimes to x.

Next, apply f once more to the result.

lllinois Institute of Technology Mattox Beckman

A-Calculus —p. 7

N

© o N o 0 » W N B

=
o

A-Calculus

What is a Number? §2 Church Numerals

® The Lambda Calculus doesn’t have numbers.

A number n can be thought of as a potential: someday we are
going to do something » times.

foO=fun f x -> X A numeral n takes a func-
fl1=fun f x -> f X tion and a value, and ap-
f2=funf x ->f (f x) {)cl)i(;:ﬁetC;Jgnction n times
f3=fun f x ->f (f (f x)) ’

let fShowm=m((+) 1) O;;

val fShow : ((int ->int) ->int ->"a) ->"a = <f
f Show f 3; ;

- . int =3

lllinois Institute of Technology Mattox Beckman A-Calctlus - . 6
A-Calculus

Adding Church Numerals §2 Church Numerals

Similar reasoning can yield addition and multiplication.

#let fAAd mnf x =mf (nf x);;
val fAdd : ("a ->"'b ->"¢) ->
('a->'d->"b) ->"a->"d->"¢c = <f
fShow (fAdd f3 f3);;
- . int =6
#let fMul mnf x = m(n f) x;;
val f Ml ('a->"b->"¢c) ->
('d ->"a) ->'d->"b ->"c = <fun>
fShow (fMul f3 f3);;
- int =9

un=

Subtraction is much more complex.

lllinois Institute of Technology Mattox Beckman

A-Calculus —p. 8

® N o o »~ w N B

A-Calculus

Tracing Addition 82 Church Numerals

let fAdd mn f x =
fAdd f2 f3;;

f2 f (f3 f x)
f2f ((fungy->9g (g (gy))) f x
f2f (f (f (f x)))

(fun gy ->g(gy)) f (f (f (f x)))
(funy ->f (f y)) (f (f (f x)))

mf (nf x);;

#

#

N
N
N
-
N
-

foof (fF (F (f x))))

A-Calculus - p. 9

lllinois Institute of Technology Mattox Beckman

A-Calculus

Functional Representation 83 Arbitrary Types

Suppose we have a type S, with constructors S; . ..
represent a term ¢t = S;(t1,t2,...,ty,) by

S,. We can

t=Ar1...Tp.2it1 bt
The z; represent functions that say what to do if the term ¢ turns out

to be an instance of the constructor S;.

lllinois Institute of Technology Mattox Beckman

A-Calculus - p. 11

© ® N o g M W N P

P
= O

-
N

o g »A w N P

A-Calculus

Tracing Multiplication 82 Church Numerals

#let fMul mnf x = m(n f) x;;

fwul £3 f3;;

— f3 (f3 f) x

— f3 ((fungy->9g (g (gvVy))) f) x

— f3 (funy ->f ((f y))) x

— (fun ' h z ->h (h 2z)) (funy ->f (f (f y))) x

— (funy ->f (f (f y))) ((funy ->1f (f (f y)))
((funy ->f (f (f y))) X))

= (funy ->f (f (f y))) ((funy ->1f (f (f y)))
(f (f (f x))))

= (funy ->f (f (fy))) (f (f (f (f (f (f x)))))

— (F (f (F (f (F (f (F (f (f x)))))))))

lllinois Institute of Technology Mattox Beckman A-Caleulus —p. 10

A-Calculus

Booleans 83 Arbitrary Types

Let S; =t rue, and Sy =f al se.

Then, a boolean is a value which takes two functions. The first

function is what to do when the boolean is t r ue, the second is

what to do when the boolean is f al se.

| et fTrueab= a;;

val fTrue : ->'b ->"a = <fun>

let fFalse a b = b,,

val fFalse : "a -> b- b = <fun>

#let fIf ct e =ct

val flIf ('a->"b -> c) ->'a ->"b ->"c = <fun>

How would you define f And and f O with this system?

lllinois Institute of Technology Mattox Beckman

A-Calculus - p. 12

o g A W N P

A-Calculus

Pairs §3 Arbitrary Types

A pair is a type with one constructor S, =pai r . We know that Sy
takes two arguments.

Then, a pair is a value that takes one function. The function itself
takes two arguments, and tells what to do with the two halves of the
pair.

let fPair a b = fun select -> select a b;;

val fPair 'a->'"b->(a->"b->"c) ->"c = <fun

#let fPilp=p (funab->a);;

val fPil: (("a->"b->"a) ->'c) ->"'c = <fun>

#let fPi2 p=p (fun ab ->Db);;

val fPi2: (("a->"b->"b) ->"¢c) ->"c = <fun>

lllinois Institute of Technology Mattox Beckman A-Galeulus —p. 13

A-Calculus

Activity 84 Activity

1. (126) Write a function chur ch n which returns the Church
Numeral for n. (Use recursion.)

2. (127) Write the church function for exponentiation. (Hint: the
solution is shorter than multiplication.) Show a sample run for
32.

3. (128) How would you represent a tree using functions? (There

are many ways to do this.)

lllinois Institute of Technology Mattox Beckman

A-Calculus - p. 15

A-Calculus

Complex Data Structures 8§83 Arbitrary Types

You can combine these techniques to create arbitrary data
structures.

A list contains two constructors: Cons and Ni | .
The Cons constructor contains a pair as data.

let TNil cons nil =nil;;
val fNil a ->"'b ->"b = <fun>
let fCons a b cons nil = cons a b;;

o g »A w N P

val fCons : "a ->'b -> ((("a->"b ->"c) ->"¢c)
let fIsNil Ist =1st (fun x y -> fFalse) fTrue;;
val flsNil ((a->"b->"b) ->('c->"d->"c¢)

You will need to tell OCaml to use recursive types for this... but
even then the type system starts to get in the way.

lllinois Institute of Technology Mattox Beckman

A-Calculus
Problem 1

A-Calculus — p. 14

84 Activity

® Write a function chur ch n which returns the Church Numeral
for n. (Use recursion.)

1|# let rec church n f x =

2 match n with

3 0 ->x

4 | _ ->f (church (n-1) f x);;

sival church : int -> ("a ->"a) ->"a ->"a = <fun>

lllinois Institute of Technology Mattox Beckman

A-Calculus — p. 16

© ® N o g » W N P

[N
o

A-Calculus

Problem 2 §4 Activity

Write the church function for exponentiation. (Hint: the solution
is shorter than multiplication.) Show a sample run for 32.

Solution:

let fPowmn =n m;;

fPow f3 f2

— f2 3

— (fun f x ->f (f x)) f3

— fun x -> f3 (f3 x)

— fun x -> (fun gy ->9g (g (9vV))) (f3x)

— fun x ->funy -> (f3 x) ((f3 x) ((f3 x) y))
— fun xy -> (f3 x) ((f3 x) (x (x (x y))))

— fun xy -> (f3 x) (x (x (x (x (x (x¥))))))

— fun xy -> (x (x (x (x (x (x (x (x (x¥))))))))
lllinois Institute of Technology Mattox Beckman A-Caleus —p- 17
A-Calculus

Further Reading 84 Activity

You can use A-calculus to represent itself using these
techniques. You already have everything you need to do it. You
can see the details in Torben A£. Mogensen’s paper
Efficient Self-Interpretations in lambda Calculus, in the Journal
of Functional Programming v2 n3.

More information about using functions to represent objects can

be found in J. Steensgaard-Madsen’s paper
Typed representation of objects by functions, in TOPLAS v11
nl.

lllinois Institute of Technology Mattox Beckman

A-Calculus - p. 19

»r W N R

A-Calculus

Problem 3 84 Activity

How would you represent a tree using functions? (There are
many ways to do this.)

|l et nkLeaf n node |leaf = |eaf n;;

val nkLeaf : "a ->"'b ->("a->"'c) ->'c = <fun>
|l et nkNode a b node | eaf = node a b;;
val nkNode : 'a ->'b ->("a->"b ->"¢) ->'d ->

lllinois Institute of Technology

A-Calculus — p. 18

Mattox Beckman

http://citeseer.nj.nec.com/mogensen94efficient.html
http://doi.acm.org/10.1145/59287.77345

	Objectives
	The $lambda $-Calculus
	Semantic Rules version 1
	Semantic Rules version 2
	What is a Number?
	Incrementing Church Numerals
	Adding Church Numerals
	Tracing Addition
	Tracing Multiplication
	Functional Representation
	Booleans
	Pairs
	Complex Data Structures
	Activity
	Problem 1
	Problem 2
	Problem 3
	Further Reading

