Unification

Unification

Mattox Beckman

beckman@i t. edu

lllinois Institute of Technology

lllinois Institute of Technology Mattox Beckman Unifcation - p. 1
Unification
The Domain §1 The Problem

Terms Have name and arity
# The name will be in western alphabet
# Arity = “number of arguments” — may be zero
o Examples: x, z, f(x,y), x(y,f,z)
variables Written using Greek alphabet, may be subscripted
® Represent a target for substitution
® Examples: a, f12,77

Substitutions Mappings from Variables to Terms
® Examples: 0 = {a+— £(x,0),0 — v}
# Substitutions are applied: o(g(3)) — g(y)

Note: arguments to terms may have non-zero arity, or may be
variables.
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Unification

Objectives 80 Objectives

Unification is a third major topic that will appear many times in this
course. It is used in languages such as OCaml and Prolog, and
also in theoretical discussions.

# Be able to describe the problem of unification.

# Be able to solve a unification problem.

# Know how to use unification to implement pattern matching.

#® Know how to use unification to check types of functions.
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Unification
The Problem §1 The Problem

# Giventerms s and ¢, try to find a substitution o such that
o(s) =o(t).

# If such a substitution exists, it is said that s and ¢ unify.

# A unification problem is a set of equations
S = {Sl =7 t1, S92 =’ to, .. }

# A unification problem S = {1 =" t;, 29 =" t,...} is in solved
form if
o the terms z; are distinct variables
o nhone of them occur in ¢;.

Our approach: given a unification problem S, we want to find the
most general unifier o that solves it. We will do this by transforming
the equations.
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Unification

Four Operations §2 The Algorithm

Start with a unification problem S = {s; =’ t1,s9 =" t5,...} and
apply the following transformations as necessary:

Delete A trivial equation ¢ =’ ¢ can be deleted.
Decompose An equation f(Z,) =" f(@,) can be replaced by the set

{t1 ="y, ...ty =" upn}
orient An equation ¢t =’ z can be replaced by = =’ t if = is a variable
and ¢ is not.

Eliminate an equation z =" ¢ can be used to substitute all
occurrences of z in the remainder of S.
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Unification
Example §2 The Algorithm

(Stolen from “Term Rewriting and All That”)

{a =" f(2), g(a,a) =" g(a, B)}

We can use the Eliminate method, replace « with f(z) on the right
sides of the equations.
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Unification

Example §2 The Algorithm
(Stolen from “Term Rewriting and All That”)
{a="f(x), g(ay ) =" g(a, B)}
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Unification

Example §2 The Algorithm

(Stolen from “Term Rewriting and All That”)

{a =" f(2), g(a,a) =" g(a, B)}

We can use the Eliminate method, replace « with f(z) on the right
sides of the equations.

{a =" f(2). g(f(2), f(x)) =" 9(f(x), )}

We can use the Decompose method, and get rid of the ¢ functions.
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Unification

Example §2 The Algorithm

(Stolen from “Term Rewriting and All That”)

{a =" f(2), g(a,0) =" g(a, B)}

We can use the Eliminate method, replace « with f(x) on the right
sides of the equations.

{a =" f(2), 9(f(2), f(x)) =" 9(f(2),0)}

We can use the Decompose method, and get rid of the ¢ functions.
{a="f(x), f(x) =" [(2), f(x) =" B}

We can delete the f(z) = f(x) equation.
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Unification

Example §2 The Algorithm

(Stolen from “Term Rewriting and All That”)

{a =7 f(2), g(a,0) =" g(a, B)}

We can use the Eliminate method, replace « with f(z) on the right
sides of the equations.

{o =" f(2), 9(f(2), f(x)) =" 9(f(2),0)}

We can use the Decompose method, and get rid of the ¢ functions.
{a =" f(x), f(z) =" f(x), f(z) =" B}

We can delete the f(z) = f(x) equation.

{a =" f(x), f(z) =77}

Now we can reorient to make the variables show up on the left side.

{a =" f(z), 8="f(2)}

Now we are done....

S=A{am f(z), B f(x)}
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Unification

Example §2 The Algorithm

(Stolen from “Term Rewriting and All That”)

{a =" f(2), g(a,0) =" g(a,B)}

We can use the Eliminate method, replace « with f(x) on the right
sides of the equations.

{a =" f(x), g(f(2), f(x)) =" 9(f (), 0)}

We can use the Decompose method, and get rid of the ¢ functions.
{a="f(x), f(x) =" [(2), f(x) =" B}

We can delete the f(z) = f(x) equation.

{a =" f(2), f(z) =" 5}

Now we can reorient to make the variables show up on the left side.
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Unification
Example — Pattern Matching §3 Examples
# Pattern Matching is one form of unification.
let Ist = 3::4::5::[];;
match Ist with
| [1->...
| X::xs -> ....
» We want to unify st with [] or z :: zs.
s LetS) ={[|="ai, g ="3::4::5::[]}
o Let Sy ={oyops =" apy, g = 3::4::5:[]}

o What is the solution?
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Unification

Pattern Matching Solution §3 Examples
o letS ={="oy, au="3:4::5::[]}

s Substitution: S; = {[]="3::4::5::[]}

» Fails to unify.
® LetSy={oyops="apy, og=3:4::5:[]}

» Substitution: {oy = aps ="3::4::5::[]}

» Decomposition: {a, =73, azs='4::5::[]}
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Unification
Example — Types §3 Examples

Type checking is also a form of unification.

map : ("a->'b) ->"alist ->"b |ist
inc : int ->int
foo : int list

i

N

w

Willmap i nc foo work?

S={(a— B)="int — int, (o list)='int list}
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Unification

Example — Compatibility §3 Examples

# Your advisor wants you to take CS 440 and some theory class.

# Your mom wants you to take CS 536 and some languages
class.

# Can both your advisor and your mom be happy?

This is a problem we can solve using unification:

# Let f be a “schedule function”, the first argument is a language
class, the second argument is a theory class.

® s = f(cs440, ) (where 3 is a theory class)

® t= f(a,cs536) (Where « is a language class)
® leto = {awr cs440, [+ csbH36}
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Unification

Type Checking Solution §3 Examples

S={(a— B)="int — int, (o list)='int list}

# Decompose: {o« =" int, [ ="int, (alist)="1int list}
# Substitute: {o =7 int, [ ="int, (int list)="int list}
® Delete: {o =" int, [ ="1int}

The original type of map was (o — () — «a list — [ list

We can use our pattern to get the output type:
S(f list) = int list
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Unification
Example 2 — Types

83 Examples

Here’s an example that fails.

imap : ("a->"b) ->"alist ->"b list
2linc : string -> int
sifoo @ int list

Willmap i nc foo work?

S ={(a— 3) =’ string — int, (a list)='int list}
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Unification
Problem

84 Activity

Try to unify the following:
» {fla,y) = f(z,B)}

® {f(a,y) = f(z,a)}
® {fla,p) =7, ~v=f(x,0), B=gk)}
E {f(aaﬁ):’% ’)/:f(l’,(S)}
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Unification
Type Checking 2 Solution

83 Examples

S ={(a — 3) =" string — int, (a list)='int list}

® Decompose: {a =’ string, [ ="int, (alist)="1int list}

® Substitute:

{a =" string, [ ="int, (stringlist)='int list}

® Error: (string list) #7 int list!
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Unification
Answers

84 Activity

® {flo,y) = f(z,0)}

Leta—2x, [B—uy

® {f(a,y) = f(z,a)}
This one cannot be unified.
® {fla,p)=7, v=f(x,0), B=gy}
Let {3,0 —g(y), awr—wz, v f(z,9(y)}
® {f(,B)=7, ~v=f(x,0)}

Let{f—0d, a—uz, v~ f(z,0)}
Unifies, but not completely solved.
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