
User-Defined Datatypes

Illinois Institute of Technology Mattox Beckman

User-Defined Datatypes
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

User-Defined Datatypes – p. 1

User-Defined Datatypes
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

Even more powerful than the idea of recursion is the idea of
abstraction—which is a lot easier to implement if you can make
your own types. Your goal after this lecture is to...

Be able to describe the record type and the disjoint type.

Be able to give an example of how each one is used.

Be able to draw a memory diagram that is the result of
allocating a variable of a disjoint type.

Be able to use the match/with syntax to deconstruct a disjoint
type.

Be able to describe how data-structures in a functional
language “recycle” data from previous versions of the structure
when a modification has been made.

User-Defined Datatypes – p. 2

User-Defined Datatypes
§1 Record Types

Illinois Institute of Technology Mattox Beckman

Example: Complex Numbers

Complex numbers have the form a + bi, where i ≡
√
−1

Addition: (a + bi) + (c + di) = (a + c) + (b + d)i

Multiplication: (a + bi) × (c + di) = ac − bd + (ad + bc)i

1 # let cadd (a,b) (c,d) = a +. c, b +. d
2 # let cmul (a,b) (c,d) = a *. c -. b *. d,
3 a *. d +. b *. c
4 # cmul (3.0,4.0) (1.0,4.4);;
5 - : float * float = -14.6, 17.2

We could use tuples to represent complex numbers, like this. (What
are the types of these functions?) Why might this be a bad idea?

User-Defined Datatypes – p. 3

User-Defined Datatypes
§1 Record Types

Illinois Institute of Technology Mattox Beckman

Record Type Definitions

type name = { name : type [; name : type . . .] }

Name Labels

1 # type complex = { re : float; im : float };;
2 type complex = { re : float; im : float; }
3 # let cadd x y = { re = x.re +. y.re;
4 im = x.im +. y.im };;
5 val cadd : complex -> complex -> complex = <fun>

Fields are accessed with dot notation.

Note that field names must be unique.

User-Defined Datatypes – p. 4

User-Defined Datatypes
§1 Record Types

Illinois Institute of Technology Mattox Beckman

Activity

1. Write a function to multiply complex numbers. Use the type
definition we had before.

2. What would the type defintion for a phone book entry look like?
Assume we want to store a name, address, and phone number,
all as strings.

User-Defined Datatypes – p. 5

User-Defined Datatypes
§1 Record Types

Illinois Institute of Technology Mattox Beckman

Answer

1. Write a function to multiply complex numbers. Use the type
definition we had before.

1 let mult a b = { re = a.re * b.re - a.im * b.im;
2 im = a.re * b.im + b.re * a.im; }

2. What would the type defintion for a phone book entry look like?
Assume we want to store a name, address, and phone number,
all as strings.

1 type address = {name : string; address : string;
2 phone : string };;

User-Defined Datatypes – p. 6

User-Defined Datatypes
§2 Disjoint Types

Illinois Institute of Technology Mattox Beckman

Simple Type Definitions

type name = Name [of type] [| Name [of type] . . .]

Name Constructors Arguments

Note: Constructor names must be capitalized.

Constructor names also must be unique.

1 # type contest = Rock | Scissors | Paper
2 # type velocity = MeterPerSecond of float
3 | FeetPerSecond of float;;

User-Defined Datatypes – p. 7

User-Defined Datatypes
§2 Disjoint Types

Illinois Institute of Technology Mattox Beckman

Example of contest and velocity

1 # let winner a b =
2 match a,b with
3 | Rock,Scissors | Scissors,Paper | Paper,Rock
4 -> "Player 1"
5 | Rock,Paper | Scissors,Rock | Paper,Scissors
6 -> "Player 2"
7 | _ -> "Tie";;
8 val winner : contest -> contest -> string = <fun>
9 # let thrust vel = If only NASA had used OCaml!

10 match vel with
11 | FeetPerSecond x -> x /. 3.28
12 | MetersPerSecond x -> x;;
13 val thrust : velocity -> float = <fun>

User-Defined Datatypes – p. 8

User-Defined Datatypes
§2 Disjoint Types

Illinois Institute of Technology Mattox Beckman

Bug Alert

foo.ml
1 # type foo = Foo of int;;
2 # let showfoo (Foo n) = n;;

1 # #use "foo.ml";; This loads the file foo.ml
2 # let t1 = Foo 5;;
3 # showfoo t1;;
4 - : int = 5
5 # #use "foo.ml";; At this point you reload....
6 # showfoo t1;;
7 Characters 8-10:
8 This expression has type foo but is here used
9 with type foo

Why did this happen?
User-Defined Datatypes – p. 9

User-Defined Datatypes
§3 Recursive Datatypes

Illinois Institute of Technology Mattox Beckman

The Most Fun Datatypes are Recursive

1 # type mylist = Cons of int * mylist
2 | Nil
3 # let rec mklist lst =
4 match lst with
5 | [] -> Nil
6 | x::xs -> Cons (x, mklist xs);;
7 # let l1 = mklist [2;3;4];;
8 val l1 : mylist = Cons (2, Cons (3, Cons (4, Nil)))

A recursive type without a recursive case is not really recursive.

A recursive type without a base base is useless. Unless you’re
using Haskell, which supports infinite data-structures. But we’re
not going to talk about that here.

User-Defined Datatypes – p. 10

User-Defined Datatypes
§3 Recursive Datatypes

Illinois Institute of Technology Mattox Beckman

Type Constructors and Memory

When a type constructor is invoked, it causes memory to be
allocated.

Writing an integer
Writing [] or ::
Using :: or Cons

Writing down a variable does not cause memory to be
allocated.

1 # let x = 4;; allocates 4
2 # let n = [];; allocates empty list
3 # let n2 = n;; does NOT allocate memory
4 # let l = x::n;; A cons cell is allocated,
5 but not the 4 or the empty list

User-Defined Datatypes – p. 11

User-Defined Datatypes
§3 Recursive Datatypes

Illinois Institute of Technology Mattox Beckman

Memory Diagram

1 # let x = 4;; allocates 4
2 # let n = [];; allocates empty list
3 # let n2 = n;; does NOT allocate memory
4 # let l = x::n;; A cons cell is allocated,
5 but not the 4 or the empty list

4 []

x l n n2

User-Defined Datatypes – p. 12

User-Defined Datatypes
§3 Recursive Datatypes

Illinois Institute of Technology Mattox Beckman

Memory Diagram II

1 # let x = 4;; allocates 4
2 # let n = Nil;; allocates Nil
3 # let n2 = n;; does NOT allocate memory
4 # let l = Cons (x,n);; A cons cell is allocated,
5 but not the 4 or a Nil

4 Nil

x l n n2

How would you write length and inclist for this type?

User-Defined Datatypes – p. 13

User-Defined Datatypes
§3 Recursive Datatypes

Illinois Institute of Technology Mattox Beckman

mylist example code

1 # let rec length lst =
2 match lst with
3 | Nil -> 0
4 | Cons(x,xs) -> 1 + length xs;;
5 # length l1
6 - : int = 3
7 # let rec inclist lst =
8 match lst with
9 | Nil -> Nil

10 | Cons(x,xs) -> Cons(x+1,inclist xs);;
11 # inclist l1;;
12 - : mylist = Cons (3, Cons (4, Cons (5, Nil)))

User-Defined Datatypes – p. 14

User-Defined Datatypes
§3 Recursive Datatypes

Illinois Institute of Technology Mattox Beckman

Reverse example code

1 # let rec reverse lst =
2 let rec aux lst acc =
3 match lst with
4 | Nil -> acc
5 | Cons(x,xs) -> aux xs (Cons(x,acc)) in
6 aux lst Nil;;
7 # reverse l1;;
8 - : mylist = Cons (4, Cons (3, Cons (2, Nil)))

User-Defined Datatypes – p. 15

User-Defined Datatypes
§3 Recursive Datatypes

Illinois Institute of Technology Mattox Beckman

Parameters

OCaml supports parametric polymorphism, like templates in C++ or
generics in Java.

1 # type ’a mylist = Cons of ’a * ’a mylist
2 | Nil
3 # let rec length xx =
4 match xx with
5 | Nil -> 0
6 | Cons (_,xs) -> 1 + length xs;;
7 val length : ’a mylist -> int = <fun>
8 # length (Cons(3,Cons(4,Nil)));;
9 - : int = 2

10 # length (Cons("Hi",Cons("There",Nil)));;
11 - : int = 2

User-Defined Datatypes – p. 16

User-Defined Datatypes
§3 Recursive Datatypes

Illinois Institute of Technology Mattox Beckman

Activity

1. Write the type for a binary search tree. In this version, let a
“node” be something that has data, and a “leaf” does not have
any data. Use parametric polymorphism.

2. Write find and add.

Let’s take these one at a time.

User-Defined Datatypes – p. 17

User-Defined Datatypes
§3 Recursive Datatypes

Illinois Institute of Technology Mattox Beckman

BST Type

Write the type for a binary search tree.

1 type ’a bst = Node of ’a * ’a BST * ’a BST
2 | Leaf

Now write find.

User-Defined Datatypes – p. 18

User-Defined Datatypes
§3 Recursive Datatypes

Illinois Institute of Technology Mattox Beckman

Find

1 let rec find a xx =
2 match xx with
3 | Node (x,l,r) when x=a -> true
4 | Node (x,l,r) -> if x<a then find a l
5 else find a r
6 | Leaf -> false

Now write add. If the element is already added, return the value
unchanged.

User-Defined Datatypes – p. 19

User-Defined Datatypes
§3 Recursive Datatypes

Illinois Institute of Technology Mattox Beckman

Add

1 let rec add a xx =
2 match xx with
3 | Node (x,l,r) when x=a -> xx
4 | Node (x,l,r) -> if x<a then Node(x, add a l, r)
5 else Node(x, l, add a r)
6 | Leaf -> Node(a,Leaf,Leaf)

What will be the result of

1 let t1 = add 10 (add 30 (add 50 (add 70
2 (add 20 (add 60 (Node 40 Leaf Leaf))))));;

User-Defined Datatypes – p. 20

User-Defined Datatypes
§3 Recursive Datatypes

Illinois Institute of Technology Mattox Beckman

Memory Diagram of add

Before:

40

20 60

10 30 50 70

t1

Now execute:

1 let t2 = add 25 t1;;

User-Defined Datatypes – p. 21

User-Defined Datatypes
§3 Recursive Datatypes

Illinois Institute of Technology Mattox Beckman

Memory Diagram of add, II

Before:

40

20 60

10 30 50 70

25

40

20

30

t1t2

Now execute:

1 let t3 = add 65 t2;;

User-Defined Datatypes – p. 22

User-Defined Datatypes
§3 Recursive Datatypes

Illinois Institute of Technology Mattox Beckman

Memory Diagram of add, III

Before:

40

20 60

10 30 50 70

25

40

20

30

40

60

70

65

t1t2t3

User-Defined Datatypes – p. 23

User-Defined Datatypes
§3 Recursive Datatypes

Illinois Institute of Technology Mattox Beckman

Functional Updating

This technique is called functional-style updating.

Advantage: multiple versions of the data-structure can exist.
This allows multiple versions, and consistent multiprocessing.
Used to implement multi-level undo.

Disadvantage: it takes more memory.

User-Defined Datatypes – p. 24

User-Defined Datatypes
§4 A Very Useful Type

Illinois Institute of Technology Mattox Beckman

A very common type definition

1 # type ’a option = Some of ’a | None;;
2 # let rec getItem key lst =
3 match lst with
4 | [] -> None note the type variables!
5 | (k,v)::xs -> if key = k then Some v
6 else getItem key xs;;
7 # getItem 3 [2,"french hens"; 3,"turtle doves"];;
8 - : string option = Some "turtle doves"
9 # getItem 5 [2,"french hens"; 3,"turtle doves"];;

10 - : string option = None

What options would you have for this function if you did not have an
option type?

User-Defined Datatypes – p. 25

	Objectives
	Example: Complex Numbers
	Record Type Definitions
	Activity
	Answer
	Simple Type Definitions
	Example of 	exttt {contest} and 	exttt {velocity}
	Bug Alert
	The Most Fun Datatypes are Recursive
	Type Constructors and Memory
	Memory Diagram
	Memory Diagram II
	mylist example code
	Reverse example code
	Parameters
	Activity
	BST Type
	Find
	Add
	Memory Diagram of add
	Memory Diagram of add, II
	Memory Diagram of add, III
	Functional Updating
	A very common type definition

