
Infinite Data Whenever

Illinois Institute of Technology Mattox Beckman

Infinite Data
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

Infinite Data – p. 1

Infinite Data Whenever
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

There are many choices available to the language designer when a
function call is made. The choices made will have a significant
effect on the language.
Your objectives for this lecture:

Show how to implement thunks by using local state and
user-defined types.

Show how thunks can implement the call-by-need
parameter-passing style.

Show how to create virtually-infinite data-structures by using
lazy evaluation.
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Considerations about CBV

We like call-by-value because

it’s efficient — we usually want the value soon anyway.

it’s easy to implement.

But, there’s a cost...

It can perform unnecessary computations.

... in fact, it could cause non-termination.

1 let rec foo x = foo (x + 1);;
2 let fTrue a b = a;;
3 fTrue 5 (foo 10);;
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Running Example

Consider the following code:

1 # let plus a b = print_string "Plus"; a+b;;
2 val plus : int -> int -> int = <fun>
3 # let foo a b = a * a * a;;
4 val foo : int -> ’a -> int = <fun>
5 # foo (plus 2 3) (plus 5 5);;
6 Plus
7 Plus
8 - : int = 125
9 #

What is the optimal number of times to run plus?
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Implementation

OCaml is already CBV, so do what you normally do to get that.

You can use functions to delay evaluation to get CBN.
Let fun () -> e be a delayed expression.
To extract the information, apply the delayed expression to
().

Running Example
1 # let foo a b =
2 (a ()) * (a ()) * (a ());;
3 val foo : (unit -> int) -> ’a -> int = <fun>
4 # foo (fun () -> plus 2 3) (fun () -> plus 5 5);;

How many times will you see Plus printed to the screen?
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Call By Need

We can use the local state technique to perform an
optimization.

1 # type ’a status = Value of ’a
2 | Susp of (unit -> ’a);;
3 # let delay f =
4 let status = ref (Susp f) in
5 fun () -> match (!status) with
6 | Value a -> a
7 | Susp f -> let result = f () in
8 ( status := (Value result);
9 result );;

10 val delay : (unit -> ’a) -> unit -> ’a = <fun>
11 # let force f = f ();;
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Our Running Example

Running Example
1 # let foo a b =
2 (force a) * (force a) * (force a);;
3 val foo : (unit -> int) -> ’a -> int = <fun>
4 # foo (delay (fun () -> plus 2 3))
5 (delay (fun () -> plus 5 5));;

(delay (fun () -> plus 2 3)) is called a suspension,
or sometimes a thunk.

How many times will plus be printed to the screen?

Infinite Data – p. 7

Infinite Data Whenever
§2 Force and Delay

Illinois Institute of Technology Mattox Beckman

The Lazy Module

Keyword lazy will create a suspension for us.

1 # let foo = lazy (plus 2 3);;
2 val foo : int Lazy.status ref =
3 contents = Lazy.Delayed <fun>

The Lazy module defines a force function.
1 # Lazy.force;;
2 - : ’a Lazy.t -> ’a = <fun>
3 # Lazy.force foo;;
4 Plus
5 - : int = 5
6 # Lazy.force foo;;
7 - : int = 5
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Lazy Lists

We can create a new list type that takes advantage of the lazy
data...

1 type ’a llist = Cons of ’a * ’a llist Lazy.t | Nil

To display these we can convert back to normal lists.
Convert Lazy List to OCaml List

1 # let rec ftake n llist =
2 match n,llist with
3 | _,Nil -> []
4 | 0,_ -> []
5 | _,(Cons (x,xs)) -> x :: ftake (n-1) (force xs)
6 val ftake : int -> ’a llist -> ’a list = <fun>
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Infinite Lists

OCaml will—if you ask nicely—allow you to make infinite data.

1 # let rec ones = Cons(1, lazy ones);;
2 val ones : int llist = Cons (1, contents = Delayed <fun>)
3 # let rec numsfrom n = Cons(n, lazy (numsfrom (n+1)));;
4 val numsfrom : int -> int llist = <fun>

Note that ones isn’t even a function.
Infinite Mapping

1 let rec lmap f llist =
2 match llist with
3 | Cons (x,xs) ->
4 Cons (f x, lazy (lmap f (force xs)))
5 | Nil -> Nil
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Other Functions

1 # let rec lmap2 f lst1 lst2 =
2 match lst1,lst2 with
3 | Cons(x,xs),Cons(y,ys) ->
4 Cons(f x y, lazy (lmap2 f (force xs)
5 (force ys)));;
6 val lmap2 : (’a -> ’b -> ’c) -> ’a llist
7 -> ’b llist -> ’c llist = <fun>

We also define fhead and ftail. Now watch this....

1 # let rec fib = Cons(1, lazy
2 (Cons(1, lazy
3 (lmap2 plus fib (ftail fib)))));;
4 val fib : int llist = Cons (1, contents = Delayed <fun>)
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An Application....

We can make a Newton’s method approximator.

For square root of n, xi+1 = (xi + n/xi)/2.

1 # let rec approx err alist =
2 if abs((fhead alist) -
3 (fhead (ftail alist))) < err
4 then (fhead alist)
5 else approx err (ftail alist);;
6 # let next n xi = (xi +. n /. xi) /. 2.0
7 # let mkSeq n =
8 let rec seq = Cons(1.0, lazy (lmap (next n) seq))
9 in seq;;
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Activity

1. Write another version of nats (the list of natural numbers)
without using a function.

2. Write a function circular that takes a normal list and returns
an infinite circular list with the same data. (This one is a bit
tricky.)

1 # let ott = circular [1;2;3];;
2 val ott : int llist = Cons (1, contents = Delayed
3 # ftake 10 ott;;
4 - : int list = [1; 2; 3; 1; 2; 3; 1; 2; 3; 1]

3. What happens if we pass [] to circular?
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Problem 1

1 # let rec nats = Cons(1, lazy (lmap (plus 1) nats));;
2 val nats : int llist = Cons (1, contents = Delayed <fun>)
3 # ftake 2 nats;;
4 Plus
5 Plus
6 - : int list = [1; 2]
7 # ftake 4 nats;;
8 Plus
9 Plus

10 - : int list = [1; 2; 3; 4]
11 # ftake 4 nats;;
12 - : int list = [1; 2; 3; 4]
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Problem 2

1 let rec circular lst =
2 let rec result = lazy (aux lst)
3 and aux lst =
4 match lst with
5 | [] -> force result
6 | x::xs -> Cons(x, lazy (aux xs))
7 in force result;;
8 val circular : ’a list -> ’a llist = <fun>

This one is tricky, because we had to delay the result in line 2 to
convince OCaml that this was a safe thing to do.
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Problem 3

1 # circular [];;
2 Exception: Lazy.Undefined.

The real version of Lazy has an extra constructor for this case.

1 # let delay f =
2 let status = ref (Susp f) in
3 fun () -> match (!status) with
4 | Value a -> a
5 | Undefined -> raise (Failure "delay")
6 | Susp f -> (status := Undefined;
7 let result = f () in
8 ( status := (Value result);
9 result ));;
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