
LL Grammars February 12, 2007

Illinois Institute of Technology Mattox Beckman

LL Grammars
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

LL Grammars – p. 1

LL Grammars February 12, 2007
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

The topic for this lecture is a kind of grammar that works well with
recursive-descent parsing.

Know how to tell if a grammar is LL.

Know what parsing technique will work with an LL grammar.

Know how to detect and eliminate left recursion.

Know how to detect and eliminate common prefixes.

Further reading: See Dragon Book §4.x

LL Grammars – p. 2

LL Grammars February 12, 2007
§0 Objectives

Illinois Institute of Technology Mattox Beckman

What is LL(n) Parsing?

An LL parse uses a Left-to-right scan and produces a Leftmost
derivation, using n tokens of lookahead.

A.K.A. Top-Down Parsing

Example Grammar:

S→+ E E

E→int

E→∗ E E

Example Input: + 2 * 3 4

Syntax Tree:

S

Derivations:
S

LL Grammars – p. 3

LL Grammars February 12, 2007
§0 Objectives

Illinois Institute of Technology Mattox Beckman

What is LL(n) Parsing?

An LL parse uses a Left-to-right scan and produces a Leftmost
derivation, using n tokens of lookahead.

A.K.A. Top-Down Parsing

Example Grammar:

S→+ E E

E→int

E→∗ E E

Example Input: + 2 * 3 4

Syntax Tree:

S

+ E E

Derivations:
S

+ E E

LL Grammars – p. 3

LL Grammars February 12, 2007
§0 Objectives

Illinois Institute of Technology Mattox Beckman

What is LL(n) Parsing?

An LL parse uses a Left-to-right scan and produces a Leftmost
derivation, using n tokens of lookahead.

A.K.A. Top-Down Parsing

Example Grammar:

S→+ E E

E→int

E→∗ E E

Example Input: + 2 * 3 4

Syntax Tree:

S

+ E

2

E

Derivations:
S

+ E E

+ 2 E

LL Grammars – p. 3

LL Grammars February 12, 2007
§0 Objectives

Illinois Institute of Technology Mattox Beckman

What is LL(n) Parsing?

An LL parse uses a Left-to-right scan and produces a Leftmost
derivation, using n tokens of lookahead.

A.K.A. Top-Down Parsing

Example Grammar:

S→+ E E

E→int

E→∗ E E

Example Input: + 2 * 3 4

Syntax Tree:

S

+ E

2

E

* E E

Derivations:
S

+ E E

+ 2 E

+ 2 * E E

LL Grammars – p. 3

LL Grammars February 12, 2007
§0 Objectives

Illinois Institute of Technology Mattox Beckman

What is LL(n) Parsing?

An LL parse uses a Left-to-right scan and produces a Leftmost
derivation, using n tokens of lookahead.

A.K.A. Top-Down Parsing

Example Grammar:

S→+ E E

E→int

E→∗ E E

Example Input: + 2 * 3 4

Syntax Tree:

S

+ E

2

E

* E

3

E

Derivations:
S

+ E E

+ 2 E

+ 2 * E E

+ 2 * 3 E

LL Grammars – p. 3

LL Grammars February 12, 2007
§0 Objectives

Illinois Institute of Technology Mattox Beckman

What is LL(n) Parsing?

An LL parse uses a Left-to-right scan and produces a Leftmost
derivation, using n tokens of lookahead.

A.K.A. Top-Down Parsing

Example Grammar:

S→+ E E

E→int

E→∗ E E

Example Input: + 2 * 3 4

Syntax Tree:

S

+ E

2

E

* E

3

E

4

Derivations:
S

+ E E

+ 2 E

+ 2 * E E

+ 2 * 3 E

+ 2 * 3 4

LL Grammars – p. 3

LL Grammars February 12, 2007
§0 Objectives

Illinois Institute of Technology Mattox Beckman

How to Implement It

LL Parsers are very easy to implement.

Consider each non-terminal rule to be a function.

Each terminal consumes an input.

Each function has type string list -> tree * string
list

input is a list of tokens
output is a syntax tree and remaining tokens.

You also need to create a type to represent your tree.

1 # getS ["+"; "2"; "*"; "3"; "4"];;
2 - : s * string list =
3 S (Eint 2, Etimes (Eint 3, Eint 4)), []

LL Grammars – p. 4

LL Grammars February 12, 2007
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Things to Notice

Each function immediately checks the first token of the input
string. (LL(0) parsers will consume the token immediately.)

This token is used to decide what to do next.
E → int | * E E

1 let rec getE input =
2 match input with
3 | [] -> raise ParseError
4 | "*"::xs -> let (e1,rest) = getE xs in
5 let (e2,rest) = getE rest in
6 (Etimes (e1,e2), rest)
7 | i::xs -> (Eint (int_of_string i), xs)

What kinds of things could go wrong?

LL Grammars – p. 5

LL Grammars February 12, 2007
§1 Breaking LL Parsers

Illinois Institute of Technology Mattox Beckman

Left Recursion

A rule like E → E + E would cause an infinite loop.
E → E + E

1 let rec getE input =
2 match input with
3 | [] -> raise ParseError
4 | _ -> let (e1,rest) = getE input in
5 let ["+";rest] = rest in
6 let (e2,rest) = getE rest in
7 (Eplus (e1,e2), rest)

LL Grammars – p. 6

LL Grammars February 12, 2007
§1 Breaking LL Parsers

Illinois Institute of Technology Mattox Beckman

Rules with Common Prefixes

A rule like E → − E | − E E would confuse the function.
Which version of the rule should be used?

1 let rec getE input =
2 match input with
3 | [] -> raise ParseError
4 | "-"::xs -> let (e1,rest) = getE xs in
5 (Enegative e1, rest)
6 | "-"::xs -> let (e1,rest) = getE xs in
7 let (e2,rest) = getE rest in
8 (Eminus (e1,e2), rest)

LL Grammars – p. 7

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

The Idea

Consider deriving i++++ from the following grammar:

E→E +

E→i

E Derivation:
E

LL Grammars – p. 8

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

The Idea

Consider deriving i++++ from the following grammar:

E→E +

E→i

E

E +

Derivation:
E
E+

LL Grammars – p. 8

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

The Idea

Consider deriving i++++ from the following grammar:

E→E +

E→i

E

E

E +

+

Derivation:
E
E+
E++

LL Grammars – p. 8

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

The Idea

Consider deriving i++++ from the following grammar:

E→E +

E→i

E

E

E

E +

+

+

Derivation:
E
E+
E++
E+++

LL Grammars – p. 8

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

The Idea

Consider deriving i++++ from the following grammar:

E→E +

E→i

E

E

E

E

E +

+

+

+

Derivation:
E
E+
E++
E+++
E++++

LL Grammars – p. 8

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

The Idea

Consider deriving i++++ from the following grammar:

E→E +

E→i

E

E

E

E

i +

+

+

+

Derivation:
E
E+
E++
E+++
E++++
i++++

LL Grammars – p. 8

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

The Idea

Consider deriving i++++ from the following grammar:

E→E +

E→i

E

E

E

E

i +

+

+

+

Derivation:
E
E+
E++
E+++
E++++
i++++

The rule E → E+ says that we can have as many +s as we
want at the end of the sentence.

The rule E → i says—in effect—that the first word can be a i.

Question: isn’t there another way to write this?

LL Grammars – p. 8

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

More complicated example

Consider the following grammar. What does it mean?

B → Bxy | Bz | q | r

At the end can come any combination of x y or z

At the beginning can come q or r

LL Grammars – p. 9

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

Eliminating the Left Recursion

We can rewrite these grammars
E → E + | i

B → Bxy | Bz | q | r

using the following transformation:

Productions of the form S → β become S → βS′.

Productions of the form S → Sα become S′ → αS′.

Add S′ → ǫ.

Result:

E → iE′

E′ → +E′ | ǫ

B → qB′| rB′

B′ → xyB′| zB′ | ǫ

LL Grammars – p. 10

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

Mutual Recursions!

Things are slightly more complicated if we have mutual recursions.

A → Aa | Bb | Cc | q

B → Ax | By | Cz | rA

C → Ai | Bj | Ck | sB

How to do it:

Take the first symbol (A) and eliminate immediate left recursion.

Take the second symbol (B), and substitute left recursions to A.
Then eliminate immediate left recursion in B.

Take the third symbol (C) and substitute left recursions to A and
B. Then eliminate immediate left recursion in C.

LL Grammars – p. 11

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

Left Recursion Example

Here is a more complex left recursion.
A → Aa | Bb | Cc | q

B → Ax | By | Cz | rA

C → Ai | Bj | Ck | sB

First we eliminate the left recursion from A.
A → Aa | Bb | Cc | q

becomes
A → BbA′ | CcA′ | qA′

A′ → aA′ | ǫ

LL Grammars – p. 12

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

Left Recursion Example, 2

We substituting in the new definition of A, and now we will work on
the B productions.
A → BbA′ | CcA′ | qA′

A′ → aA′ | ǫ

B → Ax | By | Cz | rA

C → Ai | Bj | Ck | sB

First, we eliminate the “backward” recursion from B to A.
B → Ax becomes
B → BbA′x | CcA′x | qA′x

LL Grammars – p. 13

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

Left Recursion Example, 3

A → BbA′ | CcA′ | qA′

A′ → aA′ | ǫ

B → BbA′x | CcA′x | qA′x | By | Cz | rA

C → Ai | Bj | Ck | sB

Now we can eliminate the simple left recursion in B, to get
B → CcA′xB′ | qA′xB′ | CzB′ | rAB′

B′ → bA′xB′ | yB′ | ǫ

LL Grammars – p. 14

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

Left Recursion Example, 4

A → BbA′ | CcA′ | qA′

A′ → aA′ | ǫ

B → CcA′xB′ | qA′xB′ | CzB′ | rAB′

B′ → bA′xB′ | yB′ | ǫ

C → Ai | Bj | Ck | sB

Now production C: first, replace left recursive calls to A...

C → B bA′i | CcA′i | qA′i | B j | Ck | sB

Next, replace left recursive calls to B (this gets messy)...

C → CcA′xB′ bA′i | qA′xB′ bA′i | CzB′ bA′i | rAB′ bA′i

CcA′xB′ j | qA′xB′ j | CzB′ j | rAB′ j

CcA′i | qA′i | Ck | sB

LL Grammars – p. 15

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

Left Recursion Example, 5

Reorganizing C, we have
C → qA′xB′bA′i | rAB′bA′i | qA′xB′j | rAB′j | qA′i | sB

CcA′xB′bA′i | CzB′bA′i | CcA′xB′j | CzB′j |CcA′i | Ck

Eliminating left recursion gives us
C → qA′xB′bA′iC ′ | rAB′bA′iC ′ | qA′xB′jC ′ | rAB′jC ′ | qA′iC ′ | sBC ′

C ′ → cA′xB′bA′iC ′ | zB′bA′iC ′ | cA′xB′jC ′ | zB′jC ′ |cA′iC ′ | kC ′ | ǫ

LL Grammars – p. 16

LL Grammars February 12, 2007
§2 Eliminating Left Recursion

Illinois Institute of Technology Mattox Beckman

The result...

Our final grammar is now

A → BbA′ | CcA′ | qA′

A′ → aA′ | ǫ

B → CcA′xB′ | qA′xB′ | CzB′ | rAB′

B′ → bA′xB′ | yB′ | ǫ

C → qA′xB′bA′iC ′ | rAB′bA′iC ′ | qA′xB′jC ′ | rAB′jC ′ | qA′iC ′ | sBC ′

C ′ → cA′xB′bA′iC ′ | zB′bA′iC ′ | cA′xB′jC ′ | zB′jC ′ | cA′iC ′ | kC ′ | ǫ

Beautiful, isn’t it? I wonder why we don’t do this more often?

Disclaimer: if there is a cycle (A →+ A) or an epsilon production
(A → ǫ) then this technique is not guaranteed to work.

LL Grammars – p. 17

LL Grammars February 12, 2007
§3 Eliminating Common Prefixes

Illinois Institute of Technology Mattox Beckman

Common Prefix

This grammar has common prefixes.

A → xyB | CyC | q

B → zC | zx | w

C → y | x

To check for common prefixes, take a non-terminal and compare
the First sets of each production.
Production FirstSet

A → xyB {x}

A → CyC {x, y}

A → q {q}

If we are viewing an A, we will want to
look at the next token to see which A

production to use. If that token is x, then
which production do we use?

LL Grammars – p. 18

LL Grammars February 12, 2007
§3 Eliminating Common Prefixes

Illinois Institute of Technology Mattox Beckman

Left Factoring

If A → αβ1 | αβ2 | γ we can rewrite it as
A → αA′ | γ

A′ → β1 | β2

So, in our example:
A → xyB | CyC | q

B → zC | zx | w

C → y | x

becomes A → xA′ | q | yyC

A′ → yB | yC

B → zB′ | w

B′ → C | x

C → y | x

Sometimes you’ll need to do this more than once. Note that this
process can destroy the meaning of the nonterminals.

LL Grammars – p. 19

LL Grammars February 12, 2007
§4 Activity

Illinois Institute of Technology Mattox Beckman

Activity

One of these is LL, the other two are not. Fix the ones that are not.

Grammar 1

E→E x y

E→E x B

E→q

B→E z

Grammar 2

S→A x

S→B y

A→z B

B→w A

Grammar 3

S→A x

S→B y

A→z B

B→z

LL Grammars – p. 20

LL Grammars February 12, 2007
§4 Activity

Illinois Institute of Technology Mattox Beckman

Grammar 1

Grammar 1 starts as:

E→E x y

E→E x B

E→q

B→E z

Eliminate the
left-recursion to get:

E →qE′

E′→x y E′

E′→x B E′

E′→ǫ

B →E z

Fix the common
prefixes to get....

E →qE′

E′ →x E′′

E′ →ǫ

E′′→y E′ | B E′

B →E z

LL Grammars – p. 21

LL Grammars February 12, 2007
§4 Activity

Illinois Institute of Technology Mattox Beckman

Grammar 2

S→A x

S→B y

A→z B

B→w A

It doesn’t terminate. But it’s not left recursive, and it has no
productions with common prefixes, so it’s still LL.

LL Grammars – p. 22

LL Grammars February 12, 2007
§4 Activity

Illinois Institute of Technology Mattox Beckman

Grammar 3

S→A x

S→B y

A→z B

B→z

Production S has common prefixes. One way to fix this grammar is
to eliminate the distinctions between A and B — this may not be
what you want, though.

S →z S′

S′→z x

S′→y

LL Grammars – p. 23

	Objectives
	What is LL(n) Parsing?
	What is LL(n)
Parsing?
	What is LL(n)
Parsing?
	What is LL(n)
Parsing?
	What is LL(n)
Parsing?
	What is LL(n)
Parsing?

	How to Implement It
	Things to Notice
	Left Recursion
	Rules with Common Prefixes
	The Idea
	The Idea
	The Idea
	The Idea
	The Idea
	The Idea
	The Idea

	More complicated example
	Eliminating the Left Recursion
	Mutual Recursions!
	Left Recursion Example
	Left Recursion Example, 2
	Left Recursion Example, 3
	Left Recursion Example, 4
	Left Recursion Example, 5
	The result...
	Common Prefix
	Left Factoring
	Activity
	Grammar 1
	Grammar 2
	Grammar 3

