
Introduction to OCaml January 22, 2007

Illinois Institute of Technology Mattox Beckman

Introduction to OCaml
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

Introduction to OCaml – p. 1

Introduction to OCaml January 22, 2007
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

Your goal in today’s lecture is to gain some familiarity with OCaml.
In particular, you should know. . .

how to use immediate mode for interactive programming.

the basic builtin types.

how to use pattern matching in your functions.

how to use tuples and lists.

know the four ways to create variables, and how long they last.

that whenever you see a function, you always ask “what’s
its type?”.

Introduction to OCaml – p. 2

Introduction to OCaml January 22, 2007
§1 Introducing

Illinois Institute of Technology Mattox Beckman

Features of OCaml

Language Features:

higher order functional language

call by value parameter passing style

modern syntax

parametric polymorphism

automatic garbage collection

And two more things....

It’s very fast — the winners of the 2004, 2000 and 1999 ICFP
Programming Contests used OCaml.

The error messages make sense.

Introduction to OCaml – p. 3

Introduction to OCaml January 22, 2007
§1 Introducing

Illinois Institute of Technology Mattox Beckman

Starting OCaml Immediate Mode

Immediate Mode statements must be terminated by a ;;

Notice the type inference!

1 $ ocaml
2 Objective Caml version 3.04
3

4 # 34 + 8;;
5 - : int = 42
6 # 27.0 +. 9.4;;
7 - : float = 36.4
8 # "hello";;
9 - : string = "hello"

Introduction to OCaml – p. 4

http://www.cis.upenn.edu/proj/plclub/contest/results.php
http://www.cs.cornell.edu/icfp/contest_results.htm
http://www.eecs.harvard.edu/~nr/icfp/results.html

Introduction to OCaml January 22, 2007
§1 Introducing

Illinois Institute of Technology Mattox Beckman

Hello, World!

This is the Standard First ProgramTM

The type unit is like void in C/C++; it represents commands.

1 # print_string "Hello, world!\n";;
2 Hello, world!
3 - : unit = ()

The type unit has one value, () (pronounced “unit” or “dot”).

Warning: “output” has two meanings:
“Hello, world!” has been output (I/O) to the screen, but
the output (result) of this function is unit.
In CS 440 output will always refer to result.

Introduction to OCaml – p. 5

Introduction to OCaml January 22, 2007
§2 Types

Illinois Institute of Technology Mattox Beckman

Basic Types

1 # 20.3;;
2 - : float = 20.3
3 # 42;;
4 - : int = 42
5 # (answer = 42);;
6 - : bool = true
7 # "Ravi";;
8 - : string = "Ravi"
9 #

Introduction to OCaml – p. 6

Introduction to OCaml January 22, 2007
§2 Types

Illinois Institute of Technology Mattox Beckman

Type Errors

If you try to combine things with incompatible types, you get a
type error.

You really need to learn how to read these.

1 # 1 + "hello";;
2 ^^^^^^^
3 This expression has type string but is here used
4 with type int
5 # 2.0 +. 4;;
6 ^
7 This expression has type int but is here used
8 with type float
9 #

Introduction to OCaml – p. 7

Introduction to OCaml January 22, 2007
§3 Variables

Illinois Institute of Technology Mattox Beckman

Creating Variables

Variables behave differently in a functional language than in an
imperative language!

Variables are created, and then never changed.

Modifications are done by copying.

Very important: be able to know when a variable is created and
when it is destroyed.

Variable Creation Method 1: Global Let.
1 # let answer=42;;
2 val answer : int = 42
3 # answer * 6;;
4 - : int = 252

answer 42

Introduction to OCaml – p. 8

Introduction to OCaml January 22, 2007
§3 Variables

Illinois Institute of Technology Mattox Beckman

Variable Creation Method 2: Function Parameter

let name parameters = body

1 # let inc x = x + 1;;
2 val inc : int -> int = <fun>
3 # inc 5;; (* Notice the arrow! *)
4 - : int = 6
5 # inc 2.4;;
6 Toplevel input:
7 # inc 2.4;;
8 ^^^
9 This expression has type float but is here used

10 with type int

Parameters exist only within the function.

Introduction to OCaml – p. 9

Introduction to OCaml January 22, 2007
§3 Variables

Illinois Institute of Technology Mattox Beckman

Memory trace. . .

1 # let inc x = x + 1;;
2 # inc 5;;
3 # inc 2;;
4 # inc 6;;

inc –stuff–

x 5

x 2

x 6
Each value of x is created when inc is called, and destroyed when
inc returns.

Introduction to OCaml – p. 10

Introduction to OCaml January 22, 2007
§3 Variables

Illinois Institute of Technology Mattox Beckman

Functions with Multiple Parameters

Functions are values in this language!

1 # let triangle a b = a * a + b * b;;
2 val triangle : int -> int -> int = <fun>
3 # triangle 3 4;;
4 - : int = 25
5 # let t3 = triangle 3;;
6 val t3 : int -> int = <fun>
7 # t3 4;;
8 - : int = 25
9 # let inc = fun x -> x + 1

10 val inc : int -> int = <fun>
11 # inc 3;;
12 - : int = 4

Introduction to OCaml – p. 11

Introduction to OCaml January 22, 2007
§3 Variables

Illinois Institute of Technology Mattox Beckman

Variable Creation Method 3: Local Let

You can create local variables using the let/in construct.

1 # let triangle a b =
2 let asq = a * a in
3 let bsq = b * b in
4 asq + bsq;;
5 val triangle : int -> int -> int = <fun>

The variables asq and bsq are created after triangle is
called, once the let expressions are reached, and destroyed
once the let expressions are exited.

1 # (let x = 10 in x) + (let x = 20 in x);;
2 - : int = 30

Introduction to OCaml – p. 12

Introduction to OCaml January 22, 2007
§3 Variables

Illinois Institute of Technology Mattox Beckman

Memory Trace

1 # let triangle a b =
2 let asq = a * a in
3 let bsq = b * b in
4 asq + bsq;;
5 val triangle : int -> int -> int = <fun>

triangle –stuff–

a 3

b 4

asq 9

bsq 16

Introduction to OCaml – p. 13

Introduction to OCaml January 22, 2007
§3 Variables

Illinois Institute of Technology Mattox Beckman

Scoping Question

Consider this code: (This is question #15 in the database.)

1 let x = 27;;
2 let foo x =
3 let x = 5 in
4 (fun x -> print_int x) 10;;
5 foo 12;;

What value will be printed?

a) 5

b) 10

c) 12

d) 27

Introduction to OCaml – p. 14

Introduction to OCaml January 22, 2007
§3 Variables

Illinois Institute of Technology Mattox Beckman

Tuples

Tuples are one kind of compound type.

1 # let t = 2,3;;
2 val t : int * int = 2, 3
3 # let t2 = (3,42);;
4 val t2 : int * int = 3, 42
5 # let ultimate = "answer",42;;
6 val ultimate : string * int = "answer", 42
7 # let big = (2,3,"hi",4.123,"there",triangle);;
8 val big : int * int * string * float *
9 string * (int -> int -> int) =

10 2, 3, "hi", 4.123, "there", <fun>
11 #

Introduction to OCaml – p. 15

Introduction to OCaml January 22, 2007
§3 Variables

Illinois Institute of Technology Mattox Beckman

Pattern Matching

1 # let iszero n =
2 match n with
3 0 -> "it’s zero"
4 | 1 -> "it’s one"
5 | _ -> "not zero or one";;
6 val iszero : int -> string = <fun>
7 # iszero 1;;
8 - : string = "it’s one"

The patterns all need to have the same type.

Also, the results....

Introduction to OCaml – p. 16

Introduction to OCaml January 22, 2007
§3 Variables

Illinois Institute of Technology Mattox Beckman

Variable Creation Method 4: Matching

Use match/with to deconstruct compound types,

1 # let inctup a =
2 match a with
3 (0,y) -> y, 1
4 | (x,y) -> x+1, y+1;;
5 val inctup : int * int -> int * int = <fun>
6 # inctup (2,3);;
7 - : int * int = 3, 4
8 # inctup (0,3);;
9 - : int * int = 3, 1

A variable created with match lasts only in the expression after the
->.

Introduction to OCaml – p. 17

Introduction to OCaml January 22, 2007
§4 Lists

Illinois Institute of Technology Mattox Beckman

Lists

A list can take two forms:
It can be an empty list, or
it can be an element, together with another list.

Empty lists are written []

Non-empty lists are written x::xs

x is the head of the list.
xs is the tail of the list.

You can also write them as [x1; x2; . . . ; xn]

Unlike tuples, lists are monomorphic—all the elements must
have the same type.

Introduction to OCaml – p. 18

Introduction to OCaml January 22, 2007
§4 Lists

Illinois Institute of Technology Mattox Beckman

List Examples

1 # [];;
2 - : ’a list = []
3 # let empty = [];;
4 val empty : ’a list = []
5 # let single = [1];;
6 val single : int list = [1]
7 # let rlist = [2.3; 4.2; 5.3];;
8 val rlist : float list = [2.3; 4.2; 5.3]
9 # let badlist = [3; 4; 3.14159];;

10 Characters 21-28:
11 This expression has type float but is here used
12 with type int

Introduction to OCaml – p. 19

Introduction to OCaml January 22, 2007
§4 Lists

Illinois Institute of Technology Mattox Beckman

Adding to lists

:: adds an element to a list; @ appends two lists together.

1 # let l1 = [3;6;9];;
2 val l1 : int list = [3; 6; 9]
3 # let l2 = [4;7;10];;
4 val l2 : int list = [4; 7; 10]
5 # 5 :: l1;;
6 - : int list = [5; 3; 6; 9]
7 # 10 :: 20 :: l2;;
8 - : int list = [10; 20; 4; 7; 10]
9 # l1 @ l2;;

10 - : int list = [3; 6; 9; 4; 7; 10]

Introduction to OCaml – p. 20

Introduction to OCaml January 22, 2007
§4 Lists

Illinois Institute of Technology Mattox Beckman

Pattern Matching with Lists

The match/with construction works with lists, too.

1 # let getfirst l =
2 match l with
3 [] -> 0
4 | x::xs -> x;;
5 val getfirst : int list -> int = <fun>
6 # getfirst [];;
7 - : int = 0
8 # getfirst [3;4;5];;
9 - : int = 3

Introduction to OCaml – p. 21

Introduction to OCaml January 22, 2007
§4 Lists

Illinois Institute of Technology Mattox Beckman

Polymorphic List Functions

1 # let isempty l =
2 match l with
3 [] -> "yes"
4 | _ -> "no";;
5 val isempty : ’a list -> string = <fun>
6 # isempty ["hi";"there"];;
7 - : string = "no"
8 # isempty [2;3];;
9 - : string = "no"

Introduction to OCaml – p. 22

Introduction to OCaml January 22, 2007
§4 Lists

Illinois Institute of Technology Mattox Beckman

Combining Types

Types can be combined arbitrarily

“Orthogonality principle” — different features don’t interfere with
each other.

1 # let e1 = [[20;30]; [10;5;2]; [3;6]; []];;
2 val e : int list list = [[20; 30]; [10; 5; 2]; ...
3 # let e2 = [2,3; 4,5; 6,7];;
4 val e2 : (int * int) list = [2, 3; 4, 5; 6, 7]

Introduction to OCaml – p. 23

Introduction to OCaml January 22, 2007
§4 Lists

Illinois Institute of Technology Mattox Beckman

Other syntax: if

The if construct is both a command and an expression.

The then and else branches must have the same type.

1 # if (3 < 5) then print_string "hi!\n";;
2 hi!
3 - : unit = ()
4 # let x = 10;;
5 val x : int = 10
6 # let y = (if x < 10 then 40 else 50) * 2;;
7 val y : int = 100
8 #

Introduction to OCaml – p. 24

Introduction to OCaml January 22, 2007
§5 Activity

Illinois Institute of Technology Mattox Beckman

Problems 1–2

1. What will be the output of the following code?

1 let x = 20;;
2 let f = fun x -> x + 1;;
3 let y = f 30;;
4 print_int x;;

2. One of the lists below is invalid. Which one?
a) [2; 3; 4; 6]

b) [2,3; 4,5; 6,7]

c) [2.3,4; 3.2,5; 6,7.2]

d) [["hi"; "there"]; ["how"]; []; ["goezit"]]

Introduction to OCaml – p. 25

Introduction to OCaml January 22, 2007
§5 Activity

Illinois Institute of Technology Mattox Beckman

Answer 1

What will be the output of the following code?

1 let x = 20;;
2 let f = fun x -> x + 1;;
3 let y = f 30;;
4 print_int x;;

Answer: 20

Introduction to OCaml – p. 26

Introduction to OCaml January 22, 2007
§5 Activity

Illinois Institute of Technology Mattox Beckman

Answer 2

One of the lists below is invalid. Which one?

a) [2; 3; 4; 6]

b) [2,3; 4,5; 6,7]

c) Answer [2.3,4; 3.2,5; 6,7.2]

d) [["hi"; "there"]; ["how"]; []; ["goezit"]]

The first two elements are of type float * int, but the last
element is of type int * float.

Introduction to OCaml – p. 27

Introduction to OCaml January 22, 2007
§5 Activity

Illinois Institute of Technology Mattox Beckman

Problems 3–5

What is the type of the following functions?

1 let f x = x + 1
2 let g x = x :: [1]

Write an OCaml function that inspects a list. If the list is empty,
output "empty", otherwise, output "not empty".

Introduction to OCaml – p. 28

Introduction to OCaml January 22, 2007
§5 Activity

Illinois Institute of Technology Mattox Beckman

Answers 3–4

What is the type of the following functions?

1 let f x = x + 1
2 let g x = x :: [1]

1 f : int -> int
2 g : int -> int list

Introduction to OCaml – p. 29

Introduction to OCaml January 22, 2007
§5 Activity

Illinois Institute of Technology Mattox Beckman

Answer 5

Write an OCaml function that inspects a list. If the list is empty,
output "empty", otherwise, output "not empty".

1 let isEmpty x =
2 match x with
3 | [] -> "empty"
4 | _ -> "not empty"

Next time: The second most powerful idea in Computer Science.

Introduction to OCaml – p. 30

	Objectives
	Features of OCaml
	Starting OCaml Immediate Mode
	Hello, World!
	Basic Types
	Type Errors
	Creating Variables
	Variable Creation Method 2: Function Parameter
	Memory traceldots
	Functions with Multiple Parameters
	Variable Creation Method 3: Local Let
	Memory Trace
	Scoping Question
	Tuples
	Pattern Matching
	Variable Creation Method 4: Matching
	Lists
	List Examples
	Adding to lists
	Pattern Matching with Lists
	Polymorphic List Functions
	Combining Types
	Other syntax: if
	Problems 1--2
	Answer 1
	Answer 2
	Problems 3--5
	Answers 3--4
	Answer 5

