CS 440 Type Derivations

1 Objectives

In order to express the meaning of a program, we need a formal language to capture these meanings.
One way to express meaning is to say something about the types of the expressions. By the end of
lecture, you should know

e what the word “semantics” means.

e how to structure a proof-tree

how use the type rules to prove the type of an expression

e write your own type rule for an expression

2 Type Rules

I'ke:int T'Feg:int
Arithmetic

I'kes ®es:int

I'kep:int I'Fey:int
Relations

I'ke; ~ ey :bool

I'Fe; :bool TI'Fey:bool
Booleans

I'e1&& e5 : bool

I'te; :bool TI'F es:bool

I'keill es:bool

It I'ep:bool T'kFeg:7 I'heg:T

I'Hif e; then ey elsees: T

'teemm—m—--—>7m—>7 I'tey:mm -+ T'be,:m,

Application
I'Feeey --- ey T

TU[xy i1y 5%x, i Tl Fer T
Functions [n il

NEfunx; - xp—>e:m — - — T, =T

I'te:7 TU[z:7T|Fey: T
Let ! [] 2

T'Fletx=¢; ineg: 7

PU[z:7]ter:7 TU[z:7]Fex: 7

I'letrecx=e; iney: 7'

Mattox Beckman Page 1 Illinois Institute of Technology

CS 440 Type Derivations

3 Problems

Try these problems. In a few minutes the instructor will go over the solutions. Feel free to work
with the person next to you!

e Provethat '+ let f = funa—>z+2inlet g = funax—>x+3in (if 4 > 6 then f elseg) 10:
int

e Write a type judgment rule for the list operator : :.

Mattox Beckman Page 2 Illinois Institute of Technology

