
Grammars

Mattox Beckman

<beckman@iit.edu>

May 16, 2006

1 Introduction

A grammar is a formal specification of the syn-
tax of a language. Its purpose is to specify the
form of a legal sentence of a language. The pur-
pose of this guide is to help the student under-
stand these concepts as they relate to the course,
so many details will be omitted. Those wanting
more details should refer to one of the many good
books that cover grammars, such as [ASU86].

1.1 Objectives

1. Be able to identify a correctly formed rule
and grammar.

2. Be able to identify the parts of a grammar
and explain their purpose. Vocabulary you
need to know includes LHS, RHS, sentence,
token, terminal symbol, non-terminal sym-
bol, ε, rules, and parse-tree.

3. Be able to explain what makes a grammar
context-free.

4. Be able to explain how a grammar and a
parse-tree are related.

5. Be able to demonstrate that a grammar is
ambiguous by producing two different parse-
trees for the same sentence.

2 The Formal System

A grammar is an example of a formal system.
To specify a formal system properly, we must

describe the symbols used by the formal system,
and the legal sentences.

2.1 Alphabet

There are four kinds of symbols in this system.

Non-terminal symbols will be denoted by a
single capital letter, or a capital letter fol-
lowed by lower-case letters. Often we will
call them non-terminals. Examples are A,
Noun, and Phrase.

Terminal symbols will be denoted by a sin-
gle lower-case letter, or group of lower-case
letters. Often we will call them terminals.
Examples are x, noun, and id.

Arrow We have an arrow symbol, →. It may
be pronounced “arrow”, “goes to”, or “be-
comes”.

ε This symbol is pronounced “epsilon”.

2.2 Sentences

A sentence in this system is called a rule. A rule
consists of a non-terminal symbol, followed by
an arrow, and then either an ε, or a string of
terminal and non-terminal symbols.

Here are some example rules:

S → x y z

E → ε

F → A y

G → q

1



3 INTERPRETATION

The part of the rule before the arrow is called
the left-hand side (or LHS), similarly the part of
the rule after the arrow is called the right-hand

side (or RHS). The LHS must contain exactly
one non-terminal symbol. The RHS can have
any combination of terminals and non-terminals,
or it may have a single ε and nothing else.

A set of rules is called a grammar.
A grammar may have multiple rules with the

same LHS, for example:

S → x E z

S → ε

E → E y

E → q

It is customary to group rules with the same
LHS together. If a LHS is repeated, it is a com-
mon shorthand notation to write the following
rules omitting the LHS, and possibly replacing
the arrow with the | symbol, pronounced “or”.
The above grammar could also be written as

S → x E z

| ε

E → E y

| q

or as

S → x E z

→ ε

E → E y

→ q

For a grammar to be valid, every terminal
symbol in the grammar must appear on the LHS
of at least one rule. The first symbol in the gram-
mar, often called S, is known as the start symbol.

2.3 Recursion

A rule is said to be recursive if the symbol on
the LHS also occurs on the RHS. The rule

S → x S y

is recursive. If the symbol occurs in the left-
most position of the RHS, then it is said to be
left-recursive. For example, the rule E → E y

from the grammar above is left-recursive.

3 Interpretation

The rules of a grammar G specify the legal sen-
tences of a language. A sentence is constructed
from words, or tokens, which stand by them-
selves; and by phrases, which themselves must
be constructed from other words or phrases. The
terminal symbols represent tokens, and the non-
terminal symbols represent phrases.

There are two ways to use grammars. A gram-
mar can show how to construct a tree by consum-
ing input, or it can show how to construct a tree
by expanding non-terminal nodes.

One can think of a rule as a recipe. In order to
construct the symbol given in the LHS, you need
to supply the symbols specified in the RHS, in
the proper order. Once supplied, these symbols
are combined to form the symbol on the LHS.

For example, the grammar

S → x y z

indicates that an S is generated by combining
an x, a y, and a z. The result is the following
tree:

S

x y z

The ε represents nothingness. An ε-rule indi-
cates that the symbol is optional.

A second interpretation is that, given the non-
terminal on the LHS, it can be rewritten, or ex-
panded, to the sequence on the RHS. Again, with
the example above, if you had an S, you could
replace it with x y z.

3.1 Context-Free and Context-

Sensitive

The fact that only a single non-terminal is al-
lowed on the LHS indicates that the grammars
we are considering are context-free. No matter
where the non-terminal occurs, the rules given
can be used to expand it.

2



3.3 Validation and Ambiguity 3 INTERPRETATION

In contrast, a rule such as x A y → q r

could indicate that A may be expanded into
q r, but only when surrounded by x and y. So,
x A y would be rewritten as x q r y. This rule
would not apply to the string x A q, for exam-
ple. Grammars that have such rules are called
context-sensitive, and are beyond the scope of
CS 440. From now on, we will use the terms
grammar and context-free grammar interchange-
ably.

3.2 Parse Trees

Grammars are often used for parsing. The prob-
lem of parsing is to take a list of tokens as an
input, and return a parse tree as an output.

For example, given the grammar

S → x E y

E → q r

and the input string x q r y, we would get the
following parse tree.

S

x E

q r

z

Notice that the terminal symbols are the leaves
of the tree and that the non-terminal symbols are
the branches of the tree.

3.3 Validation and Ambiguity

One purpose of a grammar is to describe the set
of valid sentences in a language. If a grammar
can be used to create a tree out of a certain string
of tokens, then the grammar is said to accept

that string as a valid sentence in the language.
Conversely, if the grammar cannot be used to
generate a tree from the sentence, then we say
that the grammar rejects that string, and that
the string is not a valid sentence in the language.

When working with grammars in the context
of programming languages, we expect that most

of the time a grammar will make only one tree
for a valid sentence in the language. This is not
required, however. It is possible to write gram-
mars that can produce two or more different trees
for the same sentence. Such grammars are called
ambiguous. It is important to be able to recog-
nize ambiguous grammars, because they affect
the operation of the parsing algorithms we will
discuss later.

Here are some examples of ambiguous gram-
mars.

Example 1

S → x E y

| x z y

E → z

Given the sentence x z y, we have two parse
trees:

S

x E

z

y

and S

x z y

Example 2

E → E p E

| E t E

| v

Given the sentence v p v t v, we have two parse
trees:

E

E

E

v

p E

v

t E

v

and E

E

v

p E

E

v

t E

v

This particular example is similar to the prece-
dence problem: given the equation 2 + 3 ∗ 4, do

3



4 PROBLEMS

we perform the addition first (corresponding to
the first tree) or the multiplication first (corre-
sponding to the second tree)?

Example 3

E → i E t E

| i E t E e E

| v

Given the sentence i v t i v t v e v, we have
two parse trees:

E

i E

v

t E

i E

v

t E

v

e E

v

and

E

i E

v

t E

i E

v

t E

v

e E

v

This example is sometimes called the “dan-
gling else” problem. Consider the expression if

c then if x then y else z. The else clause
could belong to either the first if or the second
if, and the meaning of the program will be dif-
ferent depending on which of the two choices you
pick.

4 Problems

Try these problems to see how well you under-
stand the concepts. Solutions are at the end.

1. Which of the following are valid context-free
grammar? If the grammar is invalid, explain
what is wrong with it.

(a) S → A x y

x A → x y z

A → q

(b) S → B x y

A → x y z

| q

(c) S → A x y

A → x y z

| ε q

(d) S → B x y

A → x y z

B → ε

2. Given the following grammar:

S → x E y

E → F p F

| F t

F → v

Which of the following sentences are valid
sentences in the language described by the
grammar? Give the corresponding parse
trees for the valid ones.

(a) x v y

(b) x v t y

(c) x v p v y

(d) x v t p v y

3. Given the following grammar:

S → x E y

E → E p F

| F t

F → v

Which of the following sentences are valid
sentences in the language described by the
grammar? Give the corresponding parse
trees for the valid ones.

4



REFERENCES 6 SOLUTIONS

(a) x v y

(b) x v t y

(c) x v p v y

(d) x v t p v y

4. Which of the following grammars are am-
biguous? For the ambiguous one, give a
sentence and two parse trees to demonstrate
the ambiguity.

(a) S → x E y

E → E p F

| F t

F → v

(b) S → x E y

E → E p E

| F t

F → v

(c) S → x E y

E → a b

| a F

F → b

(d) S → x E y

E → a b

| a E

F → b

5 What’s Next

Once you’ve understood this guide, there are
four others that cover different aspects of gram-
mars that are important for CS 440.

• Right Linear Grammars — This guide
shows that the context free languages are
strictly more expressive than the regular
languages. This is proved by showing how
any DFA can be converted into a context-
free grammar of a special form; and by giv-
ing examples of context-free languages that
cannot be converted into any DFA.

• First and Follow Sets — These sets are
important for solving the parsing problem.
Both the LL Parsing and the LR Parsing

guides depend on this.

• LL Parsing — This guide shows how to
make a recursive descent parser. This only
works if the grammar has certain proper-
ties. This guide explains those properties,
and methods for restoring those properties
to grammars that do not have them.

• LR Parsing — LL Parsers have some severe
restrictions about the grammars they can
accept. The LR Parsing technique circum-
vents these restrictions, but this technique is
much more complicated. Fortunately, there
are many good tools that automate this pro-
cess. This guide shows how to create the
parsing tables for an LR parser.

References

[ASU86] Alfred V. Aho, Ravi Sethi, and Jef-
frey D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison Wes-
ley, 1st edition, January 1986.

6 Solutions

1. Only one of these grammars is valid.

(a) This grammar has a context-sensitive
rule.

(b) This grammar is not valid because
there is no rule for the non-terminal
B. (If you wish, you could consider B

to be a terminal symbol.)

(c) This grammar is invalid because of the
final rule, in which an ε occurs together
with another symbol. The ε should be
left out.

(d) This grammar is fine. True, there are
no symbols that would expand the A

symbol, but that’s not a problem.

2. Given the grammar:

S → x E y

E → F p F

| F t

F → v

5



6 SOLUTIONS

(a) x v y

This is not a sentence in the language.

(b) x v t y

S

x E

F

v

t

y

(c) x v p v y

S

x E

F

v

p F

v

y

(d) x v t p v y

This is not a sentence in the language.

3. Given the grammar:

S → x E y

E → E p F

| F t

F → v

(a) x v y

This is not a sentence in the language.

(b) x v t y

S

x E

F

v

t

y

(c) x v p v y

This is not a sentence in the language.

(d) x v t p v y

S

x E

E

F

v

t

p F

v

y

4. Which of the following grammars are am-
biguous? For the ambiguous one, give a
sentence and two parse trees to demonstrate
the ambiguity.

(a) S → x E y

E → E p F

| F t

F → v

Not ambiguous.

(b) S → x E y

E → E p E

| F t

F → v

Ambiguous. x v t p v t p v t y

has two parse trees.

(c) S → x E y

E → a b

| a F

F → b

Ambiguous x a b y has two parse
trees.

(d) S → x E y

E → a b

| a E

F → b

Not ambiguous.

6


