Guide to Local State

Mattox Beckman
<beckman@iit.edu>

May 10, 2006
1 Introduction # let i = ref 0;;
val i : int ref = contents = 0

This document describes how state can be used
to allow functions to remember things between
functions calls. This will allow for some ad-
vanced techniques, such as counters, objects, and
thunks.

1.1 Objectives

e Know the syntax in OCaml for specifying
state operations.

e Understand how state and scope can be
combined to create “local state”.

e Be able to define multiple functions that
share an encapsulated state.

2 OCaml State Syntax

State, in this context, means that a variable may
change it’s value during the execution of a pro-
gram. Be careful here: we are not talking about
the situation where multiple let statements de-
fine variables with the same name. In that case,
there are simply two variables being defined that
happen to have the same name. They actually
exist in separate memory locations. The follow-
ing code is an example of this:

let x = 10 in
let x = x + 1 in
print_int x;;
- : int = 11

If we were to diagram this in memory, it would
look like this:

x| 10
x| 11

In OCaml, you can declare a special type
called a reference that is allowed to be changed.
This is accomplished with the ref keyword.

This command allocates some memory on the
heap, and initializes it with the integer 0. The
location is then assigned to i. Thus, i is a ref-
erence to the 0 on the heap.

In memory, we would diagram it as follows:

i[ef—[0]

If you are familiar with Java, then the x vari-
ables from the first example correspond to the
int type. They are called primitives. The i
variable would correspond to the Integer type.

To access the value to which i refers (i.e.,
dereferencing), we use the prefix operator “!”

i,

- : int ref = {contents = 0}
1i;;

- :int =0

If you ask for i directly, you get the reference.
If you ask for !'i, then you get the value resulting
from following the reference.

To update the contents of the reference, we use

the := operator.
i := 30;;
- : unit = O
1i;;
- : int = 30

The memory diagram after this assignment
would be like this:

i[e4—[30]

This reassignment is known as destructive up-
date, because the old value ceases to exist once
it is replaced by the new value.

Local State

3 STATE AND EQUATIONAL REASONING

2.1 Sharing State

One of the consequences of references is that mul-
tiple variables can refer to the same location in
memory. Consider the following code:

let i = ref 10;;

val i : int ref = {contents = 10}
let j = 1i;;

val j : int ref = {contents = 10}
i := 50;;

- : unit = QO

1i;;

- : int = 50

#1535,

- : int = 50

The memory diagram at the point before the
assignment is as follows:

i

]

if

Notice that we have two variables, but they
point to the same location in the heap.
Now, after the update, we have

4

This is why changing i also changes j.

3 State and Equational Rea-
soning

Remember the rule of referential transparency.
It says that if you have two expressions e and es,
and some external expression C[], then C[e;] =
C[[eg]].

For example, if we have
| 10 * (£(x) + £(x))

as an expression, then we can rewrite it as
| 10 * (2 * £(x))

since £(x) + f(x) == 2 * £(x).

This is a powerful concept. It allows us to
use the full power of mathematics (a science that
has about 3,000 years more development than
computer science) to help us reason about our
programs. We can use this to prove properties
of our programs, such as correctness, and this is
the basis for code optimizations.

Unfortunately, things become a lot more com-
plex when state is involved. Normally, you can
take it for granted that

a+a=2a

for any value a, but consider what happens if
we have a function counter that returns a new
integer, larger than the one returned previously.

let ct = ref 0;;
val ct : int ref = {contents = 0}
let counter () =
(ct := lct + 1; lct);;
val counter : unit -> int = <fun>

counter ();;
- :int =1
counter ();;
- : int = 2
counter ();;
- : int = 3

If we take counter as our a, then we get the
following session:

2 x counter ();;

- : int = 8
counter () + counter ();;
- : int = 11

Because of the reference, our function’s value
now depends on the changeable state of the ct
variable. We have lost our ability to perform
equational reasoning with this code, at least not
without some far more complex mathematics.

The problem is that mathematical variables
are timeless. Once we describe them and de-
termine their value, then that value does not
change during the evaluation of an expression.
If we have state, then the value of a variable can
change during the evaluation of an expression.
Mathematical variables do not have this prop-
erty.

While state greatly increases the complexity of
our programs, there is one inescapable fact: our
world is a stateful one. The amount of money in
your bank account, the contents of your mailbox,
the number of cars waiting at an intersection—
these things are constantly changing, and state is
the most natural model to describe them. Even
the memory used to store variables is stateful.
As a result, there are certain problems for which
state will be the model to chose.

Currently, however, the trend in programming
is to rely far too much on state to represent

Local State

4 LOCAL STATE

things. This over reliance on state is bad prac-
tice, because it violates a basic tenet of design:
don’t use more complexity than what is needed
to accomplish the task. This tenet can be seen
in the decision to replace pointers with refer-
ences in Java. Full-fledged pointers are far more
powerful—and far more complex—than what is
needed in all but a few specialized programming
tasks, such as writing an operating system or
a device driver. References have the capability
we need most of the time, without the added
complexity, and using them instead of pointers
increases our productivity because the resulting
software will be less complex, and thus easier to
verify.

The conclusion of the sermon is this: use state
if you must, but only if you must.

4 Local State

You are all familiar with using state to have two
functions communicate with each other. One
way this is done is by using global variables.
These are also discouraged, because the pro-
grammer has little control over who can modify
the variable, and later there is little indication
in the program about where the variable itself is
supposed to be used.

One technique of using state that does not
have this problem is to restrict the state’s acces-
sibility to the definition of a function. Before we
discuss that, it’s best to review what you know
about scope.

4.1 Review of Scope

Consider the following code. There are seven
variables. Be sure you can explain the scopes of
each of them.

let x = 10;;

let foo y = match y with
| O,b > let ¢ = b * b in
let d = c * ¢ in
b*xc*xd
| a,b -> map (fun z -> z + a + x) [a;b]

Here are the answers.

e x exists from line 2-7.
e y exists from line 3-7.

e b exists from line 4-6.

¢ exists from line 5-6.

e d exists on line 6 only.
e a and b exist on line 7 only.

e z exists on line 7, in the body of the anony-
mous function.

Global declarations and functions Now

consider the following function definition:

let a = 10 + 20

let £ x = a + x

After the definition has been entered, the
memory diagram might look like this:

A [0
(x>]

Suppose f is called five times now. How many
times will the “10+20” be computed? The an-
swer is once. When a is defined, the value is
computed. The function £ uses the value five
times, but this does not cause the computation
to be redone.

Declarations from within a function Now
consider this program:

let gy
let b
b+y

10 + 20 in

Once the definition is complete, the memory
would look like this:

s[fny >

This b has not yet been created. That is part
of the function’s definition. If g is called five
times, the 10 + 20 gets computed five times, be-
cause b is recreated each time.

Note also that, unlike a, b is inaccessible to
the rest of the program. It exists only within
the scope of g.

Local declarations from outside a function
It is possible to create a variable that is accessi-
ble only locally, but is only computed once. Con-
sider this variation:

let h =
let ¢ = 10 + 20 in
fun z -> ¢ + z

Local State

4 LOCAL STATE

Here, the variable c¢ is defined as being 30,
and it’s value is used in the body of the let
expression. The result of the let expression is
a function, which is then assigned to h.

The memory diagram might look like this:

SED
h[fnz >]

Note well, however, that ¢ is not accessible
from the rest of the program. It was defined by
the let expression, and existed only in the body
of the let. After that, the name went out of
scope.

The function h is able to use the value of c.
But, unlike g, the function h does not recompute
c each time it is called: the computation takes
place before the function’s body is defined, and
the function body simply uses the result.

If we call h five times, ¢ will still only be eval-
uated once. This behavior is a combination of
f’s and g’s. The local variable is defined outside
of the function body, so it is only defined once.
But, because c is defined with a limited scope
(via the local 1let), it is also not accessible from
outside the function.

4.2 Scope and State

Interesting things happen when the local variable
is a stateful one. Here are the three cases we
discussed above, but with stateful variables.

Global declarations and functions

let cta = ref O

let countera () =
cta := lcta + 1;
Icta

The resulting memory diagram would be like
this:

cta [+3—[0]

In this variation, the variable cta is global,
and can be accessed by anyone. If we call
countera three times, we will have this session:

countera ();;

- :int =1
countera ();;
- : int = 2

countera ();;
- : int = 3

The memory diagram will then look like this:

Declarations from within a function Now
see what happens if we declare the state inside
the body of the function.

let counterb ()

+ O 1

let ctb = ref in
ctb := lctb 1;
lctb

The memory diagram will be analogous to our
function g.

counterb | fun () —> ...

The ctb variable is recreated each time the
function is called. As a result, the counter never
changes.

counterb ();;
- :int =1
counterb ();;
- :int =1
counterb ();;
- :int =1

Local declarations from outside a function
Here is where things get interesting. Suppose we
define a state using the technique from function
h.

let counterc =

let ctc = ref 0 in
fun () -> ctc := lctc + 1;
Ictc

The memory diagram will look like this:

cte[33—[0]

Like the h example, the variable ctc will not
be visible outside of the function. But, it will not
be recomputed each time, either. The variable
ctc was created first, and its definition used to
build the function. This gives us the following
session:

counterc ();;

- :int =1
counterc ();;
- : int = 2

Local State

5 CONCLUSION

counterc ();;
- : int = 3

4.3 Multiple Functions

It is also possible to have multiple functions
share a common state. Consider this session:

let (counter, reset) =
let ct = ref 0 in
(fun) -> ct := lct + 1; !ct),
(fun nv -> ct := nv);;
val counter : unit -> int = <fun>
val reset : int -> unit = <fun>
counter ();;
- : int =1
reset 5;;
- : unit = Q)
counter ();;
- : int = 6

We can do this because functions are first
class. We can put them into a tuple, and return
the tuple. This has the effect of allowing multiple
functions to be defined at once. Both counter
and reset were defined within the scope of ct,
our local state. As a result, both have access to
it.

This should remind you of object oriented pro-
gramming.

5 Conclusion

So, we have a technique for encapsulating a state
within a function. This allows us to have func-
tions that remember things. This can be used to
have functions cache their results, or have func-
tions which change their values.

Of course, these are no longer functions in the
mathematical sense, but used properly, they can
model real-world behaviors very effectively.

