
Objects and Local State

Illinois Institute of Technology Mattox Beckman

Objects and Local State
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

Objects and Local State – p. 1

Objects and Local State
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

In this lecture we extend the idea of local state from last time to
create a simple implementation of objects, and discuss its
limitations. We will also show the message dispatch model of
objects, which allows for inheritance and virtual functions.
Your objectives:

Be able to explain what an object is.

Know how to implement an object using records and HOFs.

Know how to implement an object using a message dispatcher.

Be able compare the record and dispatcher models.

Major goal 1: be able to simulate objects in a language lacking
them.

Major goal 2: understand how objects work “under the hood”.

Objects and Local State – p. 2

Objects and Local State
§1 Local State

Illinois Institute of Technology Mattox Beckman

Preliminaries

We will use the following functions during our discussion....

1 let pi1 (x,y) = x
2 let pi2 (x,y) = y
3 let report (x,y) = print_string "Point: ";
4 print_int x;
5 print_string ",";
6 print_int y;
7 print_newline ()
8 let movept (x,y) (dx,dy) = (x+dx,y+dy)

Objects and Local State – p. 3

Objects and Local State
§1 Local State

Illinois Institute of Technology Mattox Beckman

Point

Here is an example of a point using local state.

1 let mktPoint myloc =
2 let myloc = ref myloc in
3 (myloc,
4 (fun () -> pi1 !myloc),
5 (fun () -> pi2 !myloc),
6 (fun () -> report !myloc),
7 (fun dl -> myloc := movept !myloc dl))

This defines a tuple of functions that share a common state.

It is cumbersome to use.

let (lref,getx,gety,show,move) = mktPoint (2,4);;

Objects and Local State – p. 4

Objects and Local State
§1 Local State

Illinois Institute of Technology Mattox Beckman

Improvement: Use records.

1 type point = {
2 loc : (int * int) ref; getx : unit -> int;
3 gety : unit -> int; draw : unit -> unit;
4 move : int * int -> unit;
5 }
6 let mkrPoint newloc =
7 let myloc = ref newloc in
8 { loc = myloc;
9 getx = (fun () -> pi1 !myloc);

10 gety = (fun () -> pi2 !myloc);
11 draw = (fun () -> report !myloc);
12 move = (fun dl -> myloc := movept !myloc dl)}

Objects and Local State – p. 5

Objects and Local State
§2 Objects

Illinois Institute of Technology Mattox Beckman

Objects?

What is an object?

Data and functions are grouped together.

Functions have their own local state.

Objects can send and receive messages.

Objects can refer to themselves.

This has a profound effect on the way programs are written.
Remember the basic premise of this course: how you think about
data has a great impact on the way a program is written.

How is the mkrPoint example like an object?

How is the mkrPoint example not like an object?

Objects and Local State – p. 6

Objects and Local State
§2 Objects

Illinois Institute of Technology Mattox Beckman

Adding Self

By the way, this lecture is really about recursion.

1 let mkPoint newloc =
2 let rec this =
3 { loc = ref newloc;
4 getx = (fun () -> pi1 !(this.loc));
5 gety = (fun () -> pi2 !(this.loc));
6 draw = (fun () -> report !(this.loc));
7 move = (fun dl ->
8 this.loc := movept !(this.loc) dl)}
9 in this;;

We can store “this” explicitly in the record if we want.

Objects and Local State – p. 7

Objects and Local State
§2 Objects

Illinois Institute of Technology Mattox Beckman

Memory

The record point contains references to the fields. If you copy
a point, the data does not get copied!

1 # let p1 = mkPoint (4,7);;
2 val p1 : point = {loc={contents=4, 7}; ...}
3 # let p2 = mkPoint (6,2);;
4 val p2 : point = {loc={contents=6, 2}; ...}
5 # let p3 = p1;;
6 val p3 : point = {loc={contents=4, 7}; ...}
7 # p1.move (5,5);;
8 - : unit = ()
9 # p3;;

10 - : point = {loc={contents=9, 12}; ...}

Objects and Local State – p. 8

Objects and Local State
§3 Dispatching

Illinois Institute of Technology Mattox Beckman

So far...

We used a record to implement a type for points.
Advantages:

Every method had its own name and type.

Simple syntax for manipulating the object.

It’s fast: we know at compile time which method is being called.

Disadvantages:

Inheritance is very difficult with this model.

Adding a new message type means updating everything.

Objects and Local State – p. 9

Objects and Local State
§3 Dispatching

Illinois Institute of Technology Mattox Beckman

Message Dispatching

Last time we said that an object is a kind of data that can receives
messages from the program or other objects.

Q: How do we normally represent messages?

A: With strings!

Let a point object be a function which takes a string and returns an
appropriate function matching that string.

Question: Suppose p is our point object. What will be its type?

Objects and Local State – p. 10

Objects and Local State
§3 Dispatching

Illinois Institute of Technology Mattox Beckman

mkPoint

1 let mkPoint x y =
2 let x = ref x in
3 let y = ref y in
4 fun st ->
5 match st with
6 | "getx" -> (fun _ -> !x)
7 | "gety" -> (fun _ -> !y)
8 | "movx" -> (fun nx -> x := !x + nx; nx)
9 | "movy" -> (fun ny -> y := !y + ny; ny)

10 | _ -> raise (Failure "Unknown message.")

All methods now have to have type int -> int.

Objects and Local State – p. 11

Objects and Local State
§3 Dispatching

Illinois Institute of Technology Mattox Beckman

Subclassing

Warmup exercise: How would we add a report method?

Another one: How would we add this support?

Let’s say we want a fastpoint, which moves twice as fast as the
original point. What does it mean for fastpoint to be a subclass
of point?

fastpoint should respond to the same messages.
It may override some of them.
It may add its own.
It may not remove any methods.

The fastpoint object will need access to some of the data in
point.

Objects and Local State – p. 12

Objects and Local State
§3 Dispatching

Illinois Institute of Technology Mattox Beckman

Implementing

Two entities involved: the superclass (point) and the subclass
(fastpoint).

fastpoint needs to create an instance of point.

point construction needs to return the “public” data to
fastpoint.

fastpoint returns a dispatcher:
if the fastpoint dispatcher can handle a message, it does.
Otherwise, it sends the message to point.

Objects and Local State – p. 13

Objects and Local State
§3 Dispatching

Illinois Institute of Technology Mattox Beckman

Code: point

1 let mkSuperPoint x y =
2 let x = ref x in
3 let y = ref y in
4 ((x,y), (* This part returns the local state *)
5 fun st ->
6 match st with
7 | "getx" -> (fun _ -> !x)
8 | "gety" -> (fun _ -> !y)
9 | "movx" -> (fun nx -> x := !x + nx; nx)

10 | "movy" -> (fun ny -> y := !y + ny; ny)
11 | _ -> raise (Failure "Unknown message."));;
12 val mkSuperPoint : int -> int ->
13 (int ref * int ref) * (string -> int -> int) = <fun>

Objects and Local State – p. 14

Objects and Local State
§3 Dispatching

Illinois Institute of Technology Mattox Beckman

Code: fastpoint

1 let mkFastpoint x y =
2 let ((x,y),super) = mkSuperPoint x y in
3 fun st ->
4 match st with
5 | "movx" -> (fun nx -> x := !x + 2 * nx; nx)
6 | "movy" -> (fun ny -> y := !y + 2 * ny; ny)
7 | _ -> super st;;

This technique is flexible; we can add methods very easily.

But it’s also slow. Imagine if we had a chain of 20 classes....

Objects and Local State – p. 15

Objects and Local State
§4 Real Life

Illinois Institute of Technology Mattox Beckman

C++

Methods and variables are kept in a table: a fixed location.

“this” is an implicit argument, allowing only one copy of the
function to be needed.

Virtual methods are kept in a vtable, which counts as local data.

Local data for point or fastpoint:
x value of x
y value of y
vtable pointer to vtable

Vtable for point:
movx pointer to point.movx
movy pointer to point.movy

(fastpoint vtable is similar.) getx, etc. is static.

Objects and Local State – p. 16

Objects and Local State
§4 Real Life

Illinois Institute of Technology Mattox Beckman

Discussion

Other languages (i.e., smalltalk) use a technique very similar to
this one.

Java uses the “every object is of type Object” technique.

A strong type system makes it somewhat cumbersome to
simulate objects. You either have to:

define a new type to encompass all objects, or
force all methods to have the same type.

Important concept: polymorphism — when functions can
operate on multiple types. (This is different than overloading —
when multiple functions exist with the same name, but different
inputs.)

Objects and Local State – p. 17

Objects and Local State
§4 Real Life

Illinois Institute of Technology Mattox Beckman

Polymorphism Example

1 # let p1,p2,p3,p4 = mkPoint 2 3, mkPoint 3 2,
2 mkFastpoint 5 3, mkFastpoint 3 9;;
3 # List.map (fun pt -> pt "report" 0)
4 [p1; p2; p3; p4];;
5 Point: 2,3 points
6 Point: 3,2
7 Point: 5,3 fastpoints
8 Point: 3,9

The function passed to map will use both point and fastpoint
types.
You have seen polymorphism in the course before.

Objects and Local State – p. 18

Objects and Local State
§4 Real Life

Illinois Institute of Technology Mattox Beckman

Conclusions

Objects have a lot of flexibility, and allow us to create useful
abstractions.

They can be implemented using functions.

These are useful enough in practice, and difficult enough to
implement, that most modern languages now include them,
including OCaml. (That’s where the O comes from.)

Objects and Local State – p. 19

	Objectives
	Preliminaries
	Point
	Improvement: Use records.
	Objects?
	Adding Self
	Memory
	So far...
	Message Dispatching
	mkPoint
	Subclassing
	Implementing
	Code: 	exttt {point}
	Code: 	exttt {fastpoint}
	C++
	Discussion
	Polymorphism Example
	Conclusions

