
Parameter Passing Styles

Illinois Institute of Technology Mattox Beckman

Parameter Passing Styles
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

Parameter Passing Styles – p. 1

Parameter Passing Styles
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

The function call is one of the most fundamental elements of
programming. The meaning of a function call is greatly affected by
the choice of parameter passing style.

Understand five kinds of parameter passing:
1. Call By Value
2. Call By Reference
3. Call By Name
4. Call By Result
5. Call By Value-Result

Know how to implement each of these.

Parameter Passing Styles – p. 2

Parameter Passing Styles
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Running Example

We will use the following code to illustrate the concepts:

1 let foo x y z =
2 x := z * z * y; (* let’s pretend that this *)
3 y := 5; (* is legal *)
4 x + y
5

6 let main () =
7 let a = 10 in
8 let b = 20 in
9 foo a b (a+b)

Parameter Passing Styles – p. 3

Parameter Passing Styles
§1 Parameter Passing Styles

Illinois Institute of Technology Mattox Beckman

Call By Value

Parameters are evaluated before the function call takes place.

The function receives a copy of the parameters.
Changes made to variables in the function are not visible
outside.

Advantages: speed

Disadvantage: instability

1 # let pi1 a b = a;;
2 val pi1 : ’a -> ’b -> ’a = <fun>
3 # let rec foo () = pi1 5 (foo ());;
4 val foo : unit -> int = <fun>
5 # foo ();;
6 Stack overflow during evaluation (looping recursion?).

Parameter Passing Styles – p. 4



Parameter Passing Styles
§1 Parameter Passing Styles

Illinois Institute of Technology Mattox Beckman

Result of CBV

1 let foo x y z =
2 x := z * z * y;
3 y := 5;
4 x + y
5

6 let main () =
7 let a = 10 in
8 let b = 20 in
9 foo a b (a+b)

a is copied into x.

b is copied into y.

a+b is evaluated to 30, the
30 is copied into z.

x is assigned 30 * 30 * 20.

y is assigned 5.

upon return, a and b have
their original values.

This is used by C, C++, OCaml, . . . “most languages”.

Parameter Passing Styles – p. 5

Parameter Passing Styles
§1 Parameter Passing Styles

Illinois Institute of Technology Mattox Beckman

Call By Reference

Parameters are evaluated before the function call takes place.

The function receives a copy of the parameters.

Variables are passed as pointers.
Changes made to variables in the function are visible
outside.

Advantages: speed, saves some memory, side effects are
possible when you want them.

Disadvantage: side effects are possible when you don’t want
them.

Parameter Passing Styles – p. 6

Parameter Passing Styles
§1 Parameter Passing Styles

Illinois Institute of Technology Mattox Beckman

Result of Call by Reference

1 let foo x y z =
2 x := z * z * y;
3 y := 5;
4 x + y
5

6 let main () =
7 let a = 10 in
8 let b = 20 in
9 foo a b (a+b)

a and x share the same
memory.

b and y share the same
memory.

a+b is evaluated to 30, the
30 is copied into z.

x and a are assigned 30 * 30
* 20.

y and b are assigned 5.

upon return, a and b have
new values.

Used by C, C++, OCaml optionally; Java by default.

Parameter Passing Styles – p. 7

Parameter Passing Styles
§1 Parameter Passing Styles

Illinois Institute of Technology Mattox Beckman

Example

1 int inc(int i) {
2 return ++i;
3 }
4

5 int main() {
6 int i = 10;
7 cout << inc(i) << " " << i << endl;
8 }

What will be the output of this code?

Parameter Passing Styles – p. 8



Parameter Passing Styles
§1 Parameter Passing Styles

Illinois Institute of Technology Mattox Beckman

Example

1 int inc(int &i) {
2 return ++i;
3 }
4

5 int main() {
6 int i = 10;
7 cout << inc(i) << " " << i << endl;
8 }

What will be the output of this code?

Parameter Passing Styles – p. 9

Parameter Passing Styles
§1 Parameter Passing Styles

Illinois Institute of Technology Mattox Beckman

Call By Result

Parameters are updated before the function call returns.

Often combined with call by value. Call by result, call by value,
and call by value-result are “subclasses” of call-by-copy. What
changes is when the copy occurs.

Changes made to variables in the function are visible
outside—in fact, that’s the whole point.

Advantages: you can return multiple values from a single
function

Disadvantages: variables can be clobbered inadvertently.

Parameter Passing Styles – p. 10

Parameter Passing Styles
§1 Parameter Passing Styles

Illinois Institute of Technology Mattox Beckman

Result of Call By Result

1 let a = 10
2 let b = 20
3

4 let foo x y z =
5 x := z * z * y;
6 y := 5;
7 a + b
8

9 let main () =
10 foo a b (a+b)

a is copied into x.

b is copied into y.

a+b is evaluated to 30, the
30 is copied into z.

x is assigned 30 * 30 * 20.

y is assigned 5.

a + b will evaluate 30

upon return, x is copied into
a, and y is copied into b.

This is used by Prolog.

Parameter Passing Styles – p. 11

Parameter Passing Styles
§1 Parameter Passing Styles

Illinois Institute of Technology Mattox Beckman

Call By Name

Parameters are evaluated after the function call is made.

The parameters are substituted into the function body.

Changes made to variables in the function are visible outside.

Advantages: stability

Disadvantage: inefficiency — computations can be duplicated

1 # let pi1 a b = a;;
2 val pi1 : ’a -> ’b -> ’a = <fun>
3 # let rec foo () = pi1 5 (foo ());;
4 val foo : unit -> int = <fun>
5 # foo ();;
6 vat - : int = 5

Parameter Passing Styles – p. 12



Parameter Passing Styles
§1 Parameter Passing Styles

Illinois Institute of Technology Mattox Beckman

Result of Call By Name

1 let foo x y z =
2 x * x + y * y
3

4 let main () =
5 foo (10+10) (20+20)
6 (main ())

x is replaced by (10+10).

y is replaced by (20+20).

z is replaced by (main
()).

The call to main via z never
happens.

The + operation happens
four times.

This was used by Algol. Also used by some “term rewriting”
systems.

Parameter Passing Styles – p. 13

Parameter Passing Styles
§1 Parameter Passing Styles

Illinois Institute of Technology Mattox Beckman

Call By Need

Parameters are encapsulated into a thunk.

The thunks are passed into the function.

The first time a thunk is executed, the value is cached.

Remaining executions use the cached value.

Advantages: stability

Disadvantage: efficient, but time sensitive.

1 # let pi1 a b = a;;
2 val pi1 : ’a -> ’b -> ’a = <fun>
3 # let rec foo () = pi1 5 (foo ());;
4 val foo : unit -> int = <fun>
5 # foo ();;
6 vat - : int = 5

Parameter Passing Styles – p. 14

Parameter Passing Styles
§1 Parameter Passing Styles

Illinois Institute of Technology Mattox Beckman

Result of Call By Need

1 let foo x y z =
2 x * x + y * y
3

4 let main () =
5 foo (10+10) (20+20)
6 (main ())

x is replaced by a pointer to
(10+10).

y is replaced by a pointer to
(20+20).

z is replaced by a pointer to
(main ()).

The call to main via z never
happens.

The + operation happens
only once for each variable.

This is used by Haskell. Also known as lazy evaluation.

Not compatible with assignment.

Parameter Passing Styles – p. 15

Parameter Passing Styles
§2 Activity

Illinois Institute of Technology Mattox Beckman

Activity

(qdb 167) Consider the following code. What are the contents of a,
b, x, y and function output after foo returns for each of the
parameter passing styles?

1 let main () =
2 let a = 5 in
3 let b = 7 in
4 let foo x y z =
5 x := z + z + y;
6 y := 9 + a;
7 x + y
8 in
9 foo a b (a+b)

Parameter Passing Styles – p. 16

http://sunrise.cs.iit.edu/qdb/qdb.py/index?dir=Number/167


Parameter Passing Styles
§2 Activity

Illinois Institute of Technology Mattox Beckman

Answer

1 let main () =
2 let a = 5 in
3 let b = 7 in
4 let foo x y z =
5 x := z + z + y;
6 y := 9 + a;
7 x + y
8 in
9 foo a b (a+b)

Style a b x y Result

Value 5 7 31 14 45
V-Result 31 14 31 14 45
Ref 31 40 31 40 71
Name 31 40 n/a n/a 71

Parameter Passing Styles – p. 17


	Objectives
	Running Example
	Call By Value
	Result of CBV
	Call By Reference
	Result of Call by Reference
	Example
	Example
	Call By Result
	Result of Call By Result
	Call By Name
	Result of Call By Name
	Call By Need
	Result of Call By Need
	Activity
	Answer

