
References and Local State

Illinois Institute of Technology Mattox Beckman

References and Local State
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

References and Local State – p. 1

References and Local State
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

The lack of mutable variables gives us the ability to perform many
analyses using mathematics. In this lecture we talk about
equational reasoning and references, and see techniques for
limiting the scope of the state to improve the reliability of your code.

Be able to explain equational reasoning and give an example.

Know the syntax of references in OCaml.

Know the tradeoffs between imperative and functional features.

Know the constructions to define a function with local state.

Be able to state the benefits of local state and give an example.

Be able to use tuples to allow multiple functions access to the
same state.

References and Local State – p. 2

References and Local State
§1 Equational Reasoning

Illinois Institute of Technology Mattox Beckman

Definition

The rule of referential transparency:

e1 ⇓ v e2 ⇓ v f e1 ⇓ w

f e2 ⇓ w

If you have two expressions that evaluate to be the same thing
then you can use one for the other without changing the
meaning of the whole program.

e.g. f(x) + f(x) == 2 * f(x)

You can prove this by induction, using the natural semantic
rules from the previous lectures.

References and Local State – p. 3

References and Local State
§1 Equational Reasoning

Illinois Institute of Technology Mattox Beckman

You can use equational reasoning to make the following
equivalence:

f(if e1 then e2 else e3) ≡ if e1 then f(e2) else f(e3)

1 x * (if foo then 20 / x else 23 / x) equivalent to
2 if foo then 20 else 23 (well, mostly)

You have the basis now of many compiler optimization
opportunities!

References and Local State – p. 4

References and Local State
§1 Equational Reasoning

Illinois Institute of Technology Mattox Beckman

A Complication

1 # let counter = something
2 val counter : unit -> int = <fun>
3 # counter ();;
4 - : int = 1
5 # counter ();;
6 - : int = 2
7 # counter ();;
8 - : int = 3
9 #

Can we still use equational reasoning to talk about programs
now?

References and Local State – p. 5

References and Local State
§1 Equational Reasoning

Illinois Institute of Technology Mattox Beckman

A Counterexample

f(x) + f(x) == 2 * f(x)

1 # 2 * counter ();;
2 - : int = 8
3 # counter () + counter ();;
4 - : int = 11

Congratulations. You just broke mathematics.

References and Local State – p. 6

References and Local State
§2 References

Illinois Institute of Technology Mattox Beckman

Reference Operator

Transition Semantics
ref v → $i, where $i is a free location in the state, initialized to v.
! $i → v, if state location $i contains v

$i := v → (), and state location $i is assigned v.
(); e → e

Note that references are different than pointers: once created, they
cannot be moved, only assigned to and read from.

References and Local State – p. 7

References and Local State
§2 References

Illinois Institute of Technology Mattox Beckman

Natural Semantics

e ⇓ v

ref e ⇓ $i
, where $i is a free location in the state, initialized to v.

e ⇓ $i

!e ⇓ v
, if state location $i contains v.

e1 ⇓ $i e2 ⇓ v

e1 := e2 ⇓ ()
, and location $i is set to v.

e1 ⇓ () e2 ⇓ v

e1; e2 ⇓ v

References and Local State – p. 8

References and Local State
§2 References

Illinois Institute of Technology Mattox Beckman

Counter, Method 1

1 # let ct = ref 0;;
2 val ct : int ref = {contents=0}
3 # let counter () =
4 ct := !ct + 1;
5 !ct;;
6 val counter : unit -> int = <fun>
7 # counter ();;
8 - : int = 1
9 # counter ();;

10 - : int = 2

References and Local State – p. 9

References and Local State
§2 References

Illinois Institute of Technology Mattox Beckman

Bad Things for Counter

ct is globally defined. Two bad things could occur because of this.

1. What if you already had a global variable ct defined?
Correct solution: use modules.

2. The Stupid UserTM might decide to change ct just for fun.
Now your counter won’t work like it’s supposed to. . .
Now you can’t change the representation without getting
tech support calls.
Remember the idea of abstraction.

References and Local State – p. 10

References and Local State
§2 References

Illinois Institute of Technology Mattox Beckman

Conclusions about State

State is bad because:

it breaks our ability to use equational reasoning

users can get to our global variables and change them without
permission

State is good because:

Certain constructs are almost impossible withouth state (e.g.,
Graphs)

Our world is a stateful one

References and Local State – p. 11

References and Local State
§3 Scoping

Illinois Institute of Technology Mattox Beckman

Scoping

Review of scope:

1 let x = 10;;
2

3 let foo y = match y with
4 | 0,b -> let c = b * b in
5 let d = c * c in
6 b * c * d
7 | a,b -> map (fun z -> z + a + x) [a;b]

x exists from line 2–7.

y exists from line 3–7.

b exists from line 4–6.

c exists from line 5–6.

d exists on line 6 only.

a and b exist on line 7 only.

z exists on line 7, after the
fun z until the).

References and Local State – p. 12

References and Local State
§4 Local State

Illinois Institute of Technology Mattox Beckman

Using local state

1 # let counter =
2 let ct = ref 0 in
3 fun () -> ct := !ct + 1; !ct;;
4 val counter : unit -> int = <fun>
5 # counter ();;
6 - : int = 1
7 # counter ();;
8 - : int = 2

This protects ct, making it available only to counter.

References and Local State – p. 13

References and Local State
§4 Local State

Illinois Institute of Technology Mattox Beckman

Random Number Generators

1 # let mkRandom s =
2 fun () -> s := (!s * 9 + 5) mod 1024; !s;;
3 val mkRandom : int ref -> unit -> int = <fun>
4 # let rnd0 = mkRandom (ref 1);;
5 val rnd0 : unit -> int = <fun>
6 # rnd0 ();;
7 - : int = 14
8 # rnd0 ();;
9 - : int = 131

10 # rnd0 ();;
11 - : int = 160

In this version we pass the reference into the function rather
than creating our own.

References and Local State – p. 14

References and Local State
§4 Local State

Illinois Institute of Technology Mattox Beckman

Function Tuples

1 # let (counter, reset) =

2 let ct = ref 0 in

3 (fun () -> ct := !ct + 1; !ct),

4 (fun nv -> ct := nv);;

5 val counter : unit -> int = <fun>

6 val reset : int -> unit = <fun>

7 # counter ();;

8 - : int = 1

9 # reset 5;; (* This trick brought to you by *)

10 - : unit = () (* higher order functions, tuples, *)

11 # counter ();; (* and the principle of orthogonality. *)

12 - : int = 6

References and Local State – p. 15

References and Local State
§4 Local State

Illinois Institute of Technology Mattox Beckman

Passing Counters Around

1 # let enumerate lst (ctfun, rsfun) =
2 rsfun 0;
3 List.map (fun x -> (ctfun (), x)) lst;;
4 val enumerate : ’a list ->
5 (unit -> ’b) * (int -> ’c) -> (’b * ’a) list = <fun>
6 # enumerate ["hello";"there";"class"]
7 (counter, reset);;
8 - : (int * string) list = [1, "hello"; 2, "there";
9 3, "class"]

10 #

We can give the counter to another function.

This is not good. Why not?

References and Local State – p. 16

References and Local State
§5 Activity

Illinois Institute of Technology Mattox Beckman

Activity

1. Supposing you wanted a counter that did not use references,
how would you go about writing it?

2. The random number function generator does not have a way to
reset the state. We would also like to be able to ask “what was
the last random number generated” without changing the seed.
Write a (group of) functions to do this.

3. Suppose we want a more generic way to represent
counters—in fact, suppose you want several counters in your
program. You could just repeat the code several times, but
there are serious flaws to that approach. What are they? How
might you go about fixing them?

References and Local State – p. 17

References and Local State
§5 Activity

Illinois Institute of Technology Mattox Beckman

Answer to 2

1 # let mkRandom init =
2 let seed = ref init in
3 ((fun () -> seed := !seed * 4; !seed),
4 (fun ns -> seed := ns),
5 (fun () -> !seed));;
6 val mkRandom : int -> (unit -> int) * (int ->
7 # let (rnd, reset, last) = mkRandom 4;;
8 val rnd : unit -> int = <fun>
9 val reset : int -> unit = <fun>

10 val last : unit -> int = <fun>

References and Local State – p. 18

	Objectives
	Definition
	A Complication
	A Counterexample
	Reference Operator
	Natural Semantics
	Counter, Method 1
	Bad Things for Counter
	Conclusions about State
	Scoping
	Using local state
	Random Number Generators
	Function Tuples
	Passing Counters Around
	Activity
	Answer to 2

