Objects and Local State

Objectsand L ocal State

Mattox Beckman

beckman@it. edu

lllinois Institute of Technology

lllinois Institute of Technology Mattox Beckman Objects and Local State - p. 1

Objects and Local State
Objectives 80 Objectives

In this lecture we extend the idea of local state from last time to
create a simple implementation of objects, and discuss its
limitations. We will also show the message dispatch model of
objects, which allows for inheritance and virtual functions.

Your objectives:

Be able to explain what an object is.

Know how to implement an object using records and HOFs.
Know how to implement an object using a message dispatcher.
Be able compare the record and dispatcher models.

Major goal 1: be able to simulate objects in a language lacking
them.

© o o o ©

#® Major goal 2: understand how objects work “under the hood”.

lllinois Institute of Technology Mattox Beckman Objects and Local State - p. 2

0o N oo o M W N P

Objects and Local State
Preliminaries

81 Local State

We will use the following functions during our discussion....

et pil (x,y) = X
et pi2 (x,y) =Yy

| et nmovept (x,y) (dx, dy)

et report (X,y) = print_
print
print _
print _
print _

string "Point: ";
I Nt X;

string ",",;

I nt vy,

new i ne ()

= (x+dx, y+dy)

lllinois Institute of Technology Mattox Beckman Objects and Local State - p. 3

~N~ o o~ w NP

Objects and Local State
Point

81 Local State

Here is an example of a point using local state.

| et nktPolnt nyloc =
let nyloc = ref nyloc In

(nyloc,
(fun () -> pil I'nyloc),
(fun () -> pi2 !'nyloc),

(fun () -> report !nyloc),
(fun dl -> nyloc := novept !nyloc dl))

This defines a tuple of functions that share a common state.

® |t is cumbersome to use.
let (lref, getx, gety, show, nove)

lllinois Institute of Technology Mattox Beckman

= nktPoint (2,4);;

Objects and Local State — p. 4

© o0 ~N oo o M~ w NP

[
= O

[EEN
N

Objects and Local State

Improvement: Use records. 81 Local State

type point = {

loc : (int = Iint) ref; getx : unit -> 1Int;

gety : unit ->1int; draw: unit -> unit;
nove : Iint = int -> unit;
}
| et nkrPoint newl oc =
let nyloc = ref newoc In
{ loc = nyl oc;
getx = (fun () -> pil !'nyloc);

gety:(fun () -> pi2!rryloc);
draw = (fun () -> report !nyloc);
nove = (fun dl -> nyloc := novept !nyl

oc dl)}

lllinois Institute of Technology Mattox Beckman

Objects and Local State —p. 5

Objects and Local State
Objects? §2 Objects

What is an object?

Data and functions are grouped together.
Functions have their own local state.

Objects can send and receive messages.
Objects can refer to themselves.

This has a profound effect on the way programs are written.
Remember the basic premise of this course: how you think about
data has a great impact on the way a program is written.

How is the nkr Poi nt example like an object?
How is the nkr Poi nt example not like an object?

lllinois Institute of Technology Mattox Beckman Objects and Local State - p. 6

© o0 ~N oo o M~ w NP

Objects and Local State

Adding Self

By the way, this lecture is really about recursion.

§2 Objects

| et nkPol nt newl oc =
let rec this =
{ loc = ref new oc;

getx = (fun () ->pil !'(this.loc));
gety = (fun () ->pi2 !'(this.loc));
draw = (fun () -> report !(this.loc));
nove = (fun dl ->
this.loc := novept !(this.loc) dl)}
In this:;

We can store “this” explicitly in the record if we want.

lllinois Institute of Technology Mattox Beckman

Objects and Local State —p. 7

© o0 ~N oo o M~ w NP

=
o

Objects and Local State
Memory 82 Objects

>

The record poi nt contains references to the fields. If you copy
a poi nt, the data does not get copied!

let pl = nkPoint (4,7);;

val pl : point = {loc={contents=4, 7}; ...}
let p2 = nkPoint (6, 2);,;

val p2 : point = {loc={contents=6, 2}; ...}
let p3 = pl;,;

val p3 : point = {loc={contents=4, 7}; ...}
pl. nove (5,5);;

- o unit = ()

p3;;

- point = {loc={contents=9, 12}; ...}

lllinois Institute of Technology Mattox Beckman Objects and Local State - p. 8

Objects and Local State
So far... 83 Dispatching

We used a record to implement a type for points.
Advantages:

Every method had its own name and type.

Simple syntax for manipulating the object.

|It's fast: we know at compile time which method is being called.
Disadvantages:

Inheritance is very difficult with this model.

Adding a new message type means updating everything.

lllinois Institute of Technology Mattox Beckman Objects and Local State - p. 9

Objects and Local State
Message Dispatching §3 Dispatching

Last time we said that an object is a kind of data that can receives
messages from the program or other objects.

Q: How do we normally represent messages”?
A: With strings!

Let a point object be a function which takes a string and returns an
appropriate function matching that string.

Question: Suppose p is our point object. What will be its type?

lllinois Institute of Technology Mattox Beckman Objects and Local State - p. 10

Objects and Local State
mkPoint 83 Dispatching

l et nkPoint x y =

let X =ref x In

let y =ref y In

fun st ->

match st with

"getx" -> (fun _ -> IXx)
"gety" -> (fun _ ->1ly)
"movx" -> (fun nx -> X := I'x + nx; nx)
"movy" -> (fun ny ->y := 1y + ny; ny)
-> rai se (Failure "Unknown nessage.")

All methods now have to have typeint -> int.

lllinois Institute of Technology Mattox Beckman Objects and Local State — p. 11

Objects and Local State
Subclassing 83 Dispatching

Warmup exercise: How would we add ar eport method?
Another one: How would we add t hi s support?

Let’s say we want a f ast poi nt, which moves twice as fast as the
original point. What does it mean for f ast poi nt to be a subclass
of poi nt ?

fast poi nt should respond to the same messages.
s It may override some of them.
s It may add its own.
s [t may not remove any methods.

#® The f ast poi nt object will need access to some of the data In
poi nt .

lllinois Institute of Technology Mattox Beckman Objects and Local State — p. 12

Objects and Local State
Implementing 83 Dispatching

Two entities involved: the superclass (poi nt) and the subclass
(f ast poi nt).

fast poi nt needs to create an instance of poi nt .

poi nt construction needs to return the “public” data to
f ast pol nt .

fast poi nt returns a dispatcher:
s If the f ast poi nt dispatcher can handle a message, it does.
» Otherwise, it sends the message to poi nt .

lllinois Institute of Technology Mattox Beckman Objects and Local State — p. 13

© o0 ~N oo o M~ w NP

I e
N - O

=
w

Objects and Local State

Code: pol nt §3 Dispatching
| et nkSupeer nt x y =
let X =ref x In
let y =ref y In
((x,y), (* This part returns the local state =)
fun st ->
match st wth
"getx" -> (fun _ -> 1Xx)
"gety" -> (fun _ -> ly)
"movx" -> (fun nx -> X := I'x + nx; nx)
"movy" -> (fun ny ->y := 1y + ny; ny)
-> raise (Failure "Unknown nessage."));;
val rrkSupeer nt : int ->1nt ->

(int ref = Iint ref) ~ (string ->1int ->1int) =

<

lllinois Institute of Technology Mattox Beckman Objects and Local State - p. 14

N~ o o b~ w N

Objects and Local State
Code: f ast poi Nt 83 Dispatching

| et nkFastpoint x y =
let ((x,Y), super)

nkSuperPoint X y In

fun st ->
match st wth
"movx" -> (fun nx -> X :=1x + 2 * nXx; nx)

"movy" -> (fun ny ->y :=1ly + 2 x ny; ny)

-> super st;;

This technigue is flexible; we can add methods very easily.
But it’s also slow. Imagine if we had a chain of 20 classes....

lllinois Institute of Technology Mattox Beckman Objects and Local State — p. 15

Objects and Local State
C++

84 Real Life

#® Methods and variables are kept in a table: a fixed location.

“t hi s”i1s an implicit argument, allowing only one copy of the

function to be needed.
Virtual methods are kept in a vtable, which counts as local data.

Local data for poi nt orfastpoint:|y

X

value of x

value of y

vt abl e

pointer to vtable

. no
Vtable for poi nt : VX

pointer to point.movx

novy

pointer to point.movy

(f ast poil nt vtable is similar.) get x, etc. Is static.

lllinois Institute of Technology Mattox Beckman

Objects and Local State — p. 16

Objects and Local State
Discussion 84 Real Life

Other languages (i.e., smalltalk) use a technique very similar to
this one.

Java uses the “every object is of type bj ect ” technique.

A strong type system makes it somewhat cumbersome to
simulate objects. You either have to:
s define a new type to encompass all objects, or
» force all methods to have the same type.

|Important concept: polymorphism — when functions can
operate on multiple types. (This is different than overloading —

when multiple functions exist with the same name, but different
Inputs.)

lllinois Institute of Technology Mattox Beckman Objects and Local State — p. 17

0 N o o b~ w N P

Objects and Local State
Polymorphism Example 84 Real Life

let pl,p2,p3,p4 = nkPoint 2 3, nkPoint 3 2,

LI st.

Poi nt :
Poi nt :
Poi nt :
Pol nt :

nkFastpoint 5 3, nkFastpoint 3 9;;
map (fun pt -> pt "report” 0)
[pl; p2; p3; p4];;
2,3 points
3, 2
5,3 fastpoints
3,9

The function passed to map will use both poi nt and f ast poi nt

types.

You have seen polymorphism in the course before.

lllinois Institute of Technology Mattox Beckman Objects and Local State — p. 18

Objects and Local State
Conclusions 84 Real Life

Objects have a lot of flexibility, and allow us to create useful
abstractions.

They can be implemented using functions.

#® These are useful enough in practice, and difficult enough to
Implement, that most modern languages now include them,
iIncluding OCaml. (That’s where the O comes from.)

lllinois Institute of Technology Mattox Beckman Objects and Local State — p. 19

	Objectives
	Preliminaries
	Point
	Improvement: Use records.
	Objects?
	Adding Self
	Memory
	So far...
	Message Dispatching
	mkPoint
	Subclassing
	Implementing
	Code: 	exttt {point}
	Code: 	exttt {fastpoint}
	C++
	Discussion
	Polymorphism Example
	Conclusions

