Memory and Copying

Memory and Copying

Mattox Beckman

beckman@it. edu

lllinois Institute of Technology

lllinois Institute of Technology Mattox Beckman Memory and Copying - p. 1

Memory and Copying
Objectives 80 Objectives

By the end of this lecture, you should

Be able to explain how large data structures in a functional
language differ from similar structures in an imperative
environment

know how to simulate updates in a persistent environment
Dbe able to add undo functionality using persistent data

e

lllinois Institute of Technology Mattox Beckman Memory and Copying - p. 2

o A~ W N

Memory and Copying

Type Constructors and Memory

81 Allocating Memory

When a type constructor is invoked, it causes memory to be
allocated.

s Writing an integer. ..
s Writing an empty list. ..
» Using the cons operator :: ...

Writing down a variable does not cause memory to be

allocated.
let x = 4;; allocates 4
let n =[];; allocates enpty |ist
let n2 = n;; does NOT allocate nenory
let | = x::n;; Acons cell is allocated,
put not the 4 or the empty |1 st

lllinois Institute of Technology Mattox Beckman

Memory and Copying — p. 3

Memory and Copying

Memory Diagram 81 Allocating Memory
let x = 4;; allocates 4
let n = []; al l ocates enpty |1 st
let n2 = n;; does NOT al |l ocate nenory
let | = x::n;; Acons cell is allocated,
out not the 4 or the enmpty |1 st

rll I8

NN

X | n2

lllinois Institute of Technology Mattox Beckman

Memory and Copying — p. 4

0o N oo o M W N P

Memory and Copying

The Nature of Data in a Functional Language

82 Persistence

|n a functional language, data is not changed, it is copied.

let 1ncthree |Ist =
match | st with

a.:b::c::xs -> a+l :: b+l ::

val i1ncthree : int list -> 1Int
let exl =[2;3,4,5;6;7];;

| 1 st

c+1 ::

<f un>

val ex1l : int list =[2; 3; 4; 5; 6; 7]

let ex2 = incthree exl;:

val ex2 : int list =[3; 4; 5, 5, 6; 7]

XS, ,

17
17
17

exl—f 2 3 4| .4—b

17

[]

514"

ex3—{ 3 4

¥
¥

lllinois Institute of Technology Mattox Beckman

Memory and Copying — p. 5

© o0 ~N oo o M~ w NP

Memory and Copying
Delete First Zero

82 Persistence

let Istl =12;0;3;0;4];;
val Istl : int list =12; 0; 3; 0; 4]
let rec delzero | st =
match I st wth
O:: XS -> XS
| X::xs -> x :: delzero xs
| [1 ->1[1;:;
let |st2 = del zero |Istl;;
val Ist2 : int list =[2; 3; 0; 4]
| st 1—{ 2 - 0 - 3 - 0 - 4 ([]
| St 2—{ 2 | -~

lllinois Institute of Technology Mattox Beckman

Memory and Copying — p. 6

Memory and Copying
What if | wanted to delete all the zeros? 82 Persistence

© o0 ~N oo o M~ w NP

let Istl =12;0;3;0;4];;
val Istl : int list =[2; 0; 3; 0; 4];;
let rec delzero | st =

match I st wth

O::Xs -> del zero xs

| X::xs -> x :: delzero xs

| [1 ->1[1;:;
let |st2 = del zero |Istl;;
val Ist2 : int list =1[2;3;4],;,;

| st 1— 0

N
¥
o
¥
w
¥
¥
N
Y

| st 2—{ 2

Y
w
Y
AN
Y

lllinois Institute of Technology Mattox Beckman Memory and Copying - p. 7

A w N R

Memory and Copying
Trees and Persistent Structures 82 Persistence

Definition of Binary Search Tree

type tree = Branch of Iint » tree * tree

| Leaf of int | Enpty ;;

let t1 = Branch(15, Branch(8, Leaf 4, Leaf 10),
Branch(20, Leaf 18, Leaf 27)

) |

/\
/\ /\
4 10

Suppose | want to add 19 to this tree?
(Note we are using a shorthand notation. . .)

lllinois Institute of Technology Mattox Beckman Memory and Copying - p.

Memory and Copying
add in scheme 82 Persistence

1(define (add tree item
(1f (eg? tree "enpty) (nmake-leaf item
(1f (leaf? tree)
(1f (> (leaf-itemtree) i1tem
(make-branch (leaf-itemtree)
(make-leaf 1tem ’'enpty)
(make-branch (leaf-itemtree)
enpty (nmake-leaf 1item))
(1f (> (branch-itemtree) item
(make- branch (branch-itemtree)
(add (branch-leftt tree) item
(branch-right tree))
(make- branch (branch-itemtree)
(branch-left tree)
(add (branch-right tree) item)

lllinois Institute of Technology Mattox Beckman Memory and Copying - p.

© 00 ~N o o b~ w DN

(e e e
w N O

=
D

=
o1

Memory and Copying
add 82 Persistence

1# let rec add itematree = match atree wth

2 Enpty -> Leaf item
3 | Leaf old ->1if 1tenxold then Branch(old, Leaf item Enpty)
4 el se Branch(ol d, Enpty, Leaf 1tem
s | Branch(old,t1,t2) ->
6 If i1tem< old then Branch(old, add itemtl, t2)
7 el se Branch(old, tl1, add itemt?2)
15 = 15 The black nodes
/ L / e are shared, the blue
g 20 g 20 nodes are new.
/ \ / N\ / \ 2\
4 10 18 27 4 10

18 27

3
Resultofl et t2 = add 19 t1 19

lllinois Institute of Technology Mattox Beckman Memory and Copying - p. 10

Memory and Copying
Adding to a tree, part 2 82 Persistence

When a change is made to data, new nodes must be created
from the point of change to the root of the data.

515 15<..... ® The old nodet 1 is still

t1 l)\\ New Root 2 5round, and points to the
20 20 original tree (without the 19).
/ NERAAN
1018 18 27
\19 BRI Point of Change

#® Suppose we now add 9 to this tree, and assignittot 37?
(By the way, this is a trick question.)

lllinois Institute of Technology Mattox Beckman Memory and Copying - p. 11

Memory and Copying
How can we use this? §3 Writing An Interpreter

At this point we can write an interpreter for a small language
with “undo” capabillity.

® Commands: Add, Show, Undo.

What will we need?
s A way to process commands. We can use a data-type:

1|type command = Add of int | Show | Undo

o A notion of the current tree
» A stack of past trees

lllinois Institute of Technology Mattox Beckman Memory and Copying - p. 12

© o0 ~N oo o M~ w NP

=
o

-
=

Memory and Copying

A Small Interpreter 83 Writing An Interpreter

Current Tree Command List Tr_ee Stack
' The Intérpreter |

| et eval connands = N n
et rec aux tree commands stack =
mat ch commands w th
(Add 1)::xs ->
aux (add I tree) xs (tree::stack)

| Show :: xs ->
show tree : aux tree xs stack
| Undo :: xs ->

aux (List.hd stack) xs (List.tl stack)
| [] -> print_string "Done\n" in
aux Enpty conmmands []

lllinois Institute of Technology Mattox Beckman Memory and Copying - p. 13

Memory and Copying
Problems 84 Activity

1. In the lecture we discussed the consequences of adding a
second new element to the tree. Draw the result of the
command (define t3 (add t2 9)).

tl)15 15(

19

2. Write the del zer os function, but make it able to share the
data.

lllinois Institute of Technology Mattox Beckman Memory and Copying - p. 14

Memory and Copying
Problem 1 84 Activity

...... t2
t1l - >15 15‘ 15<t3
10 18 18

N

9 19

lllinois Institute of Technology Mattox Beckman Memory and Copying - p. 15

© o0 ~N oo o M~ w NP

I e
N - O

[EEN
w

Memory and Copying
Problem 2

84 Activity

|l et rec getlLastZero |Ist pos save = natch Ist wth

[] -> save

0::xs -> getlLastZero xs (1+pos) (1+pos)
X. . XS -> getlLastZero xs (1l+pos) save

let rec delzero Ist = match I st wth

0::Xs -> del zero xs

[1 -> 11

| et rec shareDel Zero | st

X::XS -> X :: delzero xs

let last = getlLastZero Ist O O In

(del zero (take | ast

|st)) @ (drop | ast

I'st);;

lllinois Institute of Technology Mattox Beckman

Memory and Copying — p. 16

Memory and Copying
Further Reading 84 Activity

If you like this, you will definitely want to see the work of Chris
Okasaki. For example:

Simple and Efficient Purely Functional Queues and Deques
#® Catenable Double-Ended Queues
Three algorithms on Braun trees

lllinois Institute of Technology Mattox Beckman Memory and Copying - p. 17

http://citeseer.nj.nec.com/okasaki95simple.html
http://citeseer.nj.nec.com/okasaki97catenable.html
http://citeseer.nj.nec.com/okasaki97functional.html

	Objectives
	Type Constructors and Memory
	Memory Diagram
	The Nature of Data in a Functional Language
	Delete First Zero
	What if I wanted to delete emph {all} the zeros?
	Trees and Persistent Structures
	add in scheme
	add
	Adding to a tree, part 2
	How can we use this?
	A Small Interpreter
	Problems
	Problem 1
	Problem 2
	Further Reading

