
Prolog Whenever

Illinois Institute of Technology Mattox Beckman

Prolog
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

Prolog – p. 1

Prolog Whenever
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

In this lecture we will introduce Prolog.

Be able to explain the models of data and program for Prolog.
(The Two Questions)

Be able to write some simple programs in Prolog.

Know how to use Prolog’s arithmetic operations.

Know how to use lists and patterns.

Prolog – p. 2

Prolog Whenever
§1 Logic

Illinois Institute of Technology Mattox Beckman

Logic

Question: How do you decide truth?

Start with some objects
“socrates”, “john”, “mary”

Write down some facts (true statements) about those objects.
Facts express either properies of the object, or
“socrates is human”
relationship to other objects.
“mary likes john”

Write down some rules (facts that are true if other facts are
true).
“if X is human then X is mortal”

Facts and Rules can become predicates.
“is socrates mortal?”

Prolog – p. 3

Prolog Whenever
§1 Logic

Illinois Institute of Technology Mattox Beckman

First Order Predicate Logic

First Order Predicate Logic is one system for encoding these kinds
of questions.

Predicate means that we have functions that take objects and
return “true” or “false”.
human(socrates).

Logic means that we have connectives like and, or, not, and
implication.

First Order means that we have variables (created by “for all”
and “there exists”), but that they only work on objects.
∀ X . human(X) → mortal(X).

Prolog – p. 4

Prolog Whenever
§2 Prolog

Illinois Institute of Technology Mattox Beckman

History

Starting point: First Order Predicate Logic.

Realization: Computers can reason with this kind of logic.

Impetus was the study of mechanical theorem proving

Developed in 1970 by Alain Colmerauer and Rober Kowalski
and others.

Uses: databases, expert systems, AI.

Prolog – p. 5

Prolog Whenever
§2 Prolog

Illinois Institute of Technology Mattox Beckman

The Two Questions

What is the nature of data?

Prolog data consists of facts about objects and logical rules.

What is the nature of a program?

A program in Prolog is a set of facts and rules, followed by a query.

Prolog – p. 6

Prolog Whenever
§2 Prolog

Illinois Institute of Technology Mattox Beckman

The Database

a
b

c d e f
g
h

1 human(socrates).
2 fatherof(socrates,jane).
3 fatherof(zeus,apollo).

1 connected(c,a).
2 connected(a,f).
3 connected(d,b).
4 connected(b,e).
5 connected(d,e).
6 connected(d,g).
7 connected(g,e).
8 connected(c,h).
9 connected(h,f).

Prolog – p. 7

Prolog Whenever
§2 Prolog

Illinois Institute of Technology Mattox Beckman

Rules

1 mortal(X) :- human(X).
2 human(Y) :- fatherof(X,Y), human(X).
3

4 pathfrom(X,Y) :- connected(X,Y).
5 pathfrom(X,Y) :- connected(X,Z), pathfrom(Z,Y).

Capital letters are variables.
Appearing left of :- means “for all”
Appearing right of :- means “there exists”

∀x.human(x) → mortal(x).

∀y.(∃x.fatherof(x, y) ∧ human(x)) → human(y)

Prolog – p. 8

Prolog Whenever
§3 Queries

Illinois Institute of Technology Mattox Beckman

How it works

Programs are executed by searching the database and attempting
to perform unification.

?- human(socrates). listed, therefore true
?- mortal(socrates). not listed

Relevant rules:

human(socrates).
human(Y) :- fatherof(X,Y), human(X).
mortal(X) :- human(X).

Socrates is not listed as being mortal, but mortal(socrates)
unifies with mortal(X) if we replace X with socrates. This gives
us a subgoal. Replace X with socrates and try it....

Prolog – p. 9

Prolog Whenever
§3 Queries

Illinois Institute of Technology Mattox Beckman

How it works, next step

Replace X with socrates in this rule:

mortal(X) :- human(X).

to get

mortal(socrates) :- human(socrates).

Since human(socrates) is in the database, we know that
mortal(socrates) is also true.

Prolog – p. 10

Prolog Whenever
§3 Queries

Illinois Institute of Technology Mattox Beckman

Another example

?- mortal(jane). not in database
but we have mortal(X) :- human(X).
so we substitute mortal(jane) :- human(jane).
subgoal: human(jane). not there either

but we have human(Y) :- fatherof(X,Y), human(X).
so we substitute

human(jane) :- fatherof(X,jane), human(X).
subsubgoal1 fatherof(X,jane).

we find fatherof(socrates,jane)
so try the next subgoal

subsubgoal2 human(socrates). yes
therefore human(jane). is true

therefore mortal(jane). is true

Prolog – p. 11

Prolog Whenever
§3 Queries

Illinois Institute of Technology Mattox Beckman

More than just Yes or No....

Prolog can also give you a list of elements that make a
predicate true. Remember unification.

1 ?- fatherof(Who,apollo).
2 Who = zeus ;
3

4 ?- pathfrom(c,X).
5 X = a ;
6 X = h ;
7 X = f ;
8 X = f ;
9 No

The semicolon is entered by the user— it means to keep searching.

Prolog – p. 12

Prolog Whenever
§3 Queries

Illinois Institute of Technology Mattox Beckman

Tracing pathfrom

?- pathfrom(c,X).
→ pathfrom(c,Y) :- connected(c,Y).
X = a ;

When we hit semicolon, we tell it to pretend that this is false, and to
keep searching. We have to throw away the connected(c,a)
result, so we backtrack through our database to try again.

→ pathfrom(c,Y) :- connected(c,Y).
X = h ;

We tell it to try again with this one, too. At this point, we no longer
have any rules that say that c is connected to something.

Prolog – p. 13

Prolog Whenever
§3 Queries

Illinois Institute of Technology Mattox Beckman

Tracing pathfrom, II

pathfrom(c,Y) :- connected(c,Z), pathfrom(Z,Y).

We will first find something in the database that says that c is
connected to some Z, and then check if there is a path between Z
and Y.
We find a and h as last time. When we check a, we check for
pathfrom(a,Y), and find that connected(a,f) is in the
database. The same thing happens for h, which is why f is
reported as an answer twice.

Prolog – p. 14

Prolog Whenever
§4 Builtin Structures

Illinois Institute of Technology Mattox Beckman

Arithmetic via the is keyword.

1 fact(0,1).
2 fact(N,X) :- M is N-1, fact(M,Y), X is Y * N.
3 ?- fact(5,X).

Unify fact(5,X) with fact(N,X).
fact(5,X) :- M is 5-1, fact(M,Y), X is Y * 5.

Next compute M.
fact(5,X) :- 4 is 5-1, fact(4,Y), X is Y * 5.

Recursive call sets Y to 24.
fact(5,X) :- 4 is 5-1, fact(4,24), X is 24 * 5.

Compute X
fact(5,120) :- 4 is 5-1, fact(4,24), 120 is 24

* 5.

Prolog – p. 15

Prolog Whenever
§4 Builtin Structures

Illinois Institute of Technology Mattox Beckman

Subgoal ordering

Order of sub-goals is important! Why does this happen?

1 badfact(0,1).
2 badfact(N,X) :- badfact(M,Y), M is N-1, X is Y * N.
3 ?- badfact(5,X).
4 ERROR: Arguments are not sufficiently instantiated
5 ^ Exception: (8) 0 is _G278-1 ?

badfact(5,X) :- badfact(M,Y), M is 5-1, X is Y * 5.
badfact(5,X) :- badfact(0,1), 0 is 5-1, X is 1 * 5.

(oops)

Prolog – p. 16

Prolog Whenever
§4 Builtin Structures

Illinois Institute of Technology Mattox Beckman

Lists

Prolog lists are very similar to CaML lists.

Empty list: []

Singleton list: [x]

List with multiple elements: [x,y,[a,b],c]

Head and tail representation [H|T]

Differences:

Prolog lists are not monotonic!

Prolog – p. 17

Prolog Whenever
§4 Builtin Structures

Illinois Institute of Technology Mattox Beckman

List example: mylength

The length predicate is built in.

1 mylength([],0).
2 mylength([H|T],X) :- mylength(T,Y), X is Y + 1.
3

4 ?- mylength([2,3,4,5],X).
5 X = 4 ;
6 No

This example looks like badfact, in that the is clause happens
after the recursion. Why is this safe?

Prolog – p. 18

Prolog Whenever
§4 Builtin Structures

Illinois Institute of Technology Mattox Beckman

List Example: Sum List

1 sumlist([],0).
2 sumlist([H|T],X) :- sumlist(T,Y), X is Y + H.
3

4 ?- sumlist([2,3,4,5],X).
5 X = 14

Prolog – p. 19

Prolog Whenever
§4 Builtin Structures

Illinois Institute of Technology Mattox Beckman

List Example: Append

1 myappend([],X,X).
2 myappend([H|T],X,[H|Z]) :- myappend(T,X,Z).
3 ?- myappend([2,3,4],[5,6,7],X).
4 X = [2, 3, 4, 5, 6, 7] ;
5 No
6 ?- myappend(X,[2,3],[1,2,3,4]).
7 No
8 ?- myappend(X,[2,3],[1,2,3]).
9 X = [1] ;

10 No

Prolog – p. 20

Prolog Whenever
§4 Builtin Structures

Illinois Institute of Technology Mattox Beckman

List Example: Reverse

Accumulator recursion works in Prolog, too!

1 myreverse(X,Y) :- myrevaux(X,Y,[]).
2 myrevaux([],Y,Y).
3 myrevaux([HX|TX],Y,Z) :- myrevaux(TX,Y,[HX|Z]).
4 ?- myreverse([2,3,4],Y).
5 Y = [4, 3, 2]

myreverse([2,3,4],Y) → myrevaux([2,3,4],Y,[]) →

myrevaux([3,4],Y,[2]) → myrevaux([4],Y,[3,2]) →

myrevaux([],Y,[4,3,2]) →

myrevaux([],[4,3,2],[4,3,2]) →

myreverse([2,3,4],[4,3,2])

Prolog – p. 21

Prolog Whenever
§5 Structures and Patterns

Illinois Institute of Technology Mattox Beckman

Pairs

The term socrates is a pattern. But patterns can have
structure....

1 pair((X,Y)).
2 key((X,Y),X).
3 value((X,Y),Y).
4 assoc(X,Y,[H|T]) :- key(H,X), value(H,Y);
5 assoc(X,Y,T).
6 ?- assoc(2,X,[(3,hi),(4,there),(2,guys)]).
7 X = guys
8 ?- assoc(X,there,[(3,hi),(4,there),(2,guys)]).
9 X = 4

Prolog – p. 22

Prolog Whenever
§6 Activity!

Illinois Institute of Technology Mattox Beckman

Activity

Write the Fibonacci predicate. Let F0 = 0 and F1 = 1.

Make sure you can write it the exponential way.

Can you write it the linear way?

Prolog – p. 23

Prolog Whenever
§6 Activity!

Illinois Institute of Technology Mattox Beckman

Solution

Fibonacci predicate: exponential complexity:

1 fib(0,0).
2 fib(1,1).
3 fib(N,X) :- N1 is N - 1,
4 fib(N1,X1), N2 is N - 2,
5 fib(N2,X2), X is X1 + X2.

Fibonacci predicate: linear complexity:

1 lfibx(0,F1,F2,A) :- A is F2.
2 lfibx(N,F1,F2,A) :- N1 is N - 1, F3 is F1 + F2,
3 lfibx(N1,F2,F3,A).
4 lfib(N,A) :- lfibx(N,1,0,A).

Prolog – p. 24

	Objectives
	Logic
	First Order Predicate Logic
	History
	The Two Questions
	The Database
	Rules
	How it works
	How it works, next step
	Another example
	More than just Yes or No....
	Tracing pathfrom
	Tracing pathfrom, II
	Arithmetic via the 	exttt {is} keyword.
	Subgoal ordering
	Lists
	List example: mylength
	List Example: Sum List
	List Example: Append
	List Example: Reverse
	Pairs
	Activity
	Solution

