Type Derivations

Type Derivations

Mattox Beckman

beckman@i t. edu

lllinois Institute of Technology

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 1

Type Derivations

Strongly vs. Weakly Typed §1 Why Type Checking is Good

Strongly Typed Languages
e.g., ML, Haskell, most of C++, C
You have to declare all your types at the beginning
No type checks during run-time (faster, safer code)
Weakly Typed Languages
® e.g., Perl, Lisp, some parts of Java
» \ery flexible programming
Types must be checked at run-time or Bad Things happen

Type Derivations — p. 3

lllinois Institute of Technology Mattox Beckman

Type Derivations

Objectives 80 Objectives

In order to express the meaning of a program, we need a formal
language to capture these meanings. One way to express meaning
is to say something about the types of the expressions. By the end
of lecture, you should know

what the word “semantics” means.

#® how to structure a proof-tree

how use the type rules to prove the type of an expression

write your own type rule for an expression

Type Derivations — p. 2

lllinois Institute of Technology Mattox Beckman

Type Derivations

Other advantages of strong typing... §1 Why Type Checking is Good

Engineering
A program that type-checks is likely to be correct.
Types constrain the use of a function.
Safety ® Every try casting an integer into a pointer in C?
int i = 5;
*((int *)i) = 10;

i

N

® Atype error in an untyped language can be very hard to
detect.

Theory
Itis much easier to verify the operation of type-correct code.

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 4

Type Derivations

Parts of a Formal System §2 Formal Systems

To create a formal system, you must specify the following:
A set of symbols or an alphabet.
A definition of a valid sentence.

® A set of transformation rules to make new valid sentences out
of old ones.

® A set of initial valid sentences.
You do NOT need:

An interpretation of those symbols.
They are highly recommended, but the formal system can exist
and do its work without one.

lllinois Institute of Technology Mattox Beckman

Type Derivations - p. 5

Type Derivations

Example §2 Formal Systems

Symbols S, (,), Z, P, x, y.

Definition of an integer
Oisaninteger. z and y are variables of type integer.
» if zis an integer, then S(x) is an integer.
» if z and y are integers, then P(z,y) is an integer.

Definition of the equality relation
0 has the equality relation with 0.

» If z and y have the equality relation, then S(z) and S(y) have
the equality relation.

If o and 3, then we can write o = .
True Sentences If o = 3, then also

® P(S(a),B)= P, S(0)), and P(0,a) = «

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 7

Type Derivations

Example 82 Formal Systems

Symbols S, (,), Z, P, x, y.
Definition of a furbitz
® Zis afurbitz. z and y are variables of type furbitz.
» if z is a furbitz, then S(x) is a furbitz.
» if x and y are furbitzi, then P(z,y) is a furbitz.
Definition of the gloppit relation
® 7 has the gloppit relation with Z.

» If x and y have the gloppit relation, then S(x) and S(y) have
the gloppit relation.

® If « and 3, then we can write ags.

True Sentences If agf3, then also
® P(S(a), B)gP (e, S(B)),

lllinois Institute of Technology Mattox Beckman

and P(Z, a)ga

Type Derivations - p. 6

Type Derivations

Format of a Type Judgment §3 Type Judgments

An type judgment has the following form:

I'ke:r

where T is a type environment, e is some expression, and 7 is a
type.

® I'Fiftruethen4else38:int
® I'Htrue &&fal se :bool

Note: the I is pronounced “turnstile” or “entails”.

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 8

Type Derivations

The Parts of a Rule §3 Type Judgments
Assumptions)
¥
I't+ ey : bool T'key:7 T'heg:T
I'Fif ettheneselseeg:r
Conclusion

If arule has no assumptions, then it is called an axiom.
I'is a list of the form [z : 7;..].

e

I may be left out if we don’t need a type environment (see next
slide).

Basic Idea : The meaning of an expression can be determined
by combining the meaning of its parts.

Type Derivations — p. 9

lllinois Institute of Technology Mattox Beckman

Type Derivations

Simple Rules §4 Typing Rules

Arithmetic) Booleans
I'kFe:int T'hkey:int I'ke;:bool T Fey:bool
I'kFe®ey:int I'e1&& ey : bool
Relations
The:int They:int I'Fe;:bool T'key:bool

't e ~eg:bool I'e1| | e :bool

® These are combination rules.

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 11

Type Derivations
Axioms §4 Typing Rules

Constants =" p (assuming n is an int)

Ftrue :bool

+fal se :bool
Variables [ifx:7el

The Variable Rule is actually a bit more complicated in real life,
but this form is sufficient.

® These are rules that are true no matter what the context is.

Type Derivations — p. 10

lllinois Institute of Technology Mattox Beckman

Type Derivations

Simple Example 84 Typing Rules

Suppose we want to prove that I' - (z x5 > 7)&& y : bool
Assumethat' = [z :int ;y:bool |

First thing: Write down the thing you are trying to prove, and put a
bar over it.

'k (z*5>T7)&y : bool
Look at the outermost expression. What kind of expression is this?
I'e1: bool '+ ey : bool

Use the rule
' e1&& ey : bool

You need the “and” rule. It will tell you which parts of the goal need
to be proved next.

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 12

Type Derivations

Simple Example 84 Typing Rules

Suppose we want to prove that ' - (z x5 > 7)&& y : bool .
Assumethatl = [z :int ;y:bool |

Write parts on top and put a bar over them as well.

'+xz%5>7:bool 'y :bool
'k (z*5>T7)&&y: bool

What to do next? Let’s work left to right. The expression we want
next is a “greater” expression. (Besides, the y expression is already
an axiom.)

Type Derivations — p. 12

lllinois Institute of Technology Mattox Beckman

Type Derivations

Simple Example §4 Typing Rules

Suppose we want to prove thatI' - (z x5 > 7)&& vy : bool .
Assumethatl = [z :int ;y:bool]

At this point, there are no more subtrees to expand out. We are
done.

F'kxz:int F'E5:int
FFxz*x5:int PE7:int
'kx«+5>7:bool 'y :bool
I'kF(z*5>T7)&& y : bool

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 12

Type Derivations

Simple Example 84 Typing Rules

Suppose we want to prove that ' - (z x5 > 7)&& y : bool .
Assumethat = [z :int ;y:bool |

Following the “greater” rule, we break the x * 5 > 7 into two
parts.

F'Fx*x5:int 'E7:int
'+z%x5>7:bool 'y : bool
'k (zxx5>T7)&&y : bool

We will turn our attention to the multiplication now.

Type Derivations — p. 12

lllinois Institute of Technology Mattox Beckman

Type Derivations

Type Variables in Rules 84 Typing Rules

I' - e1 : bool I'key:7 T'heg:T
I'Fif egtheneselsees:r

The 7 means “any type at all"—but whatever type r you pick it
has to be the same for the three places it shows up in this rule.

So...theif rule says thati f can resultin any type, as long as
the t hen and el se branches have the same type. This could
even include functions.

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 13

Type Derivations

Function Application 84 Typing Rules

'te:mm—m—-—>m—>7 I'Fer:m I'ke,:m

I'Feejeg - e, T

If you have a function of type 1 — 7 — --- — 7, — 7, and if
every argument e; has type 7;, then applying them in that order
will produce an expression of type 7.

'kmap : (¢ > f) - alist — fBlist T'Ff: (a—) I'kFlst : alist

I'map f 1st : [list

For “compound types” like « | i st , we only substitute in the «
parts.

Type Derivations — p. 14

lllinois Institute of Technology Mattox Beckman

Type Derivations

Example: Type-checking Compose 84 Typing Rules

Type-checking compose:

FFfunfgx—>f(gx):(a—p) —>0—a)—0—70
Before using the function rule:

PU[xy 715 3% i) Fer T
FEfunx;---xp,—>e:m — -

— Ty — T

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 16

Type Derivations

Functions and Let §4 Typing Rules

Important point: the rules describe types, but they also describe
when you may change T'.

You may NOT change T" except as described!

_ TURL Ty 3% T e T
Functions

'Hfunxy - x,—>e:11 — -+
Tker:7 TU[z:7]Fey: 7
F'Flet x=ejiney:7

TU[z:7]Fer:7 TU[z:7]Fea:7

F'Flet recx=ejiney:7

—Tp —T

Let

Let Rec

Type Derivations — p. 15

lllinois Institute of Technology Mattox Beckman

Type Derivations

Example: Type-checking Compose 84 Typing Rules

Type-checking compose:

I'=TuU{f:(a—B)g:(§—a)x:6}Hf(gx) : 3
FFfunfgx—>1=f(gx):(a—p) —(0—a)—i—70

After using the function rule:

TU[RL 713 3%p T FerT

rfunx; - xp—>e:m — -+ —>7, —>7

Next, we use application.

'te:m—-m—--—>m—7 I'kFer:m I'e,:m

I'Feejey -+ ep: T

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 16

Type Derivations

Example: Type-checking Compose 84 Typing Rules

Type-checking compose:

I'Ef @ (a—p) I'F(gx) :(a)
I'=TU{f:(a—B)g: (= a)x:6}-f(gx) : 3
F'Ffunfgx—>f(gx):(a—=p) —0—a)—0—0

The rule for parens is trivial... can you write it?
Next, we’ll use application again.

Type Derivations — p. 16

lllinois Institute of Technology Mattox Beckman

Type Derivations

Example: Type-inferencing Compose 84 Typing Rules

At first, give everything a separate type.

FFfunfgx—>f(gx):a—pF—>30—7

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 17

Type Derivations

Example: Type-checking Compose 84 Typing Rules

Type-checking compose:

I'g: (6 — a) I'Fx:6
I'Ef @ (a—p) ' (gx) :a
I'=TuU{f:(a—fB);g: (6 —a)x:6}F£f(gx) : 3
F'Ffunfgx—>1=f(gx):(a—=p) —(0—a)—i—-0

We are done. These rules are meant mainly to verify a type, but
they can be used to infer a type as well.

Type Derivations — p. 16

lllinois Institute of Technology Mattox Beckman

Type Derivations

Example: Type-inferencing Compose 84 Typing Rules

Apply the function rule:

I'=TU{f:a;g:0; x:6}-f(gx) : v
'Ffunfgx—>f(gx):a—F—0—7y

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 17

Type Derivations

Example: Type-inferencing Compose 84 Typing Rules

Apply the application rule:

I'Ef @« ' (gx) 27?7
I'=TU{f:a; g: 3 x:6}-£(gx) : v
F'Ffunfgx—>f(gx):a—F—3J—7

From here we see that o needs to be a function type. Also, we need
to decide a type for (g x).

® Let(g x) have type v.
® Letf havetype a =v — 7.
We make the appropriate substitutions....

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 17

Type Derivations

Example: Type-inferencing Compose 84 Typing Rules

Apply the application rule:

I'-g:p3 IMFx:§
I'Ef :(v—97) I'(gx) :v
I'=TU{f:(r—19);g: 8 x:0}-£f(gx) : v
F'Ffunfgx—>=f(gx):(v—9)—=F—0—7y

» We know that 3 needs to be ¢ — v, because of our rule.

Substituting, we get...

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 17

Type Derivations

Example: Type-inferencing Compose 84 Typing Rules

Apply the application rule:

I'Hf i (v—7) I'F(gx) :v
I'=TU{f:(r—7);g:8 x:0}Ff(gx) : v
F'Ffunfgx—>f(gx):(r—7vy)—=F—0—7y

Now we use the application rule for (g x).

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 17

Type Derivations

Example: Type-inferencing Compose 84 Typing Rules

Apply the application rule:

I'kFg:(6—v) x4
I'Ef @ (v—7) I'-(gx) :v
I'=TU{f:(r—=7);g:(0—v); x:0}Ff(gx) : v
F'Ffunfgx—>f(gx):(v—-9)—0@—v)—J—n

Now we're done.

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 17

Type Derivations

Another example §4 Typing Rules

Here’s an example | showed one time | gave this lecture.

Mrid :7— 71

r'+10:in

MNrid 17— 1 '+ (id 10) : i nt
' Fid (id 10) : i nt
F'kFlet id =funx —>xin id (id 10) :i nt

Uz :7]kFx:7
F'kFfunx—>x :7—r1

® letl'=TuUlid : 7 — 7]
® What would be different if we'd used | et r ec instead?

Type Derivations — p. 18

lllinois Institute of Technology Mattox Beckman

Type Derivations
Problems

§5 Activity

Try these problems.

® ProvethatT'Hlet f=funz—>x+2inlet g=
funz—>z+3in(if 4>6then felseg)10:int

» Write a type judgment rule for the list operator : : .

lllinois Institute of Technology Mattox Beckman

Type Derivations — p. 19

	Objectives
	Strongly vs. Weakly Typed
	Other advantages of strong typing...
	Parts of a Formal System
	Example
	Example
	Format of a Type Judgment
	The Parts of a Rule
	Axioms
	Simple Rules
	Simple Example
	Simple Example
	Simple Example
	Simple Example

	Type Variables in Rules
	Function Application
	Functions and Let
	Example: Type-checking Compose
	Example: Type-checking Compose
	Example: Type-checking Compose
	Example: Type-checking Compose

	Example: Type-inferencing Compose
	Example: Type-inferencing Compose
	Example: Type-inferencing Compose
	Example: Type-inferencing Compose
	Example: Type-inferencing Compose
	Example: Type-inferencing Compose

	Another example
	Problems

