
MP 3 – A Unification-Based Type Inferencer
CS 440 – Fall 2006

Revision 1.0

AssignedOctober 11, 2006
DueOctober 30, 2006
ExtensionNovember 1, 2006

1 Change Log

1.0 Initial Release.

2 Objectives

Your objectives are:

• Become comfortable using record types and disjoint types.

• Understand the unification algorithm.

• Become comfortable with the notation for semantic specifications.

• Understand the type-inference algorithm.

3 Background

One of the major objectives of this course is to provide you with the skills necessary to implement a language. There
are three major components to a language implementation: the parser, the internal representation, and the evaluator.
In this MP you will work on the middle piece, the internal representation.

An interpreter or a compiler represents an expression in a language with anAbstract Syntax Tree (AST), usually
implemented by means of a user-defined type. Functions can bewritten that use this type to perform evaluations,
preprocessing... anything that can or should be done with a language. In this MP, you will write some functions that
perform type inferencing using unification. This type-inferencer will appear again as a component in several future
MPs.

3.1 Type Inferencing

The pattern for type inferencing will be similar to the procedure you used in class to verify a type. The catch is that
you are not told the type ahead of time, you have to figure it outas you go. The procedure is as follows:

1. Infer the types of all the subexpressions. For each subexpression, you will get back a proof tree and a list of
constraints.

2. Create a new proof tree from the subexpressions.

3. Create a new set of constraints by taking the union of the constraints of the subexpressions. Add any new
constraints to this.

4. Return the new proof tree and new set of constraints.

1

The rules used for a type-inferencer are very similar to the ones used in class. They have one extra component, a
field for the constraints. Here’s an example:

Γ ⊢ e1 : τ1 | C1 Γ ⊢ e2 : τ2 | C2

Γ ⊢ e1 + e2 : int | {τ1 = int ; τ2 = int } ∪ C1 ∪ C2

The “|” is just some notation to separate the constraint from the expression. This rule says that if you add two
expressionse1 ande2, which have typeτ1 andτ2, then the type of the entire expression is integer. But in order for
this to work, we constrain the typesτ1 andτ2 to be of type integer. The final constraint is the union of the constraints
inferred from the subexpressions, along with the new constraints for the addition rule.

For example, suppose you want to infer the type offun x -> x + 2. In English, the reasoning would go like
this.

1. LetΓ = {}.

2. Examinefun x -> x + 2. We don’t know whatx will be, so we let it have type’1. Add that toΓ and
infer the type of the body...

(a) Examinex + 2. We need to infer the subtypes.

i. Examinex. Γ says thatx has type’1. We do not need to add constraints here.

ii. Examine2. This is an integer. We don’t need to add constraints here.

(b) We combine these inferences together to make a new proof-tree, and say that the result type isint. Also,
we need to constrain’1 to be typeint, andint to be typeint. (Yes, that last one was trivial, but the
rule says we have to do it. It will be removed later.)

3. Now we’re ready to set the type of the whole expression. Thevariablex has type’1, and the output has type
int, so the whole expression has type’1 -> int.

4. Our constraints say to rewrite’1 asint everywhere. We do that, and get a final type ofint -> int.

Here’s a sample run from the MP for the same example.

niceInfer Gamma.empty (FunExp("x",ArithExp(PlusOp,IntExp 2,VarExp "x")));;
{} |- fun x -> 2 + x : (’1 -> int)

{x:’1; } |- 2 + x : int
{x:’1; } |- 2 : int
{x:’1; } |- x : ’1

Constraints: [int --> int; ’1 --> int;]
Unifying...New Constraints: [’1 --> int;]
Substituting...
{} |- fun x -> 2 + x : (int -> int)

{x:int; } |- 2 + x : int
{x:int; } |- 2 : int
{x:int; } |- x : int

- : unit = ()

4 Given Code

You are given some initial code in a fileexpressions.ml. Do not modify this file. We may use our own version
for grading, or we may need to change some of the implementation.

2

4.1 Types

Expressions

As mentioned above, an interpreter represents an expression using an AST. We define a typeexp to represent
our language. Not all the elements of the final language are here yet, just enough to give you a feel for the
joys of type-checking. Most of the constructors should be self-explanatory. The constructors that takestring
arguments (FunExp, LetInExp, LetRecInExp, andVarExp) use the string to represent variable names.

There is a simultaneously defined typeop that has two constructors, one for integer arithmetic, and one for
equality tests. The real interpreter will have a lot more of these, but for type checking this is sufficient.

There are companion functionsshowOp andshowExp that convert these types into string representations.

Types

In order to express the type of an expression we need a type definition to represent types. Again, these should
all be familiar. ThePolyType constructor takes an integer and represents the’a style polymorphic types.
The constructorBotType represents a type called “bottom” (written⊥) and can represent a type error or an
unknown type, depending on your mood.

Again, there is a display function for this type.

String Maps

We need an environment to store the types of variables. We will implement it using aMap functor. See
http://caml.inria.fr/ocaml/htmlman/libref/Map.Make.html for more information about theMap functor. For now,
we will just say that a functor takes a module and defines another module. The name of the environment module
is Gamma, a map from strings to types.

There is ashowGamma function to display the contents of a type environment.

Type Judgments

From lecture, you know that a type judgment has the formΓ ⊢ e : τ . Thejudgment type is a record that has
three fields:gamma, exp, andresult, representingΓ, e, andτ , respectively.

The functionshowJudgment returns a string representation.

Proof Trees

A proof tree is a list of assumptions followed by a conclusion. The assumptions are themselves proof trees, and
the conclusion is a type judgment. To represent this we have atypetree which has two fields:assume, a
tree list, andconclude, a judgment.

Guess whatshowTree does? Actually, it’s more complicated than the other display functions. It shows the
conclusion first, and then the assumptions. Furthermore, the assumptions are indented two spaces in, with help
from thespaces function.

4.2 Tests

The filetest.ml has a bunch of tests in it. You will find it useful to go over thiscode. ThedoTests function takes
a list of tests and runs them. There are a lot of tests in this file.

5 Problems

We will give you a filemp3-given.ml that you should copy tomp3.ml. There are a few functions inside it which
proved useful to the staff when writing the solution.

3

http://caml.inria.fr/ocaml/htmlman/libref/Map.Make.html

Add your functions to the file. To test them, start up an OCaml interactive session, type#use "expressions.ml";;
to load the expressions file, and then#use "mp3.ml" to load your file. DoNOT put a#use "expressions.ml";;
in yourmp3.ml file. If you really want to load both in one go, make a third file,and put both#use statements in that
instead.

5.1 Unification

The first thing you need to do to write a unification-based typeinferencer is to write a unifier. A unifier takes a list
of pairs of types that are supposed to be equal. Functions, integers, lists, etc. will be the terms in this system, and
PolyTypes will represent variables.

You will remember from lecture that the unification algorithm consists of four transformations. These transforma-
tions can be expressed in terms of how an action on the first element of the unification problem affects the remaining
elements.

Given a unification problemC, consisting of a head(s, t) and tailC ′, there are five cases to consider.

1. If s is a variable, ands does not occur int, output(s, t) as part of the solution. Substitutes with t in C ′.

2. If t is a variable, andt does not occur ins, output(t, s) as part of the solution. Substitutet with s in C ′.

3. If s = FunType(s1, s2) andt = FunType(t1, t2), then add(s1, t1) and(s2, t2) to C ′. Discard(s, t). You
will do similar things for list types and pair types.

4. If s andt are not variables or “functions” as above, and if they are equal, discard the pair.

5. If none of the above cases apply, it is a unification error.

Problems

1. Write a functioncontains : int -> ExpType -> bool. The first argument is the integer component
of aPolyType. The second is a target expression. The output indicates whether the variable occurs within the
target. This function is used in cases 1 and 2, and prevents recursive types.

contains 1 (FunType(PolyType 1, PolyType 1));;
- : bool = true
contains 1 (FunType(PolyType 2, PolyType 3));;
- : bool = false

2. Write a functionsubstitute : int -> ExpType -> ExpType -> ExpType. The first argument is
the integer component of aPolyType, the second is the replacement value. The third argument is the expression
in which to perform the substitution.

substitute 1 IntType (FunType(PolyType 1, PolyType 1));;
- : expType = FunType (IntType, IntType)
substitute 1 IntType (FunType(PolyType 2, PolyType 3));;
- : expType = FunType (PolyType 2, PolyType 3)

3. Now you are ready to write the unification function. Here’sa sample run, based on the example given during the
unification lecture.

4

unify;;
- : (expType * expType) list -> (expType * expType) list = <fun>
unify [PolyType 1, ListType IntType;

FunType(PolyType 1, PolyType 1), FunType(PolyType 1, PolyType 2)];;
- : (expType * expType) list =
[(PolyType 1, ListType IntType); (PolyType 2, ListType IntType)]

5.2 Inferencing

You are now ready to start writing the type inferencer. We give you one rule for free, to help you get started. The
integer rule is:

Γ ⊢ n : int | {}assumingn is an integer.

The source code:

28 let rec infer gamma exp =
29 match exp with
30 | IntExp _ ->
31 { assume = [];
32 conclude = { gamma = gamma;
33 exp = exp;
34 result = IntType } },
35 []
36 | _ -> raise (Failure "Expression not recognized")

There are no assumptions, so theassume field is left blank. Also,gamma andexp are copied as-is. Also, the
final [] indicates that there are no constraints.

Here’s an example of usinginfer:

infer Gamma.empty (IntExp 3);;
- : tree * (expType * expType) list =
(assume = []; conclude = gamma = <abstr>; exp = IntExp 3; result = IntType,
[])

There are two functions,showTree andshowConstraints which will print these out in a nicer format. There
is also a functionniceInfer which does the same thing, but prints a report of what’s goingon:

niceInfer Gamma.empty (IntExp 3);;
{} |- 3 : int
Constraints: []
Unifying...New Constraints: []
Substituting...
{} |- 3 : int
- : unit = ()

Problems

4. Implement the rule for booleans.

Γ ⊢ n : bool | {} assumingn is a boolean.

5

niceInfer Gamma.empty (BoolExp true);;
{} |- true : bool
Constraints: []
Unifying...New Constraints: []
Substituting...
{} |- true : bool
- : unit = ()

5. The Variable Rule is:

Γ ⊢ x : τ | {}(if x : τ ∈ Γ)

TheGamma.mem andGamma.find functions may prove to be useful to you.

let g1 = Gamma.add "x" IntType Gamma.empty;;
val g1 : expType Gamma.t = <abstr>
niceInfer g1 (VarExp "x");;
{x:int; } |- x : int
Constraints: []
Unifying...New Constraints: []
Substituting...
{x:int; } |- x : int
- : unit = ()

6. Implement functions. The function rule is this:

Γ ∪ {x : τ1} ⊢ e1 : τ2 | C

Γ ⊢ fun x −>e1 : τ1 → τ2 | C

Notice that you have to copy the constraint given by the assumption into the conclusion.

You will need to create a newPolyType to write this function. The given functionnewPolyType : unit -> expType
will do this for you. You can reset the counter withresetCounter : unit -> unit.

niceInfer g1 (FunExp("y",VarExp "x"));;
{x:int; } |- fun y -> x : (’1 -> int)

{x:int; y:’1; } |- x : int
Constraints: []
Unifying...New Constraints: []
Substituting...
{x:int; } |- fun y -> x : (’1 -> int)

{x:int; y:’1; } |- x : int
- : unit = ()
niceInfer g1 (FunExp("y",VarExp "y"));;
{x:int; } |- fun y -> y : (’1 -> ’1)

{x:int; y:’1; } |- y : ’1
Constraints: []
Unifying...New Constraints: []
Substituting...
{x:int; } |- fun y -> y : (’1 -> ’1)

{x:int; y:’1; } |- y : ’1
- : unit = ()

6

7. Implement arithmetic. There are two rules, one for addition and one for equals.

Γ ⊢ e1 : τ1 | C1 Γ ⊢ e2 : τ2 | C2

Γ ⊢ e1 + e2 : int | {τ1 = int ; τ2 = int } ∪ C1 ∪ C2

Γ ⊢ e1 : τ1 | C1 Γ ⊢ e2 : τ2 | C2

Γ ⊢ e1 = e2 : bool | {τ1 = int ; τ2 = int } ∪ C1 ∪ C2

Notice that these are the first in which you will add constraints.

niceInfer g1 (ArithExp(PlusOp,VarExp "x",IntExp 3));;
{x:int; } |- x + 3 : int

{x:int; } |- x : int
{x:int; } |- 3 : int

Constraints: [int --> int; int --> int;]
Unifying...New Constraints: []
Substituting...
{x:int; } |- x + 3 : int

{x:int; } |- x : int
{x:int; } |- 3 : int

- : unit = ()
niceInfer g1 (ArithExp(EqOp, VarExp "x",IntExp 3));;

At this point, you can do “real” type checking:

niceInfer Gamma.empty (FunExp("x",ArithExp(PlusOp,VarExp "x",VarExp "x")));;
{} |- fun x -> x + x : (’1 -> int)

{x:’1; } |- x + x : int
{x:’1; } |- x : ’1
{x:’1; } |- x : ’1

Constraints: [’1 --> int; ’1 --> int;]
Unifying...New Constraints: [’1 --> int;]
Substituting...
{} |- fun x -> x + x : (int -> int)

{x:int; } |- x + x : int
{x:int; } |- x : int
{x:int; } |- x : int

- : unit = ()

8. The next rule to implement isif. The rule says that the conditional part must be boolean, andthat the second and
third subexpressions can be any type at all, as long as they are the same.

Γ ⊢ e1 : τ1|C1 Γ ⊢ e2 : τ2|C2 Γ ⊢ e3 : τ3|C3

Γ ⊢ if e1 then e2 else e3 : τ3 | {τ1 = bool ; τ2 = τ3} ∪ C1 ∪ C2 ∪ C3

niceInfer g1 (IfExp (ArithExp (EqOp, VarExp "x", IntExp 3),
IntExp 2, IntExp 4));;

{x:int; } |- if x = 3 then 2 else 4 : int
{x:int; } |- x = 3 : bool

7

{x:int; } |- x : int
{x:int; } |- 3 : int

{x:int; } |- 2 : int
{x:int; } |- 4 : int

Constraints: [bool --> bool; int --> int; int --> int; int --> int;]
Unifying...New Constraints: []
Substituting...
{x:int; } |- if x = 3 then 2 else 4 : int

{x:int; } |- x = 3 : bool
{x:int; } |- x : int
{x:int; } |- 3 : int

{x:int; } |- 2 : int
{x:int; } |- 4 : int

- : unit = ()

9. Pairs are easy, because you can put anything into them. Butlists have to be checked to make sure that all the
elements have the same type.

Γ ⊢ e1 : τ1 | C1 Γ ⊢ e2 : τ2 | C2

Γ ⊢ (e1, e2) : τ1 × τ2 | C1 ∪ C2

Γ ⊢ e1 : τ1 | C1 · · · Γ ⊢ en : τ2 | C2

Γ ⊢ [e1; · · · en] : τ1 list | {τ1 = τ2; τ1 = τ3; · · · ; τ1 = τn} ∪ C1 · · · ∪ Cn

The rule for empty lists is slightly different, and as left asan exercise.

let x = VarExp "x";;
val x : exp = VarExp "x"
niceInfer g1 (PairExp(x,x));;
{x:int; } |- (x,x) : (int * int)

{x:int; } |- x : int
{x:int; } |- x : int

Constraints: []
Unifying...New Constraints: []
Substituting...
{x:int; } |- (x,x) : (int * int)

{x:int; } |- x : int
{x:int; } |- x : int

- : unit = ()
niceInfer Gamma.empty (ListExp []);;
{} |- [] : ’1 list
Constraints: []
Unifying...New Constraints: []
Substituting...
{} |- [] : ’1 list
- : unit = ()
niceInfer g1 (ListExp [IntExp 3; x]);;
{x:int; } |- [3; x;] : int list

{x:int; } |- 3 : int

8

{x:int; } |- x : int
Constraints: [int --> int;]
Unifying...New Constraints: []
Substituting...
{x:int; } |- [3; x;] : int list

{x:int; } |- 3 : int
{x:int; } |- x : int

- : unit = ()

10. Implement function application. The rule is

Γ ⊢ e1 : τ1 | C1 Γ ⊢ e2 : τ2 | C2

Γ ⊢ e1 e2 : τx | {τ1 = τ2 → τx} ∪ C1 ∪ C2

, for some newτx

You will infer the type of the function and the argument, and then add a constraint that the input of the function
needs to be the same type as the argument.

let g2 = Gamma.add "y" BoolType g1;;
val g2 : expType Gamma.t = <abstr>
let g3 = Gamma.add "f" (FunType(IntType,BoolType)) g2;;
val g3 : expType Gamma.t = <abstr>
niceInfer g3 (AppExp(f, IntExp 3));;
{f:(int -> bool); x:int; y:bool; } |- f 3 : ’1

{f:(int -> bool); x:int; y:bool; } |- f : (int -> bool)
{f:(int -> bool); x:int; y:bool; } |- 3 : int

Constraints: [(int -> bool) --> (int -> ’1);]
Unifying...New Constraints: [’1 --> bool;]
Substituting...
{f:(int -> bool); x:int; y:bool; } |- f 3 : bool

{f:(int -> bool); x:int; y:bool; } |- f : (int -> bool)
{f:(int -> bool); x:int; y:bool; } |- 3 : int

- : unit = ()
niceInfer Gamma.empty (AppExp(FunExp("x", VarExp "x"), IntExp 3));;
{} |- fun x -> x 3 : ’2

{} |- fun x -> x : (’1 -> ’1)
{x:’1; } |- x : ’1

{} |- 3 : int
Constraints: [(’1 -> ’1) --> (int -> ’2);]
Unifying...New Constraints: [’1 --> int; ’2 --> int;]
Substituting...
{} |- fun x -> x 3 : int

{} |- fun x -> x : (int -> int)
{x:int; } |- x : int

{} |- 3 : int
- : unit = ()

11. Finally, implementlet andlet rec.

9

Γ ⊢ e1 : τ1 | C1 Γ ∪ {x : τ1} ⊢ e2 : τ2 | C2

Γ ⊢ let x = e1 in e2 : τ2 | C1 ∪ C2

Γ ∪ {x : τx} ⊢ e1 : τ1 | C1 Γ ∪ {x : τx} ⊢ e2 : τ2 | C2

Γ ⊢ let rec x = e1 in e2 : τ2 | {τx = τ1} ∪ C1 ∪ C2

niceInfer Gamma.empty (LetInExp("x", IntExp 3, VarExp "x"));;
{} |- let x = 3 in x : int

{} |- 3 : int
{x:int; } |- x : int

Constraints: []
Unifying...New Constraints: []
Substituting...
{} |- let x = 3 in x : int

{} |- 3 : int
{x:int; } |- x : int

- : unit = ()
niceInfer Gamma.empty (LetRecInExp("x", IntExp 3, VarExp "x"));;
{} |- let rec x = 3 in x : ’1

{x:’1; } |- 3 : int
{x:’1; } |- x : ’1

Constraints: [’1 --> int;]
Unifying...New Constraints: [’1 --> int;]
Substituting...
{} |- let rec x = 3 in x : int

{x:int; } |- 3 : int
{x:int; } |- x : int

- : unit = ()

6 Conclusions

Congratulations! You now have a Hindley-Milner type system, very much like the one used in OCaml. By doing
this, we hope you have learned not only about type-checking and unification, but also will be able to understand what
happens when you give code to the compiler to type-check, andwhat the error messages mean. For that matter, one
thing to think about is just how difficult it is to write coherent error messages relating to type errors.

10

	Change Log
	Objectives
	Background
	Type Inferencing

	Given Code
	Types
	Tests

	Problems
	Unification
	Inferencing

	Conclusions

