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Strongly vs. Weakly Typed §1 Why Type Checking is Good

Strongly Typed Languages
# e.g., ML, Haskell, most of C++, C
# You have to declare all your types at the beginning
# No type checks during run-time (faster, safer code)
Weakly Typed Languages
® e.g., Perl, Lisp, some parts of Java
» \ery flexible programming
# Types must be checked at run-time or Bad Things happen
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Objectives 80 Objectives

In order to express the meaning of a program, we need a formal
language to capture these meanings. One way to express meaning
is to say something about the types of the expressions. By the end
of lecture, you should know

# what the word “semantics” means.

#® how to structure a proof-tree

# how use the type rules to prove the type of an expression

# write your own type rule for an expression
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Other advantages of strong typing... §1 Why Type Checking is Good

Engineering
# A program that type-checks is likely to be correct.
# Types constrain the use of a function.
Safety ® Every try casting an integer into a pointer in C?
int i = 5;
*((int *)i) = 10;

i

N

® Atype error in an untyped language can be very hard to
detect.

Theory
# Itis much easier to verify the operation of type-correct code.
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Parts of a Formal System §2 Formal Systems

To create a formal system, you must specify the following:
# A set of symbols or an alphabet.
# A definition of a valid sentence.

® A set of transformation rules to make new valid sentences out
of old ones.

® A set of initial valid sentences.
You do NOT need:

# An interpretation of those symbols.
They are highly recommended, but the formal system can exist
and do its work without one.
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Example §2 Formal Systems

Symbols S, (,), Z, P, x, y.

Definition of an integer
# Oisaninteger. z and y are variables of type integer.
» if zis an integer, then S(x) is an integer.
» if z and y are integers, then P(z,y) is an integer.

Definition of the equality relation
# 0 has the equality relation with 0.

» If z and y have the equality relation, then S(z) and S(y) have
the equality relation.

# If o and 3, then we can write o = .
True Sentences If o = 3, then also

® P(S(a),B)= P, S(0)), and P(0,a) = «
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Example 82 Formal Systems

Symbols S, (,), Z, P, x, y.
Definition of a furbitz
® Zis afurbitz. z and y are variables of type furbitz.
» if z is a furbitz, then S(x) is a furbitz.
» if x and y are furbitzi, then P(z,y) is a furbitz.
Definition of the gloppit relation
® 7 has the gloppit relation with Z.

» If x and y have the gloppit relation, then S(x) and S(y) have
the gloppit relation.

® If « and 3, then we can write ags.

True Sentences If agf3, then also
® P(S(a), B)gP (e, S(B)),
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Format of a Type Judgment §3 Type Judgments

An type judgment has the following form:

I'ke:r

where T is a type environment, e is some expression, and 7 is a
type.

® I'Fiftruethen4else38:int
® I'Htrue &&fal se :bool

Note: the I is pronounced “turnstile” or “entails”.
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The Parts of a Rule §3 Type Judgments
Assumptions ................................ )
¥
I't+ ey : bool T'key:7 T'heg:T
I'Fif ettheneselseeg:r
Conclusion

# If arule has no assumptions, then it is called an axiom.
I'is a list of the form [z : 7;.. ].

e

# I may be left out if we don’t need a type environment (see next
slide).

# Basic Idea : The meaning of an expression can be determined
by combining the meaning of its parts.
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Simple Rules §4 Typing Rules

Arithmetic ) Booleans
I'kFe:int T'hkey:int I'ke;:bool T Fey:bool
I'kFe®ey:int I'e1&& ey : bool
Relations
The:int They:int I'Fe;:bool T'key:bool

't e ~eg:bool I'e1| | e :bool

® These are combination rules.
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Axioms §4 Typing Rules

Constants =" p (assuming n is an int)

Ftrue :bool

+fal se :bool
Variables [ ifx:7el

# The Variable Rule is actually a bit more complicated in real life,
but this form is sufficient.

® These are rules that are true no matter what the context is.
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Simple Example 84 Typing Rules

Suppose we want to prove that I' - (z x5 > 7)&& y : bool
Assumethat' = [z :int ;y:bool |

First thing: Write down the thing you are trying to prove, and put a
bar over it.

'k (z*5>T7)&y : bool
Look at the outermost expression. What kind of expression is this?
I'e1: bool '+ ey : bool

Use the rule
' e1&& ey : bool

You need the “and” rule. It will tell you which parts of the goal need
to be proved next.
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Simple Example 84 Typing Rules

Suppose we want to prove that ' - (z x5 > 7)&& y : bool .
Assumethatl = [z :int ;y:bool |

Write parts on top and put a bar over them as well.

'+xz%5>7:bool 'y :bool
'k (z*5>T7)&&y: bool

What to do next? Let’s work left to right. The expression we want
next is a “greater” expression. (Besides, the y expression is already
an axiom.)
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Simple Example §4 Typing Rules

Suppose we want to prove thatI' - (z x5 > 7)&& vy : bool .
Assumethatl = [z :int ;y:bool ]

At this point, there are no more subtrees to expand out. We are
done.

F'kxz:int F'E5:int
FFxz*x5:int PE7:int
'kx«+5>7:bool 'y :bool
I'kF(z*5>T7)&& y : bool
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Simple Example 84 Typing Rules

Suppose we want to prove that ' - (z x5 > 7)&& y : bool .
Assumethat = [z :int ;y:bool |

Following the “greater” rule, we break the x * 5 > 7 into two
parts.

F'Fx*x5:int 'E7:int
'+z%x5>7:bool 'y : bool
'k (zxx5>T7)&&y : bool

We will turn our attention to the multiplication now.
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Type Variables in Rules 84 Typing Rules

I' - e1 : bool I'key:7 T'heg:T
I'Fif egtheneselsees:r

# The 7 means “any type at all"—but whatever type r you pick it
has to be the same for the three places it shows up in this rule.

# So...theif rule says thati f can resultin any type, as long as
the t hen and el se branches have the same type. This could
even include functions.
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Function Application 84 Typing Rules

'te:mm—m—-—>m—>7 I'Fer:m I'ke,:m

I'Feejeg - e, T

# If you have a function of type 1 — 7 — --- — 7, — 7, and if
every argument e; has type 7;, then applying them in that order
will produce an expression of type 7.

'kmap : (¢ > f) - alist — fBlist T'Ff: (a— ) I'kFlst : alist

I'map f 1st : [ list

# For “compound types” like « | i st , we only substitute in the «
parts.
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Example: Type-checking Compose 84 Typing Rules

Type-checking compose:

FFfunfgx—>f(gx):(a—p) —>0—a)—0—70
Before using the function rule:

PU[xy 715 3% i) Fer T
FEfunx;---xp,—>e:m — -

— Ty — T
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Functions and Let §4 Typing Rules

# Important point: the rules describe types, but they also describe
when you may change T'.

# You may NOT change T" except as described!

_ TURL Ty 3% T e T
Functions

'Hfunxy - x,—>e:11 — -+
Tker:7 TU[z:7]Fey: 7
F'Flet x=ejiney:7

TU[z:7]Fer:7 TU[z:7]Fea:7

F'Flet recx=ejiney:7

—Tp —T

Let

Let Rec
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Example: Type-checking Compose 84 Typing Rules

Type-checking compose:

I'=TuU{f:(a—B)g:(§—a)x:6}Hf(gx) : 3
FFfunfgx—>1=f(gx):(a—p) —(0—a)—i—70

After using the function rule:

TU[RL 713 3%p T FerT

rfunx; - xp—>e:m — -+ —>7, —>7

Next, we use application.

'te:m—-m—--—>m—7 I'kFer:m I'e,:m

I'Feejey -+ ep: T
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Example: Type-checking Compose 84 Typing Rules

Type-checking compose:

I'Ef @ (a—p) I'F(gx) :(a)
I'=TU{f:(a—B)g: (= a)x:6}-f(gx) : 3
F'Ffunfgx—>f(gx):(a—=p) —0—a)—0—0

The rule for parens is trivial... can you write it?
Next, we’ll use application again.
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Example: Type-inferencing Compose 84 Typing Rules

At first, give everything a separate type.

FFfunfgx—>f(gx):a—pF—>30—7
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Example: Type-checking Compose 84 Typing Rules

Type-checking compose:

I'g: (6 — a) I'Fx:6
I'Ef @ (a—p) ' (gx) :a
I'=TuU{f:(a—fB);g: (6 —a)x:6}F£f(gx) : 3
F'Ffunfgx—>1=f(gx):(a—=p) —(0—a)—i—-0

We are done. These rules are meant mainly to verify a type, but
they can be used to infer a type as well.
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Example: Type-inferencing Compose 84 Typing Rules

Apply the function rule:

I'=TU{f:a;g:0; x:6}-f(gx) : v
'Ffunfgx—>f(gx):a—F—0—7y
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Example: Type-inferencing Compose 84 Typing Rules

Apply the application rule:

I'Ef @« ' (gx) 27?7
I'=TU{f:a; g: 3 x:6}-£(gx) : v
F'Ffunfgx—>f(gx):a—F—3J—7

From here we see that o needs to be a function type. Also, we need
to decide a type for (g x).

® Let(g x) have type v.
® Letf havetype a =v — 7.
We make the appropriate substitutions....
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Example: Type-inferencing Compose 84 Typing Rules

Apply the application rule:

I'-g:p3 IMFx:§
I'Ef :(v—97) I'(gx) :v
I'=TU{f:(r—19);g: 8 x:0}-£f(gx) : v
F'Ffunfgx—>=f(gx):(v—9)—=F—0—7y

» We know that 3 needs to be ¢ — v, because of our rule.

Substituting, we get...
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Example: Type-inferencing Compose 84 Typing Rules

Apply the application rule:

I'Hf i (v—7) I'F(gx) :v
I'=TU{f:(r—7);g:8 x:0}Ff(gx) : v
F'Ffunfgx—>f(gx):(r—7vy)—=F—0—7y

Now we use the application rule for (g x).
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Example: Type-inferencing Compose 84 Typing Rules

Apply the application rule:

I'kFg:(6—v) x4
I'Ef @ (v—7) I'-(gx) :v
I'=TU{f:(r—=7);g:(0—v); x:0}Ff(gx) : v
F'Ffunfgx—>f(gx):(v—-9)—0@—v)—J—n

Now we're done.
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Another example §4 Typing Rules

Here’s an example | showed one time | gave this lecture.

Mrid :7— 71

r'+10:in

MNrid 17— 1 '+ (id 10) : i nt
' Fid (id 10) : i nt
F'kFlet id =funx —>xin id (id 10) :i nt

Uz :7]kFx:7
F'kFfunx—>x :7—r1

® letl'=TuUlid : 7 — 7]
® What would be different if we'd used | et r ec instead?
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Problems

§5 Activity

Try these problems.

® ProvethatT'Hlet f=funz—>x+2inlet g=
funz—>z+3in(if 4>6then felseg)10:int

» Write a type judgment rule for the list operator : : .
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