
Higher Order Functions January 31, 2007

Illinois Institute of Technology Mattox Beckman

Higher Order Functions
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

Higher Order Functions – p. 1

Higher Order Functions January 31, 2007
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

The purpose of this lecture is to give you an introduction to higher
order functions. As a result of this lecture, you should. . .

know how to create higher order functions

understand the concept of closures

know how to use and write the following kinds of higher order
functions:

function combination — twice, compose
interface changes — curry, uncurry
list processing — fold_right, map, zip_with

Higher Order Functions – p. 2

Higher Order Functions January 31, 2007
§1 First Class Values

Illinois Institute of Technology Mattox Beckman

First Class Values

A type is said to be first class type when it can be

assigned to a variable, passed as a parameter, or returned as
a result

Examples:

APL: scalars, vectors, arrays

C: scalars, pointers, structures

C++: like C, but with classes

Scheme, Lisp, ML: scalars, lists, tuples, functions

The Kind of Data a Program Manipulates Changes the
Expressive Ability of a Program

Higher Order Functions – p. 3

Higher Order Functions January 31, 2007
§1 First Class Values

Illinois Institute of Technology Mattox Beckman

Compose

1 # let double x = x * 2;;
2 val double : int -> int = <fun>
3 # let inc x = x + 1;;
4 val inc : int -> int = <fun>
5 # let compose f g = fun x -> f (g x);;
6 val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b

These are higher order types

Important skill: be able to tell from the type of the function what
action it performs.

Try combining compose, inc, and double. What happens?

Higher Order Functions – p. 4

Higher Order Functions January 31, 2007
§1 First Class Values

Illinois Institute of Technology Mattox Beckman

Twice

1 # let twice f x = f (f x);;
2 val twice : (’a -> ’a) -> ’a -> ’a = <fun>
3 # twice inc 2;;
4 - : int = 4

Can you write twice using compose?

Higher Order Functions – p. 5

Higher Order Functions January 31, 2007
§2 Closures

Illinois Institute of Technology Mattox Beckman

Sectioning

A function that can create another function is a HOF.

The simplest way to make one is to pass in only some of the
arguments a function requires.

How can you interpret the type int -> float -> string?

When this happens to operators, it’s called sectioning.

1 # (+);;
2 - : int -> int -> int = <fun>
3 # let inc = (+) 1;;
4 val inc : int -> int = <fun>

Higher Order Functions – p. 6

Higher Order Functions January 31, 2007
§2 Closures

Illinois Institute of Technology Mattox Beckman

Free Variables

Consider what happens here....

1 # let plus x y = x + y;;
2 val plus : int -> int -> int = <fun>
3 # let inc = plus 1;; (* no parameter for y *)
4 val inc : int -> int = <fun>
5 # inc 5;;
6 - : int = 6
7 # let x = 20;;
8 val x : int = 20

What will be the result of inc 5 now?

Higher Order Functions – p. 7

Higher Order Functions January 31, 2007
§2 Closures

Illinois Institute of Technology Mattox Beckman

Closures

A closure is an expression (usually a function) along with an
environment.

1 # let plus x y = x + y;;
2 val plus : int -> int -> int = <fun>
3 # let inc = plus 1;; (* no parameter for y *)
4 val inc : int -> int = <fun>

inc = ⊳{x 7→ 1}, fun y => x + y ⊲

The “local” environment will have precedence over any other
variables that exist.

Note that no computation is done at all until all arguments are
received.

Higher Order Functions – p. 8

Higher Order Functions January 31, 2007
§3 Interfaces

Illinois Institute of Technology Mattox Beckman

Two Isomorphic Types

What is the difference between these two types?
int -> int -> int

(int * int) -> int

1 # let foo x y = x + y;;
2 val foo : int -> int -> int = <fun>
3 # let bar (x,y) = x + y;;
4 val bar : int * int -> int = <fun>

What will happen if we try to section these functions?

Higher Order Functions – p. 9

Higher Order Functions January 31, 2007
§3 Interfaces

Illinois Institute of Technology Mattox Beckman

Curried Functions

Type int -> int -> int is said to be in curried form.

What will the following function do? You are only given the type.

1 # let foo secret stuff
2 val foo : (’a * ’b -> ’c) -> ’a -> ’b -> ’c = <fun>

Can you figure out how to write this function?

Higher Order Functions – p. 10

Higher Order Functions January 31, 2007
§3 Interfaces

Illinois Institute of Technology Mattox Beckman

Curry and Uncurry

Here are the function definitions. You should memorize them.

1 # let curry f a b = f (a,b);;
2 val curry : (’a * ’b -> ’c) -> ’a -> ’b -> ’c = <fun>
3 # let uncurry f (a,b) = f a b;;
4 val uncurry : (’a -> ’b -> ’c) -> ’a * ’b -> ’c = <fun>

Now we can section an uncurried function....

1 # let bar (x,y) = x + y;;
2 val bar : int * int -> int = <fun>
3 # let inc = (curry bar) 1;;
4 val inc : int -> int = <fun>

Higher Order Functions – p. 11

Higher Order Functions January 31, 2007
§3 Interfaces

Illinois Institute of Technology Mattox Beckman

Flip

We can also do other weird things....

1 # let flip f a b = f b a;;
2 val flip : (’a -> ’b -> ’c) -> ’b -> ’a -> ’c = <fun>
3 # let (-) = flip (-);;
4 val (-) : int -> int -> int = <fun>
5 # 2 - 5;;
6 - : int = 3

Higher Order Functions – p. 12

Higher Order Functions January 31, 2007
§4 Lists and Functions

Illinois Institute of Technology Mattox Beckman

Combining Lists and Functions

You can make lists of functions.

Note that we don’t have to know in advance how many
functions we will be processing.

Why isn’t this type as general as compose?
(’a -> ’b) -> (’c -> ’a) -> ’c -> ’b

1 # let rec complist flst x =
2 match flst with
3 | [] -> x
4 | f::fs -> f (complist fs x);;
5 val complist : (’a -> ’a) list -> ’a -> ’a = <fun>
6 # complist [inc; double; inc] 4;;
7 - : int = 11

Higher Order Functions – p. 13

Higher Order Functions January 31, 2007
§4 Lists and Functions

Illinois Institute of Technology Mattox Beckman

Repeating a function n times

We do not have to know in advance how many times we will
process them.

1 # let rec fnth n f x =
2 match n with
3 | 0 -> x
4 | _ -> f (fnth (n-1) f x);;
5 val fnth : int -> (’a -> ’a) -> ’a -> ’a = <fun>
6 # fnth 5 inc 2;;
7 - : int = 7
8 # fnth 10 double 10;;
9 - : int = 10240

Higher Order Functions – p. 14

Higher Order Functions January 31, 2007
§5 Map

Illinois Institute of Technology Mattox Beckman

Mapping functions the hard way

Consider the following definitions. What do they have in common?

1 # let rec inclist lst = match lst with
2 | [] -> []
3 | x::xs -> x + 1 :: inclist xs;;
4 val inclist : int list -> int list = <fun>
5 # let rec doublelist lst = match lst with
6 | [] -> []
7 | x::xs -> x * 2 :: doublelist xs;;
8 val doublelist : int list -> int list = <fun>
9 # inclist [2;3;4];;

10 - : int list = [3; 4; 5]
11 # doublelist [2;3;4];;
12 - : int list = [4; 6; 8]

Higher Order Functions – p. 15

Higher Order Functions January 31, 2007
§5 Map

Illinois Institute of Technology Mattox Beckman

Mattox’s Rule of Computing

The computer exists to work for us; not us for the computer. If
you are doing something repetitive for the computer, you are

doing something wrong.
Stop what you’re doing and find out how to do it right.

Higher Order Functions – p. 16

Higher Order Functions January 31, 2007
§5 Map

Illinois Institute of Technology Mattox Beckman

Mapping functions the easy way

map f [x1; x2; . . . xn] = [f(x1); f(x2); . . . f(xn)]

1 # let rec map f lst = match lst with
2 | [] -> []
3 | x::xs -> f x :: map f xs;;
4 val map : (’a -> ’b) -> ’a list -> ’b list = <fun>
5 # map inc [2;3;4];;
6 - : int list = [3; 4; 5]
7 # map double [2;3;4];;
8 - : int list = [4; 6; 8]

inc and double have been transformed into recursive
functions.

How would you have done this in C++ or Java?

Higher Order Functions – p. 17

Higher Order Functions January 31, 2007
§5 Map

Illinois Institute of Technology Mattox Beckman

Related function: zip

1 # let rec zip f alst blst =
2 match alst,blst with
3 | [],_ -> []
4 | _,[] -> []
5 | a::aa, b::bb -> f a b :: zip f aa bb;;
6 val zip : (’a -> ’b -> ’c) -> ’a list -> ’b list
7 -> ’c list = <fun>
8 # zip (+) [2;3;4] [5;6;8];;
9 - : int list = [7; 9; 12]

10 # zip (fun a b -> a * a + b * b) [2;3;4] [3;4;5];;
11 - : int list = [13; 25; 41]

Side note: zip is sometimes known as map2 or zipwith.

Higher Order Functions – p. 18

Higher Order Functions January 31, 2007
§6 Folding functions

Illinois Institute of Technology Mattox Beckman

Folding functions

Consider the following definitions. What do they have in common?

1 # let rec sumlist lst = match lst with
2 | [] -> 0
3 | x::xs -> x + sumlist xs;;
4 val sumlist : int list -> int = <fun>
5 # let rec prodlist lst = match lst with
6 | [] -> 1
7 | x::xs -> x * prodlist xs;;
8 val prodlist : int list -> int = <fun>
9 # sumlist [2;3;4];;

10 - : int = 9
11 # prodlist [2;3;4];;
12 - : int = 24

Higher Order Functions – p. 19

Higher Order Functions January 31, 2007
§6 Folding functions

Illinois Institute of Technology Mattox Beckman

fold

fold f [x1; x2; . . . xn] z = f(x1, f(x2, f(. . . , z)))

1 # let rec fold_right f lst z = match lst with
2 | [] -> z
3 | x::xs -> f x (fold_right f xs z);;
4 val fold_right : (’a -> ’b -> ’b) -> ’a list
5 -> ’b -> ’b = <fun>
6 # fold_right (+) [2;3;4] 0;;
7 - : int = 9
8 # fold_right (fun a b -> a * a + b) [2;3;4] 0;;
9 - : int = 29

To use fold, we specify the function and the base case.

Higher Order Functions – p. 20

Higher Order Functions January 31, 2007
§6 Folding functions

Illinois Institute of Technology Mattox Beckman

Encoding Recursion using fold

1 # let rec flatten lst = match lst with
2 | [] -> []
3 | x::xs -> x @ flatten xs;;
4 val flatten : ’a list list -> ’a list = <fun>
5 # flatten [[2;3]; [3;4;5]; [6;0]];;
6 - : int list = [2; 3; 3; 4; 5; 6; 0]

Operation Recursive Call Base Case

1 let flatten lst =
2 fold_right (fun x y -> x @ y) lst [];;

Note well : the second parameter of the function argument to
fold_right represents the result of the recursive call.

Higher Order Functions – p. 21

Higher Order Functions January 31, 2007
§6 Folding functions

Illinois Institute of Technology Mattox Beckman

Another example

You can write map using fold.

1 # let fmap f lst =
2 fold_right (fun x y -> f x :: y) lst [];;
3 val fmap : (’a -> ’b) -> ’a list -> ’b list = <fun>
4 # fmap inc [2;3;4];;
5 - : int list = [3; 4; 5]

Note, the reverse direction will not work. Why not?

Higher Order Functions – p. 22

Higher Order Functions January 31, 2007
§7 Activity

Illinois Institute of Technology Mattox Beckman

Problems

1. Write a function flipuc that flips uncurried functions. Do this
using only flip, curry, and uncurry.

2. Write the function that has the type
(’a -> ’b) -> ’a * ’c -> ’b

3. Use fold_right to write a function that takes a list and then
returns it.

4. Use fold_right to write a function that takes a list and
removes all elements less than zero.

Higher Order Functions – p. 23

Higher Order Functions January 31, 2007
§7 Activity

Illinois Institute of Technology Mattox Beckman

Problem 1

Write a function flipuc that flips uncurried functions. Do this
using only flip, curry, and uncurry.

1 # let flipuc f = uncurry (flip (curry f));;
2 val flipuc : (’a * ’b -> ’c) -> ’b * ’a -> ’c = <fun>
3 # let sub (a,b) = a - b;;
4 val sub : int * int -> int = <fun>
5 # let sub = flipuc sub;;
6 val sub : int * int -> int = <fun>
7 # sub (5, 2);;
8 - : int = -3

Higher Order Functions – p. 24

Higher Order Functions January 31, 2007
§7 Activity

Illinois Institute of Technology Mattox Beckman

Problem 2

Write the function that has the type (’a -> ’b) -> ’a * ’c
-> ’b

1 # let pro1 f (x,y) = f x;;
2 val pro1 : (’a -> ’b) -> ’a * ’c -> ’b = <fun>
3 # pro1 inc (4,8);;
4 - : int = 5
5 # pro1 inc (4,"hi");;
6 - : int = 5

Higher Order Functions – p. 25

Higher Order Functions January 31, 2007
§7 Activity

Illinois Institute of Technology Mattox Beckman

Problem 3

Use fold to write a function that takes a list and then returns it.

1 # let cons a b = a :: b;;
2 val cons : ’a -> ’a list -> ’a list = <fun>
3 # let return lst = fold_right cons lst [];;
4 val return : ’a list -> ’a list = <fun>
5 # return [2;3;4];;
6 - : int list = [2; 3; 4]

Yeah, it’s pretty boring, but knowing the values that make the
identity is important.

Higher Order Functions – p. 26

Higher Order Functions January 31, 2007
§7 Activity

Illinois Institute of Technology Mattox Beckman

Problem 4

Use fold to write a function that takes a list and removes all
elements less than zero.

1 # let gtzero lst =
2 fold_right (fun a b -> if a >= 0
3 then a :: b
4 else b) lst [];;
5 val gtzero : int list -> int list = <fun>
6 # gtzero [2;-3;4;-65];;
7 - : int list = [2; 4]

A related function filter does the same thing, but takes a
parameter for the a >= 0 part.

Higher Order Functions – p. 27

	Objectives
	First Class Values
	Compose
	Twice
	Sectioning
	Free Variables
	Closures
	Two Isomorphic Types
	Curried Functions
	Curry and Uncurry
	Flip
	Combining Lists and Functions
	Repeating a function n times
	Mapping functions the hard way
	Mattox's Rule of Computing
	Mapping functions the easy way
	Related function: 	exttt {zip}
	Folding functions
	fold
	Encoding Recursion using 	exttt {fold}
	Another example
	Problems
	Problem 1
	Problem 2
	Problem 3
	Problem 4

