Memory and Copying Memory and Copying
Objectives 80 Objectives

By the end of this lecture, you should
M ernory and COpyl ng # Be able to explain how large data structures in a functional

language differ from similar structures in an imperative
environment

know how to simulate updates in a persistent environment
Dbe able to add undo functionality using persistent data

Mattox Beckman

beckman@i t. edu

Illinois Institute of Technology

lllinois Institute of Technology Mattox Beckman Memory and Copying ~p. 1 lllinois Institute of Technology Mattox Beckman Memory and Copying —p.2
Memory and Copying Memory and Copying
Type Constructors and Memory 81 Allocating Memory Memory Diagram 81 Allocating Memory
When a type constructor is invoked, it causes memory to be # let x = 4:: allocates 4
aIIocatcgd. _ 2|/# let n=1[];; allocates enpty li st
s Writing an integer. .. s|# let n2 =n;; does NOT allocate nenory
o Writing an empty list. .. 4«/# let | =x::n;; Acons cell is allocated,
» Using the cons operator :: ... s| but not the 4 or the enpty |ist
Writing down a variable does not cause memory to be
allocated. 41
let x = 4;; allocates 4 \
let n =1[];; allocates enpty Iist | N2
let n2 = n;; does NOT allocate nenory
let | = x::n;; Acons cell is allocated,
but not the 4 or the enpty |ist

lllinois Institute of Technology Mattox Beckman Mermory and Copying - p. 3 lllinois Institute of Technology Mattox Beckman Mermory and Copying - p. 4

® N o g M W N P

© ® N o g 9~ W N P

Memory and Copying

The Nature of Data in a Functional Language 82 Persistence

In a functional language, data is not changed, it is copied.

let incthree |st =

match I st with

a::b::ci:xs ->a+l :: b+l :: c+l1 :: Xs;;

val incthree : int list ->int list = <fun>
let exl =1[2;3;4,5;6;7];;
val ex1 : int list =[2; 3; 4; 5; 6; 7]
let ex2 = incthree exl;;
val ex2 : int list =[3; 4; 5; 5, 6; 7]

exi~{2] 343 34T 5] 670
exa—{3] 44| 5]+

lllinois Institute of Technology Mattox Beckman

Memory and Copying — p. 5

Memory and Copying

What if | wanted to delete all the zeros? §2 Persistence

let Istl =[2,0;3,0;4];;
val Istl : int list =[2; 0; 3; 0; 4];;
let rec delzero | st =

match |Ist with
0::xs -> del zero xs
| x::xs ->x :: delzero xs

| [T ->11:;
let Ist2 = del zero Istl;;
val Ist2 : int list =1[2;3;4];,;

Istl—»{Z‘-HO‘-Hﬂ.Ho‘.H”.@
iste~{2[3]+]

lllinois Institute of Technology Mattox Beckman

Memory and Copying — p. 7

© ® N o g M W N P

AW N R

Memory and Copying

Delete First Zero §2 Persistence

let Istl =1[2;0;3;0;4];;
val Istl : int list =[2; 0; 3; 0; 4]
let rec delzero Ist =

match Ist with
0::Xs -> Xs

| x::xs ->x :: delzero xs

| [1 ->11:;
let Ist2 = delzero Istl;;
val Ist2 : int list =[2; 3; 0; 4]

type tree

Isti—{ 2| .4~ 0 '3\~-Ho\._H4H_,@

lllinois Institute of Technology Mattox Beckman

Memory and Copying —p. 6

Memory and Copying

Trees and Persistent Structures §2 Persistence

Definition of Binary Search Tree
Branch of int ~ tree = tree

| Leaf of int | Enpty ;;
let t1 = Branch(15, Branch(8, Leaf 4, Leaf 10),
Branch(20, Leaf 18, Leaf 27)

15
N
8 20
/ N\ / N\
4 10 18 27

Suppose | want to add 19 to this tree?
(Note we are using a shorthand notation. . .)

lllinois Institute of Technology Mattox Beckman

Memory and Copying — p. 8

Memory and Copying Memory and Copying

add in scheme 82 Persistence add 82 Persistence
1(define (add tree item 1# let rec add itematree = match atree with
2 (if (eg? tree 'enpty) (rmake-leaf item 2 Empty -> Leaf item
3 (if (leaf? tree) 3 | Leaf old -> if itenxold then Branch(old, Leaf item Enpty)
4 (if (> (leaf-itemtree) item 4 el se Branch(ol d, Empty, Leaf item
5 (make-branch (leaf-itemtree) 5 | Branch(old,t1,t2) ->
6 (make-leaf item 'enpty) 6 if item< old then Branch(old, add itemtl, t2)
7 (make-branch (leaf-itemtree) 7 el se Branch(old, t1, add itemt?2)
8 "enpty (nmake-leaf item))
o (if (> (branch-itemtree) itemn 15 = 15 The black nodes
10 (make-branch (branch-itemtree) AN A are shared, the blue
1 (add (branch-leftt tree) item 8 20 8 20 nodes are new.
12 (branch-right tree)) / \ / \ / \ S\
13 (make- branch (branch-itemtree) 4 10 18 27 4 10 18 27
14 (branch-left tree) *
15 (add (branch-right tree) item)), Resultofl et t2 = add 19 t1 19

lllinois Institute of Technology Mattox Beckman

Memory and Copying ~ p. 9

Memory and Copying

Adding to a tree, part 2 82 Persistence

When a change is made to data, new nodes must be created
from the point of change to the root of the data.

lllinois Institute of Technology Mattox Beckman

Memory and Copying - p. 10

Memory and Copying

How can we use this? 83 Writing An Interpreter

At this point we can write an interpreter for a small language
with “undo” capability.

® Commands: Add, Show, Undo.

5,15 15«...... New Root é The old node t 1 is still ® What will we need?
u I N\ around, and points fo the s A way to process commands. We can use a data-type:
8 20 20 original tree (without the 19). 1/type command = Add of int | Show | Undo
VEANVARVANN
4 1018 18\ 27 » A notion of the current tree

Point of Change

Suppose we now add 9 to this tree, and assignittot 3?
(By the way, this is a trick question.)

lllinois Institute of Technology Mattox Beckman

Memory and Copying - p. 11

» A stack of past trees

lllinois Institute of Technology Mattox Beckman

Memory and Copying — p. 12

Memory and Copying

A Small Interpreter §3 Writing An Interpreter

Command List

Current Tree
‘ The Interpreter

Tr_ee Stack

1|l et eval comrands = B -
.| let rec aux tree commands stack =
3| match commands with
4 (Add i)::xs ->
5 aux (add i tree) xs (tree::stack)
s/ | Show :: xs ->
7 show tree ; aux tree xs stack
s/ | Undo :: xs ->
9 aux (List.hd stack) xs (List.tl stack)
| | [] -> print_string "Done\n" in
1| aux Enpty commands []

lllinois Institute of Technology Mattox Beckman Memory and Copying - p. 13

Memory and Copying

Problem 1 84 Activity

.12
t1 - ~15_ 15« 15<--1t3
/8\\ /;20\
4 10 10 18 18 27
9 19

lllinois Institute of Technology Mattox Beckman

Memory and Copying - p. 15

© ® N o g0 M W N P

S
w N P O

Memory and Copying

Problems 84 Activity

1. In the lecture we discussed the consequences of adding a
second new element to the tree. Draw the result of the
command (define t3 (add t2 9)).

t1 >15__ 15«

8 20 20
PN / /\
4 10 18 18
19

2. Write the del zer os function, but make it able to share the
data.

lllinois Institute of Technology Mattox Beckman

Memory and Copying - p. 14

Memory and Copying

Problem 2 84 Activity

| et rec getlLastZero |Ist pos match st with
| [] -> save
| 0::xs -> getlLastZero xs

| Xx::xs -> getlLastZero xs

save =

(1+pos) (1+pos)
(1+pos) save
let rec delzero Ist = match Ist with
| 0::xs -> del zero xs

| x::xs -> x :: delzero xs

| [T ->11:;

| et rec shareDel Zero Ist =
let last = getlLastZero Ist 0 O in
(del zero (take last Ist)) @(drop | ast

I'st);;

lllinois Institute of Technology Mattox Beckman

Memory and Copying - p. 16

Memory and Copying
Further Reading 84 Activity

If you like this, you will definitely want to see the work of Chris
Okasaki. For example:

Simple and Efficient Purely Functional Queues and Deques
Catenable Double-Ended Queues
Three algorithms on Braun trees

lllinois Institute of Technology Mattox Beckman Memory and Copying - p. 17

http://citeseer.nj.nec.com/okasaki95simple.html
http://citeseer.nj.nec.com/okasaki97catenable.html
http://citeseer.nj.nec.com/okasaki97functional.html

	Objectives
	Type Constructors and Memory
	Memory Diagram
	The Nature of Data in a Functional Language
	Delete First Zero
	What if I wanted to delete emph {all} the zeros?
	Trees and Persistent Structures
	add in scheme
	add
	Adding to a tree, part 2
	How can we use this?
	A Small Interpreter
	Problems
	Problem 1
	Problem 2
	Further Reading

