
CS 440 User-Defined Datatypes

1 Objectives

Even more powerful than the idea of recursion is the idea of abstraction—which is a lot easier to implement
if you can make your own types. Your goal after this lecture is to...

• Be able to describe the record type and the disjoint type.

• Be able to give an example of how each one is used.

• Be able to draw a memory diagram that is the result of allocating a variable of a disjoint type.

• Be able to use the match/with syntax to deconstruct a disjoint type.

• Be able to describe how data-structures in a functional language “recycle” data from previous versions
of the structure when a modification has been made.

2 Examples

2.1 Record Types

type name = { name : type [; name : type . . .] }

Name Labels

1 # type complex = { re : float; im : float };;
2 type complex = { re : float; im : float; }
3 # let cadd x y = { re = x.re +. y.re;

4 im = x.im +. y.im };;
5 val cadd : complex -> complex -> complex = <fun>

2.2 Disjoint Types

type name = Name [of type] [| Name [of type] . . .]

Name Constructors Arguments

• Note: Constructor names must be capitalized.

• Constructor names also must be unique.

1 # type contest = Rock | Scissors | Paper

2 # type velocity = MeterPerSecond of float

3 | FeetPerSecond of float;;

Mattox Beckman Page 1 Illinois Institute of Technology

CS 440 User-Defined Datatypes

2.3 Option Type

1 # type ’a option = Some of ’a | None;;

2 # let rec getItem key lst =

3 match lst with

4 | [] -> None note the type variables!

5 | (k,v)::xs -> if key = k then Some v

6 else getItem key xs;;

7 # getItem 3 [2,"french hens"; 3,"turtle doves"];;

8 - : string option = Some "turtle doves"

9 # getItem 5 [2,"french hens"; 3,"turtle doves"];;

10 - : string option = None

3 Problems

Here are some example problems which will be useful to study in preparation for the exam. Some of these
may be done in class.

1. Write a function to multiply complex numbers. Use the type definition we did in class.

2. Write the type defintion for a phone book entry? Assume we want to store a name, address, and phone
number, all as strings.

3. Write the type for a binary search tree. In this version, let a “node” be something that has data, and
a “leaf” does not have any data. Use parametric polymorphism.

4. For the BST type above, write find and add.

5. Write a disjoint type called ’a tsil, which is a singly linked list, only the link comes first, and the
data comes second. Have constructors Snoc and Lin.

6. For the tsil type above, write a function to convert back and forth with OCaml lists.

7. What does it mean when we say that a data-structure is handled using functional style? What are
some advantages and disadvantages of this style?

8. Write the ’a option type definition.

9. Write a function that adds two variables of type int option.

10. What is the use of the ’a option type?

Mattox Beckman Page 2 Illinois Institute of Technology

