
MP 2 — Higher Order Functions and
User-Defined Types

CS 440 – Fall 2006
Revision 1.1

Assigned September 20, 2006
Due September 29, 2006
Extension October 1, 2006

1 Objectives and Background

This MP is designed to give you experience in using the higherorder functions discussed in class. You will also use
some datatypes to model some nice data-structures, and at the end, you will write a simple interpreter.

2 Problems

To warm up, write down the definitions offold right , map, andzip . You can use these in your solutions, or use
theList library. To use the library version, prepend “List. ” at the beginning, e.g.,List.map .

2.1 Writing Higher Order Functions

1. Write the functionfilter f xx : (’a -> bool) -> ’a list -> ’a list which takes a predi-
catef and a listxx , and return the list of all the elements ofxx which satisfyf . Use recursion.

2. Write the functionforall f xx : (’a -> bool) -> ’a list -> bool which takes a predicatef
and a listxx , and returntrue if all of the elements ofxx satisfyf . Use recursion.

3. Write the functionexists f xx : (’a -> bool) -> ’a list -> bool which takes a predicatef
and a listxx , and returntrue if one or more of the elements ofxx satisfyf . Use recursion.

4. Write the functionmultimap ff xx : (’a -> ’a) list -> ’a list -> ’a list which takes
a list of functionsff and maps each of them to the listxx . Note thatmultimap [f0; f1; · · · ; fn] xx ≡

map f0 (map f1 (· · ·map fn xx) · · ·). Use recursion.

2.2 Writing Higher Order Functions, II

5. Write the functionfilter2 f xx : (’a -> bool) -> ’a list -> ’a list , but this time do
NOT use recursion.

1



6. Write the functionforall2 f xx : (’a -> bool) -> ’a list -> bool , but this time do NOT
use recursion.

7. Write the functionexists2 f xx : (’a -> bool) -> ’a list -> bool , but this time do NOT
use recursion.

8. Write the functionmultimap2 ff xx : (’a -> ’a) list -> ’a list -> ’a list , but this
time do NOT use recursion. (The body of this function can be written in only two tokens! Your solution can
be longer. Hint:fun x → f x ≡ f .)

2.3 Trees

Most programming languages will be stored internally as different kinds of trees. These problems will help you get
used to some of the techniques.

For the following problems, use this type:

type bst = Branch of int * bst * bst
| Empty

A “leaf” will be a branch with twoEmpty children.
Here’s a nice utility you can use.

let rec showbst t =
match t with
| Empty -> "x"
| Branch (i,left,right) -> "(" ˆ (string_of_int i) ˆ " " ˆ

(showbst left) ˆ " " ˆ (showbst right) ˆ
")"

9. Write the functionadd t i : bst -> int -> bst . If the element is already in the tree, return the tree
unchanged.

For the next problems it’s useful to have some sample trees around. Contemplate the following code:

let t1 = List.fold_right (fun a b -> add b a)
(List.reverse [4;2;6;1;3;5;7])
Empty;;

10. Write the functionfind t i : bst -> int -> bool .

11. Write the functiondelete t i : bst -> int -> bst .

12. Write the functionmapbst f t : (int -> int) -> bst -> bst .

2



13. Write the functionfoldbst f t z : (int -> ’a -> ’a -> ’a) -> bst -> ’a . The function
f will take three arguments: the integer of the branch, the result of a left recursion, and the result of a right
recursion. Thez value is what should get returned when anEmpty is encountered.

14. Usingmapbst , write a functionincbst which increments all the elements of the tree.

15. Usingfoldbst , write the functionsumbst t : bst -> int , which takes the sum of a bst.

16. Usingfoldbst , rewrite theshowbst function (call itshowbst2 ).

17. Usingfoldbst , write a functionisbst t : bst -> bool , which checks to see ift is in fact a legal
binary search tree.

Hint: You will find this easier if you declare your own type to keep track of the recursive results, and then make a
wrapper function to convert that result into a boolean. There are three kinds of recursive results: empties, ranges
(i.e., the subtree has values froma . . . b), and invalid.

If you get stuck, try writing it recursively first.

2.4 Interpreter

Here is a type for a calculator language.

type calc = Int of int
| BinOp of string * calc * calc
| UnOp of string * calc

18. Using the above type, write a calculator functioninterp : calc -> int . It should handle plus, minus,
times, and unary minus. You do not have to check for invalid inputs, but you may extend the calculator all you
like. In the next MP, you will use an environment to handle variables.

Hint: it’s easier to test if you save your programs to variables. For example, to save the expression2× 3+5, write
something like:

let p1 = BinOp("+",BinOp(" * ",Int 2, Int 3), Int 5)

Then all you have to do is callinterp p1 to test it.

3 Handing In

To turn in your program, commit the final version to the repository located at
http://host220.cns.iit.edu/svn/cs440/

Make sure your program will compile. If it doesn’t, you will not get credit for it.
If you don’t have time to finish for some reason, you get anautomatic extension. You don’t have to ask for it, and

you will not be penalized for taking it. However, we will not grant further extensions once the assignment has entered
the extension time unless it has been cleared in advance.

3


	Objectives and Background
	Problems
	Writing Higher Order Functions
	Writing Higher Order Functions, II
	Trees
	Interpreter

	Handing In

