
Continuation Passing Style

Illinois Institute of Technology Mattox Beckman

Continuation Passing Style
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

Continuation Passing Style – p. 1

Continuation Passing Style
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

It is possible to use functions to represent the control flow of a
program. This technique is called continuation passing style. After
today’s lecture, you should be able to

explain what CPS is,

give an example of a programming technique using CPS, and

transform a simple function from direct style to CPS.

Continuation Passing Style – p. 2

Continuation Passing Style
§1 A Motivating Example

Illinois Institute of Technology Mattox Beckman

The GCD Program

example1.ml
1 # let rec gcd a b =
2 match a,b with
3 a,0 -> a
4 | a,b when a<b -> gcd b a
5 | _ -> gcd b (a mod b);;

gcd 44 12 ⇒ gcd 12 8 ⇒ gcd 8 4 ⇒ gcd 4 0 ⇒ 4

The running time of this function is roughly O(lg a).

Continuation Passing Style – p. 3

Continuation Passing Style
§1 A Motivating Example

Illinois Institute of Technology Mattox Beckman

GCD of a list

example1.ml
1 # let rec gcdstar lst =
2 match lst with
3 [] -> 0
4 | x::xs -> gcd x (gcdstar xs);;
5 val gcdstar : int list -> int = <fun>
6 # gcdstar [44;12];;
7 - : int = 4
8 # gcdstar [44;12;80;6];;
9 - : int = 2

Question: What will happen if there is a 1 near the beginning of
the sequence?

Continuation Passing Style – p. 4

Continuation Passing Style
§1 A Motivating Example

Illinois Institute of Technology Mattox Beckman

Bad Solution I — Check and Return

1 # let rec gcdstar lst =
2 match lst with
3 [] -> 0
4 | 1::xs -> 1
5 | x::xs -> gcd x (gcdstar xs);;
6 val gcdstar : int list -> int = <fun>
7 # gcdstar [44;12;80;6];;
8 - : int = 2
9 # gcdstar [44;12;1;80;6];;

10 - : int = 1

This stops the computation, but a lot of work has already been
done.

Continuation Passing Style – p. 5

Continuation Passing Style
§1 A Motivating Example

Illinois Institute of Technology Mattox Beckman

Bad Solution II — Goto Statement

1 # 00 let rec gcdstar lst =
2 01 match lst with
3 02 [] -> 0
4 03 | 1::xs -> goto 5
5 04 | x::xs -> gcd x (gcdstar xs);;
6 05 return 1;;

Of course, this is nonsense.

Continuation Passing Style – p. 6

Continuation Passing Style
§1 A Motivating Example

Illinois Institute of Technology Mattox Beckman

Okay Solution – Prefiltering

example2.ml
1 let gcdstar lst =
2 let rec aux lst =
3 match lst with
4 [] -> 0
5 | x::xs -> gcd x (aux xs) in
6 if (List.for_all (fun x -> x != 1) lst)
7 then aux lst
8 else 1

Continuation Passing Style – p. 7

Continuation Passing Style
§2 Continuations

Illinois Institute of Technology Mattox Beckman

Terms

A function is in Direct Style when it return its result back to the
caller.

A Tail Call occurs when a function returns the result of another
function call without processing it first.

This is what is used in accumulator recursion.

A function is in Continuation Passing Style when it passes its
result to another function.

Instead of returning the result to the caller, we pass it
forward to another function.
Functions in CPS “never return”.

Continuation Passing Style – p. 8

Continuation Passing Style
§2 Continuations

Illinois Institute of Technology Mattox Beckman

Definition of a Continuation

A continuation is a function into which is passed the result of
the current function’s computation.

example3.ml
1 # let report x = print_int x; print_newline();;
2 val report : int -> unit = <fun>
3 # let plus a b k =
4 k (a + b);;
5 val plus : int -> int -> (int -> ’a) -> ’a = <fun>
6 # plus 20 22 report;;
7 42
8 # plus 20 22 (fun x -> plus 5 x report);;
9 47

Continuation Passing Style – p. 9

Continuation Passing Style
§2 Continuations

Illinois Institute of Technology Mattox Beckman

Continuation Solution

example4.ml
1 # let gcdstar lst k =
2 let rec aux lst newk = match lst with
3 [] -> newk 0
4 | 1::xs -> k 1
5 | x::xs -> aux xs
6 (fun res -> newk (gcd x res))
7 in aux lst k;;
8 val gcdstar : int list -> (int -> ’a) -> ’a = <fun>
9 # gcdstar [44;12;80;6] report;;

10 2
11 # gcdstar [44;12;1;80;6] report;;
12 1

Continuation Passing Style – p. 10

Continuation Passing Style
§2 Continuations

Illinois Institute of Technology Mattox Beckman

Standard Execution Trace

1 gcdstar [44;12;80] R ⇒ aux [44;12;80] R
2 aux [12;80] (fun r1 -> R (gcd 44 r1))
3 aux [80] (fun r2 -> (fun r1 -> R (gcd 44 r1))
4 (gcd 12 r2))
5 aux [] (fun r3 -> (fun r2 -> (fun r1 ->
6 R (gcd 44 r1)) (gcd 12 r2)) (gcd 80 r3))
7 (fun r3 -> (fun r2 -> (fun r1 -> R (gcd 44 r1))
8 (gcd 12 r2)) (gcd 80 r3)) 0
9 (fun r2 -> (fun r1 -> R (gcd 44 r1)) (gcd 12 r2))

10 (gcd 80 0)
11 (fun r2 -> (fun r1 -> R (gcd 44 r1)) (gcd 12 r2)) 80
12 (fun r1 -> R (gcd 44 r1)) (gcd 12 80)
13 (fun r1 -> R (gcd 44 r1)) 4
14 R (gcd 44 4) ⇒ R 4

Continuation Passing Style – p. 11

Continuation Passing Style
§2 Continuations

Illinois Institute of Technology Mattox Beckman

Abort Execution Trace

1 gcdstar [44;12;1;80] R ⇒ aux [44;12;1;80] R
2 aux [12;1;80] (fun r1 -> R (gcd 44 r1))
3 aux [1;80] (fun r2 -> (fun r1 -> R (gcd 44 r1))
4 (gcd 12 r2))
5 R 1

In this example, the computation is built up, but when a 1 is
encountered, the computation is simply discarded.

Continuation Passing Style – p. 12

Continuation Passing Style
§3 The CPS Transform

Illinois Institute of Technology Mattox Beckman

More Vocab!

Tail Position A subexpression s of expressions e, if it is evaluated,
will be taken as the value of e.

if (x>3) then x + 2 else x - 4

let x = 5 in x + 4

f (x * 3) — no tail position here.

Tail Call A function call that occurs in tail position.
if (h x) then h x else (x + g x)

Available A function call that can be executed by the current
expression. The fastest way to be unavailable is to be guarded
by an abstraction (anonymous function).

if (h x) then f x else (x + g x)

if (h x) then (fun x -> f x) else (x + g x)

Continuation Passing Style – p. 13

Continuation Passing Style
§3 The CPS Transform

Illinois Institute of Technology Mattox Beckman

The CPS Transform, Steps 1 and 2

Step 1 Add a continuation argument to any function call.

C[[let f arg = e]] → let f arg k = C[[e]]

The idea is that every function is going to take an extra
parameter. “To whom should I tell the result?”

Step 2 A simple expression in tail position should be passed to a
continuation instead of returned.

C[[return a]] → k a

assuming a is a constant or variable.

“Simple” = “No available function calls.”

Continuation Passing Style – p. 14

Continuation Passing Style
§3 The CPS Transform

Illinois Institute of Technology Mattox Beckman

The CPS Transform, Steps 3 and 4

Step 3 To a function call in tail position, pass the current
continuation.

C[[return f arg]] → C[[f arg k]]

The function “isn’t going to return,” so we need to tell it
where to put the result.

Step 4 A function call not in tail position needs to be built into a new
continuation. Be sure your new continuation calls the old one if
appropriate!

C[[return op (f arg)]] → C[[f arg (fun r − > k(C[[op]] r))]]

Continuation Passing Style – p. 15

Continuation Passing Style
§3 The CPS Transform

Illinois Institute of Technology Mattox Beckman

Example

before
1 # let rec foo lst =
2 match lst with
3 | [] -> b
4 | 0::xs -> foo xs
5 | x::xs -> (+) x (foo xs);;

after
1 # let rec foo lst k = (* rule 1 *)
2 match lst with
3 | [] -> k b (* rule 2 *)
4 | 0::xs -> foo xs k (* rule 3 *)
5 | x::xs -> foo xs (fun r -> k ((+) x r));;
6 (* rule 4 *)

Continuation Passing Style – p. 16

Continuation Passing Style
§4 Continations Example

Illinois Institute of Technology Mattox Beckman

Continuations Example

example5.ml
1 let add a b k = print_string "Add "; k (a + b);;
2 let sub a b k = print_string "Sub "; k (a - b);;
3 let report n = print_string "Answer is: ";
4 print_int n;
5 print_newline ();;
6 let idk n k = k n
7

8 type calc = Add of int | Sub of int

Continuation Passing Style – p. 17

Continuation Passing Style
§4 Continations Example

Illinois Institute of Technology Mattox Beckman

A Small Calculator

example5.ml
1 let rec eval lst k =
2 match lst with
3 | (Add x) :: xs -> eval xs (fun r -> add r x k)
4 | (Sub x) :: xs -> eval xs (fun r -> sub r x k)
5 | [] -> k 0
6

7 # eval [Add 20; Sub 5; Sub 7; Add 3; Sub 5] report;;
8 Sub
9 Add

10 Sub
11 Sub
12 Add
13 Answer is: 6

Continuation Passing Style – p. 18

Continuation Passing Style
§5 Higher Order Continuations

Illinois Institute of Technology Mattox Beckman

Continuations Can Take Multiple Arguments

1 # add 3 5 (fun r -> sub r 2 report);;
2 Add
3 Sub
4 Answer is: 6
5 # add 3 5 (fun r k -> sub r 2 k);;
6 Add
7 - : (int -> ’_a) -> ’_a = <fun>
8 # add 3 5 ((fun k r -> sub r 2 k) report);;
9 Add

10 Sub
11 Answer is: 6

Continuation Passing Style – p. 19

Continuation Passing Style
§5 Higher Order Continuations

Illinois Institute of Technology Mattox Beckman

Composing Continuations

Problem: suppose our calculator cannot handle negative numbers.
We need to change the order of the operations somehow.

example6.ml
1 let ordereval lst k =
2 let rec aux lst ka ks =
3 match lst with
4 | (Add x) :: xs -> aux xs
5 (fun r k -> add r x ka k) ks
6 | (Sub x) :: xs -> aux xs
7 ka (fun r k -> sub r x ks k)
8 | [] -> ka 0 ks k
9 in

10 aux lst idk idk

Continuation Passing Style – p. 20

Continuation Passing Style
§5 Higher Order Continuations

Illinois Institute of Technology Mattox Beckman

Sample Run

1 ordereval [Add 20; Sub 5; Sub 7; Add 3; Sub 5] report;;
2 Add
3 Add
4 Sub
5 Sub
6 Sub

Continuation Passing Style – p. 21

Continuation Passing Style
§5 Higher Order Continuations

Illinois Institute of Technology Mattox Beckman

Execution Trace

1 ordereval [Add 20; Sub 5; Sub 7] report
2 aux [Add 20; Sub 5; Sub 7] idk idk report
3 aux [Sub 5; Sub 7]
4 (fun r1 k1 -> add 20 r1 idk k1) idk report
5 aux [Sub 7]
6 (fun r1 k1 -> add r1 20 idk k1)
7 (fun r2 k2 -> sub r2 5 idk k2) report
8 aux []
9 (fun r1 k1 -> add r1 20 idk k1)

10 (fun r3 k3 -> sub r3 7
11 (fun r2 k2 -> sub r2 5 idk k2) k3)
12 report

Continuation Passing Style – p. 22

Continuation Passing Style
§5 Higher Order Continuations

Illinois Institute of Technology Mattox Beckman

Execution Trace II

1 aux []
2 (fun r1 k1 -> add r1 20 idk k1)
3 (fun r3 k3 -> sub r3 7
4 (fun r2 k2 -> sub r2 5 idk k2) k3) report
5 (fun r1 k1 -> add r1 20 idk k1) 0
6 (fun r3 k3 -> sub r3 7
7 (fun r2 k2 -> sub r2 5 idk k2) k3) report
8 add 0 20 idk (* remember idk n k = k n *)
9 (fun r3 k3 -> sub r3 7

10 (fun r2 k2 -> sub r2 5 idk k2) k3) report
11 idk 20
12 (fun r3 k3 -> sub r3 7
13 (fun r2 k2 -> sub r2 5 idk k2) k3) report

Continuation Passing Style – p. 23

Continuation Passing Style
§5 Higher Order Continuations

Illinois Institute of Technology Mattox Beckman

Execution Trace III

1 idk 20
2 (fun r3 k3 -> sub r3 7
3 (fun r2 k2 -> sub r2 5 idk k2) k3) report
4 (fun r3 k3 -> sub r3 7
5 (fun r2 k2 -> sub r2 5 idk k2) k3) 20 report
6 sub 20 7 (fun r2 k2 -> sub r2 5 idk k2) report
7 (fun r2 k2 -> sub r2 5 idk k2) 13 report
8 sub 13 5 idk report
9 idk 8 report

10 report 8

Continuation Passing Style – p. 24

Continuation Passing Style
§6 Activity

Illinois Institute of Technology Mattox Beckman

Problems

The gcdstar example didn’t go as far as it could have,
because the function gcd was left in direct style. Transform gcd
into CPS, and then write the gcdstar function in CPS to use it.
It will look very similar to the lecture CPS version of gcdstar.

Suppose now we want to perform multiplications, and we want
to do them after we’ve done all the additions and subtractions.
Write the necessary modifications.

Now suppose we want to do an early abort if we detect a
multiply by zero. How do you do that?

Continuation Passing Style – p. 25

Continuation Passing Style
§6 Activity

Illinois Institute of Technology Mattox Beckman

Problem 1

Here is the code for gcd using CPS.

1 # let gcd a b k =
2 let rec aux a b =
3 match a,b with
4 | a,0 -> k a
5 | a,b when a<b -> aux b a
6 | _ -> aux b (a mod b);;

Continuation Passing Style – p. 26

Continuation Passing Style
§6 Activity

Illinois Institute of Technology Mattox Beckman

Problem 1, ctd

Here is the code for gcdstar that uses it.

1 # let gcdstar lst k =
2 let rec aux lst newk = match lst with
3 [] -> newk 0
4 | 1::xs -> k 1
5 | x::xs -> aux xs
6 (fun res -> gcd x res newk)
7 in aux lst k;;
8 val gcdstar : int list -> (int -> ’a) -> ’a = <fun>

Continuation Passing Style – p. 27

Continuation Passing Style
§6 Activity

Illinois Institute of Technology Mattox Beckman

Problem 2

1 let ordereval lst k =
2 let rec aux lst ka ks km =
3 match lst with
4 | (Add x)::xs -> aux xs
5 (fun r k -> add r x ka k) ks km
6 | (Sub x)::xs -> aux xs
7 ka (fun r k -> sub r x ks k) km
8 | (Mul x)::xs -> aux xs
9 ka ks (fun r k -> mul r x km k)

10 | [] -> ka 0 ks km k
11 in
12 aux lst idk idk idk

Continuation Passing Style – p. 28

Continuation Passing Style
§6 Activity

Illinois Institute of Technology Mattox Beckman

Problem 3

1 let ordereval lst k =
2 let rec aux lst ka ks km =
3 match lst with
4 | (Add x)::xs -> aux xs
5 (fun r k -> add r x ka k) ks km
6 | (Sub x)::xs -> aux xs
7 ka (fun r k -> sub r x ks k) km
8 | (Mul x)::xs ->
9 if x = 0 then k 0

10 else aux xs
11 ka ks (fun r k -> mul r x km k)
12 | [] -> ka 0 ks km k
13 in
14 aux lst idk idk idk

Continuation Passing Style – p. 29

	Objectives
	The GCD Program
	GCD of a list
	Bad Solution I --- Check and Return
	Bad Solution II --- Goto Statement
	Okay Solution -- Prefiltering
	Terms
	Definition of a Continuation
	Continuation Solution
	Standard Execution Trace
	Abort Execution Trace
	More Vocab!
	The CPS Transform, Steps 1 and 2
	The CPS Transform, Steps 3 and 4
	Example
	Continuations Example
	A Small Calculator
	Continuations Can Take Multiple Arguments
	Composing Continuations
	Sample Run
	Execution Trace
	Execution Trace II
	Execution Trace III
	Problems
	Problem 1
	Problem 1, ctd
	Problem 2
	Problem 3

