
λ-Calculus

Illinois Institute of Technology Mattox Beckman

λ-Calculus
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

λ-Calculus – p. 1

λ-Calculus
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

Subtitle: “Everything is Really a Function”

The purposes of this lecture is to demonstrate how functions
themselves can represent arbitrary data structures.

Know the three constructs of λ-calculus.

Know the competitive advantage of λ-calculus.

Know how to use functions to represent integers.
Know how to write addition, multiplication, and
exponentiation.

Know how to use functions to represent arbitrary types.
booleans
pairs
lists λ-Calculus – p. 2

λ-Calculus
§1 λ-Calculus

Illinois Institute of Technology Mattox Beckman

The λ-Calculus

Contains three kinds of things:
1. Variables: x

2. Functions: λx.x

3. Application: (λx.x) y

... and nothing else!

“We don’t need no stinking integers!”

This language is Turing Complete.

Used extensively in research. The “little white mouse” of
computer science.

We can implement this very easily in OCaml.
λx.x = fun x -> x

λ-Calculus – p. 3

λ-Calculus
§1 λ-Calculus

Illinois Institute of Technology Mattox Beckman

Semantic Rules version 1

The semantics of λ-calculus are very easy. Remember that M,N,P
are expressions, V is a value.

Variables x ⇓ x

Functions λx.M ⇓ λx.M

Application
M ⇓ λx.P N ⇓ V

M N ⇓ [V/x]P

What can you tell about this language?

λ-Calculus – p. 4

λ-Calculus
§1 λ-Calculus

Illinois Institute of Technology Mattox Beckman

Semantic Rules version 2

Here’s another version of λ-calculus.

Variables x ⇓ x

Functions λx.M ⇓ λx.M

Application
M ⇓ λx.P

M N ⇓ [N/x]P

What is different about this version of the language?

We will add one “rule” to these:
M ⇓ λx.N N ⇓ V

M ⇓ λx.V
This is known as reduction, as opposed to evaluation. Can you see
why this rule is not valid?

λ-Calculus – p. 5

λ-Calculus
§2 Church Numerals

Illinois Institute of Technology Mattox Beckman

What is a Number?

The Lambda Calculus doesn’t have numbers.

A number n can be thought of as a potential: someday we are
going to do something n times.

f0 = fun f x -> x

f1 = fun f x -> f x

f2 = fun f x -> f (f x)

f3 = fun f x -> f (f (f x))

A numeral n takes a func-
tion and a value, and ap-
plies the function n times
to the value.

1 # let fShow m = m ((+) 1) 0;;
2 val fShow : ((int -> int) -> int -> ’a) -> ’a = <fun>
3 # fShow f3;;
4 - : int = 3

λ-Calculus – p. 6

λ-Calculus
§2 Church Numerals

Illinois Institute of Technology Mattox Beckman

Incrementing Church Numerals

To increment a Church Numeral...

1 # let fInc m f x = f (m f x);;
2 val fInc : ((’a -> ’b) -> ’c -> ’a) -> (’a -> ’b) ->
3 # fShow (fInc f3);;
4 - : int = 4

First, apply f m times to x.

Next, apply f once more to the result.

λ-Calculus – p. 7

λ-Calculus
§2 Church Numerals

Illinois Institute of Technology Mattox Beckman

Adding Church Numerals

Similar reasoning can yield addition and multiplication.

1 # let fAdd m n f x = m f (n f x);;
2 val fAdd : (’a -> ’b -> ’c) ->
3 (’a -> ’d -> ’b) -> ’a -> ’d -> ’c = <fun>
4 # fShow (fAdd f3 f3);;
5 - : int = 6
6 # let fMul m n f x = m (n f) x;;
7 val fMul : (’a -> ’b -> ’c) ->
8 (’d -> ’a) -> ’d -> ’b -> ’c = <fun>
9 # fShow (fMul f3 f3);;

10 - : int = 9

Subtraction is much more complex.

λ-Calculus – p. 8

λ-Calculus
§2 Church Numerals

Illinois Institute of Technology Mattox Beckman

Tracing Addition

1 # let fAdd m n f x = m f (n f x);;
2 # fAdd f2 f3;;
3 → f2 f (f3 f x)
4 → f2 f ((fun g y -> g (g (g y))) f x)
5 → f2 f (f (f (f x)))
6 → (fun g y -> g (g y)) f (f (f (f x)))
7 → (fun y -> f (f y)) (f (f (f x)))
8 → f (f (f (f (f x))))

λ-Calculus – p. 9

λ-Calculus
§2 Church Numerals

Illinois Institute of Technology Mattox Beckman

Tracing Multiplication

1 # let fMul m n f x = m (n f) x;;
2 # fMul f3 f3;;
3 → f3 (f3 f) x
4 → f3 ((fun g y -> g (g (g y))) f) x
5 → f3 (fun y -> f (f (f y))) x
6 → (fun h z -> h (h z)) (fun y -> f (f (f y))) x
7 → (fun y -> f (f (f y))) ((fun y -> f (f (f y)))
8 ((fun y -> f (f (f y))) x))
9 → (fun y -> f (f (f y))) ((fun y -> f (f (f y)))

10 (f (f (f x))))
11 → (fun y -> f (f (f y))) (f (f (f (f (f (f x))))))
12 → (f (f (f (f (f (f (f (f (f x)))))))))

λ-Calculus – p. 10

λ-Calculus
§3 Arbitrary Types

Illinois Institute of Technology Mattox Beckman

Functional Representation

Suppose we have a type S, with constructors S1 . . . Sn. We can
represent a term t = Si(t1, t2, . . . , tm) by

t = λx1 . . . xn.xi t1 · · · tm

The xi represent functions that say what to do if the term t turns out
to be an instance of the constructor Si.

λ-Calculus – p. 11

λ-Calculus
§3 Arbitrary Types

Illinois Institute of Technology Mattox Beckman

Booleans

Let S1 =true, and S0 =false.
Then, a boolean is a value which takes two functions. The first
function is what to do when the boolean is true, the second is
what to do when the boolean is false.

1 # let fTrue a b = a;;
2 val fTrue : ’a -> ’b -> ’a = <fun>
3 # let fFalse a b = b;;
4 val fFalse : ’a -> ’b -> ’b = <fun>
5 # let fIf c t e = c t e;;
6 val fIf : (’a -> ’b -> ’c) -> ’a -> ’b -> ’c = <fun>

How would you define fAnd and fOr with this system?

λ-Calculus – p. 12

λ-Calculus
§3 Arbitrary Types

Illinois Institute of Technology Mattox Beckman

Pairs

A pair is a type with one constructor S0 =pair. We know that S0

takes two arguments.
Then, a pair is a value that takes one function. The function itself
takes two arguments, and tells what to do with the two halves of the
pair.

1 # let fPair a b = fun select -> select a b;;
2 val fPair : ’a -> ’b -> (’a -> ’b -> ’c) -> ’c = <fun>
3 # let fPi1 p = p (fun a b -> a);;
4 val fPi1 : ((’a -> ’b -> ’a) -> ’c) -> ’c = <fun>
5 # let fPi2 p = p (fun a b -> b);;
6 val fPi2 : ((’a -> ’b -> ’b) -> ’c) -> ’c = <fun>

λ-Calculus – p. 13

λ-Calculus
§3 Arbitrary Types

Illinois Institute of Technology Mattox Beckman

Complex Data Structures

You can combine these techniques to create arbitrary data
structures.

A list contains two constructors: Cons and Nil.

The Cons constructor contains a pair as data.

1 # let fNil cons nil = nil;;
2 val fNil : ’a -> ’b -> ’b = <fun>
3 # let fCons a b cons nil = cons a b;;
4 val fCons : ’a -> ’b -> (((’a -> ’b -> ’c) -> ’c) ->
5 # let fIsNil lst = lst (fun x y -> fFalse) fTrue;;
6 val fIsNil : ((’a -> ’b -> ’b) -> (’c -> ’d -> ’c) ->

You will need to tell OCaml to use recursive types for this... but
even then the type system starts to get in the way.

λ-Calculus – p. 14

λ-Calculus
§4 Activity

Illinois Institute of Technology Mattox Beckman

Activity

1. (126) Write a function church n which returns the Church
Numeral for n. (Use recursion.)

2. (127) Write the church function for exponentiation. (Hint: the
solution is shorter than multiplication.) Show a sample run for
32.

3. (128) How would you represent a tree using functions? (There
are many ways to do this.)

λ-Calculus – p. 15

λ-Calculus
§4 Activity

Illinois Institute of Technology Mattox Beckman

Problem 1

Write a function church n which returns the Church Numeral
for n. (Use recursion.)

1 # let rec church n f x =
2 match n with
3 0 -> x
4 | _ -> f (church (n-1) f x);;
5 val church : int -> (’a -> ’a) -> ’a -> ’a = <fun>

λ-Calculus – p. 16

λ-Calculus
§4 Activity

Illinois Institute of Technology Mattox Beckman

Problem 2

Write the church function for exponentiation. (Hint: the solution
is shorter than multiplication.) Show a sample run for 32.

Solution:

1 # let fPow m n = n m ;;
2 # fPow f3 f2
3 → f2 f3
4 → (fun f x -> f (f x)) f3
5 → fun x -> f3 (f3 x)
6 → fun x -> (fun g y -> g (g (g y))) (f3 x)
7 → fun x -> fun y -> (f3 x) ((f3 x) ((f3 x) y))
8 → fun x y -> (f3 x) ((f3 x) (x (x (x y))))
9 → fun x y -> (f3 x) (x (x (x (x (x (x y))))))

10 → fun x y -> (x (x (x (x (x (x (x (x (x y)))))))))

λ-Calculus – p. 17

λ-Calculus
§4 Activity

Illinois Institute of Technology Mattox Beckman

Problem 3

How would you represent a tree using functions? (There are
many ways to do this.)

1 # let mkLeaf n node leaf = leaf n;;
2 val mkLeaf : ’a -> ’b -> (’a -> ’c) -> ’c = <fun>
3 # let mkNode a b node leaf = node a b;;
4 val mkNode : ’a -> ’b -> (’a -> ’b -> ’c) -> ’d -> ’c

λ-Calculus – p. 18

λ-Calculus
§4 Activity

Illinois Institute of Technology Mattox Beckman

Further Reading

You can use λ-calculus to represent itself using these
techniques. You already have everything you need to do it. You
can see the details in Torben Æ. Mogensen’s paper
Efficient Self-Interpretations in lambda Calculus, in the Journal
of Functional Programming v2 n3.

More information about using functions to represent objects can
be found in J. Steensgaard-Madsen’s paper
Typed representation of objects by functions, in TOPLAS v11
n1.

λ-Calculus – p. 19

http://citeseer.nj.nec.com/mogensen94efficient.html
http://doi.acm.org/10.1145/59287.77345

	Objectives
	The $lambda $-Calculus
	Semantic Rules version 1
	Semantic Rules version 2
	What is a Number?
	Incrementing Church Numerals
	Adding Church Numerals
	Tracing Addition
	Tracing Multiplication
	Functional Representation
	Booleans
	Pairs
	Complex Data Structures
	Activity
	Problem 1
	Problem 2
	Problem 3
	Further Reading

