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1 Introduction

A continuation takes the idea of a function’s return value and generalizes it. Normally a function
returns a value to the expression that called the function in the first place. But what if a function
could return somewhere else instead? This idea of “somewhere else” is called a continuation.

2 Basic Continuations

2.1 Direct Style

The functions you have been writing until now have been in a form known as direct style. The
functions take an argument, and then return a result to the calling expression.

Consider the simple example in figure 1.

1 let dec a = a - 1
2 let double a = a * 2
3 let inc a = a + 1
4 let report a = print_int a ; print_newline ()

Figure 1: Direct Style Example

We can run it like this:

# double (dec 3);;
- : int = 4

How does this happen? The first thing to execute is the call to dec. Function dec consumes
the 3, and when it is finished, returns its result to the surrounding expression. We are left with the
expression double 2. Consider for a moment the role of double in this expression. The double •
part of the expression can be considered an expression with a hole where the • is. When dec
returns, that hole is filled with the result, and the expression continues. For this reason, double is
called the continuation of dec.

Consider another example:
1 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a

copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.0/ or send a letter to Creative Commons,
559 Nathan Abbott Way, Stanford, California 94305, USA.
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# dec (double (inc 20));;
- : int = 41

The first function to be called is inc. When it is done, it will return its result to the surround-
ing expression, which we can represent as dec (double •) — its continuation. Function double
consumes the result and returns 42 to its own continuation dec •.

One way to think of a continuation is that it’s a way of identifying the rest of the program.

2.2 Continuation Passing Style

You will notice that the expressions we called continuations were like normal expressions, but each
had a hole which we could fill with a value later. A function is similar. So similar, in fact, that we
can implement continuations by using functions. Consider the program in figure 2. Each of these
functions takes an additional argument k, which represents “what comes next” in the program.

1 let cdec a k = k (a - 1)
2 let cdouble a k = k (a * 2)
3 let cinc a k = k (a + 1)
4 let report a = print_int a ; print_newline ()

Figure 2: Continuation Passing Style Example

First, a very simple example.

# cdec 3 report;;
2
- : unit = ()

Here, cdec took an argument 3 and a continuation report. When it had finished performing its
computation with 3, it passed the result to report rather than returning the result to the calling
expression. This is one of the properties of functions written in CPS: they do not return2. Instead,
they call their continuation directly.

Another way to look at this is to say that a continuation is a generalization of a return keyword.
Instead of returning to the expression which called it, a function can pass its result to an arbitrary
location. (Imagine what our code would look like if we used the name return (which is not a
keyword in OCaml) instead of k.)

We can run the first example in (CPS) like this:

# cdec 3 (fun r -> cdouble r report);;
4
- : unit = ()

2Truth in advertising: in OCaml, the report function actually does return something — (). But you will
notice that it is a tail call, so the computation is over by the time that happens. In a language that supports real
continuations, a “final” continuation such as report would not return at all.
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What happens is that cdec takes 3 as an argument and (fun r -> cdouble r report) as
a continuation. When cdec is done, it passes its result to the continuation instead of returning
it. The resulting expression is cdouble 2 report. Now a similar thing happens. First double
consumes the 2 and, when done, passes the result to its own continuation report.

Our second example looks like this:

# cinc 20 (fun r1 -> cdouble r1 (fun r2 -> dec r2 report));;
41
- : unit = ()

It is only slightly more involved than the first example.
Note that we can rewrite the example this way:

# cinc 20 (fun r ->
cdouble r (fun r ->
cdec r
report));;

41
- : unit = ()

Perhaps this will remind you of an imperative language, or even an accumulator based assembly
language.

Let’s look at a more complicated example.

1 let cinc a k = k (a+1)
2 let cdec a k = k (a-1)
3 let cadd a b k = k (a+b)
4 let report a = print_int a ; print_newline ()

Figure 3: Nesting Continuations

Think for a moment how you would convert the following direct-style expression to the code in
figure 3.

# add (inc 4) (dec 5);;
- : int = 9

The first thing to be executed is inc, so we would call cinc first, and save its result in the
continuation. Next, we would want to call cdec, and again save its result. Finally, with the two
saved results, we can call cadd, and pass the final answer to report.

# cinc 4 (fun a ->
cdec 5 (fun b ->
cadd a b report));;

9
- : unit = ()
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Stare at that for a while and make sure you understand how it works. We are taking advantage
of the fact that one continuation is nested inside of another, and that the inner continuation (the
fun b -> ... one) has access to the scope of the outer one.

But now consider this code:

# cdec 5 (fun b ->
cinc 4 (fun a ->
cadd a b report));;

9
- : unit = ()

It is different from the previous example in only one way: the order of operations has changed.
In the direct style example, the compiler has the option (in some langauges, such as C) of evaluating
dec and inc in any order. But, if we use CPS, then there is only one order of operation for the
expression. What CPS has done for us is it has exposed the program’s flow of control, and allowed
us to constrain it.

In review, this is what we have so far:

• A function written in CPS doesn’t return. Instead it passes its result to another function.

• A continuation represents “the rest of the computation”.

• The order of operations in CPS code is made explicit, and constrained.

• Calls to continuations are always tail-calls.

3 Continuations and Recursion

Continuation passing style can do some very interesting things when we mix it with recursion.
Consider the program in figure 4. It simply multiplies a list of integers together.

1 let rec multlist xx =
2 match xx with
3 | [] -> 1
4 | x::xs -> x * (multlist xs)

Figure 4: Simple Recursion

If we were to run it with the input [2; 3; 4] we would get the execution trace in figure 5.
As the computation progresses, we stack up recursive calls until we reach the base case, and

then return from all the recursive calls to compute the result.
Consider what’s happening in line 2 of the sample run: 2 * • is the continuation, which will

receive the result of (multlist [3; 4]).
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multlist [2; 3; 4]
2 * (multlist [3; 4])
2 * (3 * (multlist [4]))
2 * (3 * (4 * (multlist [])))
2 * (3 * (4 * 1))
2 * (3 * 4)
2 * 12
24

Figure 5: Simple Recursion Sample Run

3.1 Accumulator Recursion

Another style of recursion avoids the use of the stack by accumulating the value in a separate
parameter. The code is in figure 6.

If we were to run it with the input [2; 3; 4] and 1 we would get

1 let rec amultlist xx acc =
2 match xx with
3 | [] -> acc
4 | x::xs -> amultlist xs (x * acc)

Figure 6: Accumulator Recursion

amultlist [2; 3; 4] 1)
amultlist [3; 4] (* 2 1))
amultlist [3; 4] 2)
amultlist [4] (* 3 2))
amultlist [4] 6)
amultlist [] (* 4 6))
amultlist [] 24)
24

Figure 7: Sample Run of figure 6

Notice this time that we only need to keep track of a single call to multlist at any one time...
the result of one call is simply the value of the next call. This is known as tail-recursion, and is
useful because we do not need to keep track of where in the main expression the result needs to be
placed. The result is not going to be handed back to anyone to be processed further, as it was in
figure 4. It is simply returned.

When written in this form, the compiler will eliminate the call-stack, which will speed things
up, and reduce the amount of memory we need on the stack.

Notice how the computations are performed. In the simple recursion example, the recursions
happened first, and the computation occurred as we returned from the recursions. In this examples,
the computation occurs first, and are passed into the recursive call.
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3.2 Continuation Passing

Figure 6 accumulates a value to be given to the recursive call, but that’s not the only kind of
accumulation we can make. Instead of accumulating values, we can also accumulate computations.
Consider figure 8, which is the same code written in CPS.

1 let rec kmultlist xx k =
2 match xx with
3 | [] -> k 1
4 | x::xs -> kmultlist xs (fun r -> k (r * x))

Figure 8: Continuation Passing multlist

Again, the main idea behind CPS is that functions never return, and therefore you need to
specify what should happen next when a result is computed. This is done by giving each function
an extra argument, called the continuation. This argument usually comes last, and is often called k.
When the funtion is finished computing its result, it will pass that result into k instead of returning.

If figure 8 we can see how the continuations are used. If kmultlist is called with the empty
list, it is as the base case, which is defined to be 1. So, kmultlist passes 1 to k. The recursive
case is more complex, and may seem unusual at first. Suppose that kmultlist is called with some
non-empty list xx—refer to this as the initial call. In order to compute the result, kmultlist needs
to make a recursive call on the tail of xx. Since this recursive call will not return, we need to give
it a continuation to tell it what to do with that result. This continuation should save the result of
the recursive call, multiply it by the head of xx, and then pass that new result to the continuation
given to the initial call. All this is done in the last line. The variable r saves the result of the
recursive call to kmultlist, the continuation then multiplies r by x, and then passes the result to
the initial continuation k.

An execution trace is given in figure 9.

kmultlist [2;3;4] report
kmultlist [3; 4] (fun v1 -> report (v1 * 2))
kmultlist [4] (fun v2 -> (fun v1 -> report (v1 * 2)) (v2 * 3))
kmultlist [] (fun v3 -> (fun v2 -> (fun v1 -> report (v1 * 2)) (v2 * 3)) (v3 * 4))
(fun v3 -> (fun v2 -> (fun v1 -> report (v1 * 2)) (v2 * 3)) (v3 * 4)) 1
(fun v2 -> (fun v1 -> report (v1 * 2)) (v2 * 3)) (1 * 4)
(fun v2 -> (fun v1 -> report (v1 * 2)) (v2 * 3)) 4
(fun v1 -> report (v1 * 2)) (4 * 3)
(fun v1 -> report (v1 * 2)) 12
report (12 * 2))
report 24)
24

Figure 9: Sample Run of Continuation Passing multlist

As you can see, at each stage of the recursion we take the old continuation and build a new,
larger continuation out of it. Consider line two as an example. The function kmultlist is supposed

6



to compute the product of [2; 3; 4], and pass the result to report. To do that, it’s going to call
itself recursively, on the list [3; 4]. The result (12) will be placed into v1, and then the function
will multiply it by the current element of the list [2]. The current call to kmultlist is now ready
with its result (24), so it is given to the continuation specified for this particular call (i.e., report).

In all of these coding styles, the problem is split into two parts. To multiply the elements of a
list, you first multiply the elements of the rest (i.e., the tail) of the list, and when you’re done doing
that, you multiply the result to the first element of the list.

• In the simple recursion, the recursive call multiplies all the elements together and returns the
result to the initial call.

• In the accumulator recursion, the multiplication occurs first, and is given to the recursive call.

• In the CPS version, the recursive call builds a function which, when called with the base case,
will perform the computation.

4 Multiple Continuations

You can think of continuations as being a return address, made explicit. Because continuations
can be stored in variables, there is no reason we can’t keep more than one of them around. In
figure 10 there is a new version of the kmultlist function, that can “bail out” of a computation.
The front end to this function keeps the original continuation, and sends a copy to the auxiliary
function. The copy (kr, the “result” continuation) is used as before, but the original (k, the “abort”
continuation) is kept unchanged. The continuation kr represents the function’s computation; call
it, and the computation occurs. The k continuation, if called, will skip all that computation and
(appear to!) exit out of all the levels of recursion, back to the beginning.

1 let kmultlist xx k =
2 let rec aux xx kr =
3 match xx with
4 | [] -> kr 1
5 | 0::_ -> k 0
6 | x::xs -> aux xs (fun v -> kr (v * x))
7 in aux xx k

Figure 10: Aborting Continuation

Figure 11 shows a sample run where the abort continuation is called. Again, the kr continuation
allows you to pass a result back to the previous recursive call’s computation, and the k continuation
allows you to pass a result back to the initial function call.

For that matter, why stop at two continuations? This next version interprets negative numbers
in a strange way: if it finds −n, it undoes n levels of recursion, and activates the computation at
that point.

The following sample run may illustrate the operation of the new function. Be sure you under-
stand how it works.
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kmultlist [2; 3; 0] report
aux [2; 3; 0] report
aux [3; 0] (fun v1 -> report (v1 * 2))
aux [0]) (fun v2 -> (fun v1 -> report (v1 * 2)) (v2 * 3))
report 0) — here we’ve thrown out kr and called k instead
0

Figure 11: Sample Run of Continuation Passing multlist

1 let rec nth n xx =
2 match n,xx with
3 | 0,x::_ -> x
4 | _,x::xs -> nth (n-1) xs
5

6 let kmultlist xx k =
7 let rec aux xx klist =
8 match xx with
9 | [] -> (List.hd klist) 1

10 | 0::_ -> k 0
11 | x::xs when x<0 -> (nth (-x) klist) 1
12 | x::xs -> aux xs ( (fun v -> (List.hd klist) (v * x))::klist )
13 in aux xx [k]

Figure 12: Aborting Continuation, Part 2
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1 # kmultlist [2; 3; 4; 5; 6; 1] report;;
2 720
3 - : unit = ()
4 # kmultlist [2; 3; 4; 5; 6; 1; 0; 2; 4; 6] report;;
5 0
6 - : unit = ()
7 # kmultlist [2; 3; 4; 5; 6; -1; 0; 2; 4; 6] report;;
8 120
9 - : unit = ()

10 # kmultlist [2; 3; 4; 5; 6; -2; 0; 2; 4; 6] report;;
11 24
12 - : unit = ()

Continuations, then, are a means of time travel. A continuation allows us to save a point of the
program and return to it any time we want.
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