
Infinite Data Whenever

Illinois Institute of Technology Mattox Beckman

Infinite Data
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

Infinite Data – p. 1

Infinite Data Whenever
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

There are many choices available to the language designer when a
function call is made. The choices made will have a significant
effect on the language.
Your objectives for this lecture:

Show how to implement thunks by using local state and
user-defined types.

Show how thunks can implement the call-by-need
parameter-passing style.

Show how to create virtually-infinite data-structures by using
lazy evaluation.

Infinite Data – p. 2

Infinite Data Whenever
§1 Call By Value vs. Call By Name

Illinois Institute of Technology Mattox Beckman

Considerations about CBV

We like call-by-value because

it’s efficient — we usually want the value soon anyway.

it’s easy to implement.

But, there’s a cost...

It can perform unnecessary computations.

... in fact, it could cause non-termination.

1 let rec foo x = foo (x + 1);;
2 let fTrue a b = a;;
3 fTrue 5 (foo 10);;

Infinite Data – p. 3

Infinite Data Whenever
§1 Call By Value vs. Call By Name

Illinois Institute of Technology Mattox Beckman

Running Example

Consider the following code:

1 # let plus a b = print_string "Plus"; a+b;;
2 val plus : int -> int -> int = <fun>
3 # let foo a b = a * a * a;;
4 val foo : int -> ’a -> int = <fun>
5 # foo (plus 2 3) (plus 5 5);;
6 Plus
7 Plus
8 - : int = 125
9 #

What is the optimal number of times to run plus?

Infinite Data – p. 4

Infinite Data Whenever
§1 Call By Value vs. Call By Name

Illinois Institute of Technology Mattox Beckman

Implementation

OCaml is already CBV, so do what you normally do to get that.

You can use functions to delay evaluation to get CBN.
Let fun () -> e be a delayed expression.
To extract the information, apply the delayed expression to
().

Running Example
1 # let foo a b =
2 (a ()) * (a ()) * (a ());;
3 val foo : (unit -> int) -> ’a -> int = <fun>
4 # foo (fun () -> plus 2 3) (fun () -> plus 5 5);;

How many times will you see Plus printed to the screen?

Infinite Data – p. 5

Infinite Data Whenever
§1 Call By Value vs. Call By Name

Illinois Institute of Technology Mattox Beckman

Call By Need

We can use the local state technique to perform an
optimization.

1 # type ’a status = Value of ’a
2 | Susp of (unit -> ’a);;
3 # let delay f =
4 let status = ref (Susp f) in
5 fun () -> match (!status) with
6 | Value a -> a
7 | Susp f -> let result = f () in
8 (status := (Value result);
9 result);;

10 val delay : (unit -> ’a) -> unit -> ’a = <fun>
11 # let force f = f ();;

Infinite Data – p. 6

Infinite Data Whenever
§1 Call By Value vs. Call By Name

Illinois Institute of Technology Mattox Beckman

Our Running Example

Running Example
1 # let foo a b =
2 (force a) * (force a) * (force a);;
3 val foo : (unit -> int) -> ’a -> int = <fun>
4 # foo (delay (fun () -> plus 2 3))
5 (delay (fun () -> plus 5 5));;

(delay (fun () -> plus 2 3)) is called a suspension,
or sometimes a thunk.

How many times will plus be printed to the screen?

Infinite Data – p. 7

Infinite Data Whenever
§2 Force and Delay

Illinois Institute of Technology Mattox Beckman

The Lazy Module

Keyword lazy will create a suspension for us.

1 # let foo = lazy (plus 2 3);;
2 val foo : int Lazy.status ref =
3 contents = Lazy.Delayed <fun>

The Lazy module defines a force function.
1 # Lazy.force;;
2 - : ’a Lazy.t -> ’a = <fun>
3 # Lazy.force foo;;
4 Plus
5 - : int = 5
6 # Lazy.force foo;;
7 - : int = 5

Infinite Data – p. 8

Infinite Data Whenever
§3 Infinite Data

Illinois Institute of Technology Mattox Beckman

Lazy Lists

We can create a new list type that takes advantage of the lazy
data...

1 type ’a llist = Cons of ’a * ’a llist Lazy.t | Nil

To display these we can convert back to normal lists.
Convert Lazy List to OCaml List

1 # let rec ftake n llist =
2 match n,llist with
3 | _,Nil -> []
4 | 0,_ -> []
5 | _,(Cons (x,xs)) -> x :: ftake (n-1) (force xs)
6 val ftake : int -> ’a llist -> ’a list = <fun>

Infinite Data – p. 9

Infinite Data Whenever
§3 Infinite Data

Illinois Institute of Technology Mattox Beckman

Infinite Lists

OCaml will—if you ask nicely—allow you to make infinite data.

1 # let rec ones = Cons(1, lazy ones);;
2 val ones : int llist = Cons (1, contents = Delayed <fun>)
3 # let rec numsfrom n = Cons(n, lazy (numsfrom (n+1)));;
4 val numsfrom : int -> int llist = <fun>

Note that ones isn’t even a function.
Infinite Mapping

1 let rec lmap f llist =
2 match llist with
3 | Cons (x,xs) ->
4 Cons (f x, lazy (lmap f (force xs)))
5 | Nil -> Nil

Infinite Data – p. 10

Infinite Data Whenever
§3 Infinite Data

Illinois Institute of Technology Mattox Beckman

Other Functions

1 # let rec lmap2 f lst1 lst2 =
2 match lst1,lst2 with
3 | Cons(x,xs),Cons(y,ys) ->
4 Cons(f x y, lazy (lmap2 f (force xs)
5 (force ys)));;
6 val lmap2 : (’a -> ’b -> ’c) -> ’a llist
7 -> ’b llist -> ’c llist = <fun>

We also define fhead and ftail. Now watch this....

1 # let rec fib = Cons(1, lazy
2 (Cons(1, lazy
3 (lmap2 plus fib (ftail fib)))));;
4 val fib : int llist = Cons (1, contents = Delayed <fun>)

Infinite Data – p. 11

Infinite Data Whenever
§3 Infinite Data

Illinois Institute of Technology Mattox Beckman

An Application....

We can make a Newton’s method approximator.

For square root of n, xi+1 = (xi + n/xi)/2.

1 # let rec approx err alist =
2 if abs((fhead alist) -
3 (fhead (ftail alist))) < err
4 then (fhead alist)
5 else approx err (ftail alist);;
6 # let next n xi = (xi +. n /. xi) /. 2.0
7 # let mkSeq n =
8 let rec seq = Cons(1.0, lazy (lmap (next n) seq))
9 in seq;;

Infinite Data – p. 12

Infinite Data Whenever
§4 Activity

Illinois Institute of Technology Mattox Beckman

Activity

1. Write another version of nats (the list of natural numbers)
without using a function.

2. Write a function circular that takes a normal list and returns
an infinite circular list with the same data. (This one is a bit
tricky.)

1 # let ott = circular [1;2;3];;
2 val ott : int llist = Cons (1, contents = Delayed
3 # ftake 10 ott;;
4 - : int list = [1; 2; 3; 1; 2; 3; 1; 2; 3; 1]

3. What happens if we pass [] to circular?

Infinite Data – p. 13

Infinite Data Whenever
§4 Activity

Illinois Institute of Technology Mattox Beckman

Problem 1

1 # let rec nats = Cons(1, lazy (lmap (plus 1) nats));;
2 val nats : int llist = Cons (1, contents = Delayed <fun>)
3 # ftake 2 nats;;
4 Plus
5 Plus
6 - : int list = [1; 2]
7 # ftake 4 nats;;
8 Plus
9 Plus

10 - : int list = [1; 2; 3; 4]
11 # ftake 4 nats;;
12 - : int list = [1; 2; 3; 4]

Infinite Data – p. 14

Infinite Data Whenever
§4 Activity

Illinois Institute of Technology Mattox Beckman

Problem 2

1 let rec circular lst =
2 let rec result = lazy (aux lst)
3 and aux lst =
4 match lst with
5 | [] -> force result
6 | x::xs -> Cons(x, lazy (aux xs))
7 in force result;;
8 val circular : ’a list -> ’a llist = <fun>

This one is tricky, because we had to delay the result in line 2 to
convince OCaml that this was a safe thing to do.

Infinite Data – p. 15

Infinite Data Whenever
§4 Activity

Illinois Institute of Technology Mattox Beckman

Problem 3

1 # circular [];;
2 Exception: Lazy.Undefined.

The real version of Lazy has an extra constructor for this case.

1 # let delay f =
2 let status = ref (Susp f) in
3 fun () -> match (!status) with
4 | Value a -> a
5 | Undefined -> raise (Failure "delay")
6 | Susp f -> (status := Undefined;
7 let result = f () in
8 (status := (Value result);
9 result));;

Infinite Data – p. 16

	Objectives
	Considerations about CBV
	Running Example
	Implementation
	Call By Need
	Our Running Example
	The Lazy Module
	Lazy Lists
	Infinite Lists
	Other Functions
	An Application....
	Activity
	Problem 1
	Problem 2
	Problem 3

