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Objectives

It is possible to use functions to represent the control flow of a
program. This technique is called continuation passing style. After
today’s lecture, you should be able to

explain what CPS is,

give an example of a programming technique using CPS, and

transform a simple function from direct style to CPS.
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The GCD Program

example1.ml
1 # let rec gcd a b =
2 match a,b with
3 a,0 -> a
4 | a,b when a<b -> gcd b a
5 | _ -> gcd b (a mod b);;

gcd 44 12 ⇒ gcd 12 8 ⇒ gcd 8 4 ⇒ gcd 4 0 ⇒ 4

The running time of this function is roughly O(lg a).
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GCD of a list

example1.ml
1 # let rec gcdstar lst =
2 match lst with
3 [] -> 0
4 | x::xs -> gcd x (gcdstar xs);;
5 val gcdstar : int list -> int = <fun>
6 # gcdstar [44;12];;
7 - : int = 4
8 # gcdstar [44;12;80;6];;
9 - : int = 2

Question: What will happen if there is a 1 near the beginning of
the sequence?
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Bad Solution I — Check and Return

1 # let rec gcdstar lst =
2 match lst with
3 [] -> 0
4 | 1::xs -> 1
5 | x::xs -> gcd x (gcdstar xs);;
6 val gcdstar : int list -> int = <fun>
7 # gcdstar [44;12;80;6];;
8 - : int = 2
9 # gcdstar [44;12;1;80;6];;

10 - : int = 1

This stops the computation, but a lot of work has already been
done.
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Bad Solution II — Goto Statement

1 # 00 let rec gcdstar lst =
2 01 match lst with
3 02 [] -> 0
4 03 | 1::xs -> goto 5
5 04 | x::xs -> gcd x (gcdstar xs);;
6 05 return 1;;

Of course, this is nonsense.
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Okay Solution – Prefiltering

example2.ml
1 let gcdstar lst =
2 let rec aux lst =
3 match lst with
4 [] -> 0
5 | x::xs -> gcd x (aux xs) in
6 if (List.for_all (fun x -> x != 1) lst)
7 then aux lst
8 else 1
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Terms

A function is in Direct Style when it return its result back to the
caller.

A Tail Call occurs when a function returns the result of another
function call without processing it first.

This is what is used in accumulator recursion.

A function is in Continuation Passing Style when it passes its
result to another function.

Instead of returning the result to the caller, we pass it
forward to another function.
Functions in CPS “never return”.
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Definition of a Continuation

A continuation is a function into which is passed the result of
the current function’s computation.

example3.ml
1 # let report x = print_int x; print_newline();;
2 val report : int -> unit = <fun>
3 # let plus a b k =
4 k (a + b);;
5 val plus : int -> int -> (int -> ’a) -> ’a = <fun>
6 # plus 20 22 report;;
7 42
8 # plus 20 22 (fun x -> plus 5 x report);;
9 47
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Continuation Solution

example4.ml
1 # let gcdstar lst k =
2 let rec aux lst newk = match lst with
3 [] -> newk 0
4 | 1::xs -> k 1
5 | x::xs -> aux xs
6 (fun res -> newk (gcd x res))
7 in aux lst k;;
8 val gcdstar : int list -> (int -> ’a) -> ’a = <fun>
9 # gcdstar [44;12;80;6] report;;

10 2
11 # gcdstar [44;12;1;80;6] report;;
12 1
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Standard Execution Trace

1 gcdstar [44;12;80] R ⇒ aux [44;12;80] R
2 aux [12;80] (fun r1 -> R (gcd 44 r1))
3 aux [80] (fun r2 -> (fun r1 -> R (gcd 44 r1))
4 (gcd 12 r2))
5 aux [] (fun r3 -> (fun r2 -> (fun r1 ->
6 R (gcd 44 r1)) (gcd 12 r2)) (gcd 80 r3))
7 (fun r3 -> (fun r2 -> (fun r1 -> R (gcd 44 r1))
8 (gcd 12 r2)) (gcd 80 r3)) 0
9 (fun r2 -> (fun r1 -> R (gcd 44 r1)) (gcd 12 r2))

10 (gcd 80 0)
11 (fun r2 -> (fun r1 -> R (gcd 44 r1)) (gcd 12 r2)) 80
12 (fun r1 -> R (gcd 44 r1)) (gcd 12 80)
13 (fun r1 -> R (gcd 44 r1)) 4
14 R (gcd 44 4) ⇒ R 4
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Abort Execution Trace

1 gcdstar [44;12;1;80] R ⇒ aux [44;12;1;80] R
2 aux [12;1;80] (fun r1 -> R (gcd 44 r1))
3 aux [1;80] (fun r2 -> (fun r1 -> R (gcd 44 r1))
4 (gcd 12 r2))
5 R 1

In this example, the computation is built up, but when a 1 is
encountered, the computation is simply discarded.
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More Vocab!

Tail Position A subexpression s of expressions e, if it is evaluated,
will be taken as the value of e.

if (x>3) then x + 2 else x - 4

let x = 5 in x + 4

f (x * 3) — no tail position here.

Tail Call A function call that occurs in tail position.
if (h x) then h x else (x + g x)

Available A function call that can be executed by the current
expression. The fastest way to be unavailable is to be guarded
by an abstraction (anonymous function).

if (h x) then f x else (x + g x)

if (h x) then (fun x -> f x) else (x + g x)
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The CPS Transform, Steps 1 and 2

Step 1 Add a continuation argument to any function call.

C[[let f arg = e]] → let f arg k = C[[e]]

The idea is that every function is going to take an extra
parameter. “To whom should I tell the result?”

Step 2 A simple expression in tail position should be passed to a
continuation instead of returned.

C[[return a]] → k a

assuming a is a constant or variable.

“Simple” = “No available function calls.”
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The CPS Transform, Steps 3 and 4

Step 3 To a function call in tail position, pass the current
continuation.

C[[return f arg]] → C[[f arg k]]

The function “isn’t going to return,” so we need to tell it
where to put the result.

Step 4 A function call not in tail position needs to be built into a new
continuation. Be sure your new continuation calls the old one if
appropriate!

C[[return op (f arg)]] → C[[f arg (fun r − > k(C[[op]] r))]]
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Example

before
1 # let rec foo lst =
2 match lst with
3 | [] -> b
4 | 0::xs -> foo xs
5 | x::xs -> (+) x (foo xs);;

after
1 # let rec foo lst k = (* rule 1 *)
2 match lst with
3 | [] -> k b (* rule 2 *)
4 | 0::xs -> foo xs k (* rule 3 *)
5 | x::xs -> foo xs (fun r -> k ((+) x r));;
6 (* rule 4 *)
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Continuations Example

example5.ml
1 let add a b k = print_string "Add "; k (a + b);;
2 let sub a b k = print_string "Sub "; k (a - b);;
3 let report n = print_string "Answer is: ";
4 print_int n;
5 print_newline ();;
6 let idk n k = k n
7

8 type calc = Add of int | Sub of int
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A Small Calculator

example5.ml
1 let rec eval lst k =
2 match lst with
3 | (Add x) :: xs -> eval xs (fun r -> add r x k)
4 | (Sub x) :: xs -> eval xs (fun r -> sub r x k)
5 | [] -> k 0
6

7 # eval [Add 20; Sub 5; Sub 7; Add 3; Sub 5] report;;
8 Sub
9 Add

10 Sub
11 Sub
12 Add
13 Answer is: 6
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Continuations Can Take Multiple Arguments

1 # add 3 5 (fun r -> sub r 2 report);;
2 Add
3 Sub
4 Answer is: 6
5 # add 3 5 (fun r k -> sub r 2 k);;
6 Add
7 - : (int -> ’_a) -> ’_a = <fun>
8 # add 3 5 ((fun k r -> sub r 2 k) report);;
9 Add

10 Sub
11 Answer is: 6
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Composing Continuations

Problem: suppose our calculator cannot handle negative numbers.
We need to change the order of the operations somehow.

example6.ml
1 let ordereval lst k =
2 let rec aux lst ka ks =
3 match lst with
4 | (Add x) :: xs -> aux xs
5 (fun r k -> add r x ka k) ks
6 | (Sub x) :: xs -> aux xs
7 ka (fun r k -> sub r x ks k)
8 | [] -> ka 0 ks k
9 in

10 aux lst idk idk

Continuation Passing Style – p. 20



Continuation Passing Style
§5 Higher Order Continuations

Illinois Institute of Technology Mattox Beckman

Sample Run

1 ordereval [Add 20; Sub 5; Sub 7; Add 3; Sub 5] report;;
2 Add
3 Add
4 Sub
5 Sub
6 Sub
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Execution Trace

1 ordereval [Add 20; Sub 5; Sub 7] report
2 aux [Add 20; Sub 5; Sub 7] idk idk report
3 aux [Sub 5; Sub 7]
4 (fun r1 k1 -> add 20 r1 idk k1) idk report
5 aux [Sub 7]
6 (fun r1 k1 -> add r1 20 idk k1)
7 (fun r2 k2 -> sub r2 5 idk k2) report
8 aux []
9 (fun r1 k1 -> add r1 20 idk k1)

10 (fun r3 k3 -> sub r3 7
11 (fun r2 k2 -> sub r2 5 idk k2) k3)
12 report
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Execution Trace II

1 aux []
2 (fun r1 k1 -> add r1 20 idk k1)
3 (fun r3 k3 -> sub r3 7
4 (fun r2 k2 -> sub r2 5 idk k2) k3) report
5 (fun r1 k1 -> add r1 20 idk k1) 0
6 (fun r3 k3 -> sub r3 7
7 (fun r2 k2 -> sub r2 5 idk k2) k3) report
8 add 0 20 idk (* remember idk n k = k n *)
9 (fun r3 k3 -> sub r3 7

10 (fun r2 k2 -> sub r2 5 idk k2) k3) report
11 idk 20
12 (fun r3 k3 -> sub r3 7
13 (fun r2 k2 -> sub r2 5 idk k2) k3) report
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Execution Trace III

1 idk 20
2 (fun r3 k3 -> sub r3 7
3 (fun r2 k2 -> sub r2 5 idk k2) k3) report
4 (fun r3 k3 -> sub r3 7
5 (fun r2 k2 -> sub r2 5 idk k2) k3) 20 report
6 sub 20 7 (fun r2 k2 -> sub r2 5 idk k2) report
7 (fun r2 k2 -> sub r2 5 idk k2) 13 report
8 sub 13 5 idk report
9 idk 8 report

10 report 8
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Problems

The gcdstar example didn’t go as far as it could have,
because the function gcd was left in direct style. Transform gcd
into CPS, and then write the gcdstar function in CPS to use it.
It will look very similar to the lecture CPS version of gcdstar.

Suppose now we want to perform multiplications, and we want
to do them after we’ve done all the additions and subtractions.
Write the necessary modifications.

Now suppose we want to do an early abort if we detect a
multiply by zero. How do you do that?
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Problem 1

Here is the code for gcd using CPS.

1 # let gcd a b k =
2 let rec aux a b =
3 match a,b with
4 | a,0 -> k a
5 | a,b when a<b -> aux b a
6 | _ -> aux b (a mod b);;
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Problem 1, ctd

Here is the code for gcdstar that uses it.

1 # let gcdstar lst k =
2 let rec aux lst newk = match lst with
3 [] -> newk 0
4 | 1::xs -> k 1
5 | x::xs -> aux xs
6 (fun res -> gcd x res newk)
7 in aux lst k;;
8 val gcdstar : int list -> (int -> ’a) -> ’a = <fun>
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Problem 2

1 let ordereval lst k =
2 let rec aux lst ka ks km =
3 match lst with
4 | (Add x)::xs -> aux xs
5 (fun r k -> add r x ka k) ks km
6 | (Sub x)::xs -> aux xs
7 ka (fun r k -> sub r x ks k) km
8 | (Mul x)::xs -> aux xs
9 ka ks (fun r k -> mul r x km k)

10 | [] -> ka 0 ks km k
11 in
12 aux lst idk idk idk
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Problem 3

1 let ordereval lst k =
2 let rec aux lst ka ks km =
3 match lst with
4 | (Add x)::xs -> aux xs
5 (fun r k -> add r x ka k) ks km
6 | (Sub x)::xs -> aux xs
7 ka (fun r k -> sub r x ks k) km
8 | (Mul x)::xs ->
9 if x = 0 then k 0

10 else aux xs
11 ka ks (fun r k -> mul r x km k)
12 | [] -> ka 0 ks km k
13 in
14 aux lst idk idk idk
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