
CS 440 Introduction to OCaml January 22, 2007

1 Objectives

Your goal in today’s lecture is to gain some familiarity with OCaml. In particular, you should know. . .

• how to use immediate mode for interactive programming.

• the basic builtin types.

• how to use pattern matching in your functions.

• how to use tuples and lists.

• know the four ways to create variables, and how long they last.

• that whenever you see a function, you always ask “what’s its type?”.

2 Problems

Here are some example problems which will be useful to study in preparation for the exam. Some of these
may be done in class.

1. Consider this code:

1 let x = 27;;

2 let foo x =

3 let x = 5 in

4 (fun x -> print_int x) 10;;

5 foo 12;;

What value will be printed?

• a) 5

• b) 10

• c) 12

• d) 27

2. Consider this code:

1 let x = 27;;

2 let foo x =

3 let x = 5 in

4 (fun y -> print_int x) 10;;

5 foo 12;;

What value will be printed?

• a) 5

• b) 10

• c) 12

• d) 27

3. Consider this code:

Mattox Beckman Page 1 Illinois Institute of Technology



CS 440 Introduction to OCaml January 22, 2007

1 let x = 27;;

2 let foo x =

3 let y = 5 in

4 (fun y -> print_int x) 10;;

5 foo 12;;

What value will be printed?

• a) 5

• b) 10

• c) 12

• d) 27

4. Consider this code:

1 let x = 27;;

2 let foo y =

3 let y = 5 in

4 (fun y -> print_int x) 10;;

5 foo 12;;

What value will be printed?

• a) 5

• b) 10

• c) 12

• d) 27

5. What will be the output of the following code?

1 let x = 20;;

2 let f = fun x -> x + 1;;

3 let y = f 30;;

4 print int x;;

6. One of the lists below is invalid. Which one?

• a) [2; 3; 4; 6]

• b) [2,3; 4,5; 6,7]

• c) [2.3,4; 3.2,5; 6,7.2]

• d) [["hi"; "there"]; ["how"]; []; ["goezit"]]

7. What is the type of the following function:

1 let f x = x + 1

8. What is the type of the following function:

1 let f x = x +. 1.0

Mattox Beckman Page 2 Illinois Institute of Technology



CS 440 Introduction to OCaml January 22, 2007

9. What is the type of the following function:

1 let f x = x :: [1]

10. What is the type of the following function:

1 let f x = x @ [1]

11. What is the type of the following function:

1 let f x = 1 :: x

12. Write an OCaml function that inspects a list. If the list is empty, output "empty", otherwise, output
"not empty".

13. Write an OCaml function that returns the first element of a list. Assume that only non-empty lists
will be given to the function.

14. Write an OCaml function that returns the second element of a list. Assume that only non-empty lists
will be given to the function.

15. Write an OCaml function that returns the sum of the first three elements of a list. The list may have
any number of elements. Do not use recursion, just use match/with.

Mattox Beckman Page 3 Illinois Institute of Technology


