
Memory and Copying

Illinois Institute of Technology Mattox Beckman

Memory and Copying
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

Memory and Copying – p. 1

Memory and Copying
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

By the end of this lecture, you should

Be able to explain how large data structures in a functional
language differ from similar structures in an imperative
environment

know how to simulate updates in a persistent environment

be able to add undo functionality using persistent data

Memory and Copying – p. 2

Memory and Copying
§1 Allocating Memory

Illinois Institute of Technology Mattox Beckman

Type Constructors and Memory

When a type constructor is invoked, it causes memory to be
allocated.

Writing an integer. . .
Writing an empty list. . .
Using the cons operator :: . . .

Writing down a variable does not cause memory to be
allocated.

1 # let x = 4;; allocates 4
2 # let n = [];; allocates empty list
3 # let n2 = n;; does NOT allocate memory
4 # let l = x::n;; A cons cell is allocated,
5 but not the 4 or the empty list

Memory and Copying – p. 3

Memory and Copying
§1 Allocating Memory

Illinois Institute of Technology Mattox Beckman

Memory Diagram

1 # let x = 4;; allocates 4
2 # let n = [];; allocates empty list
3 # let n2 = n;; does NOT allocate memory
4 # let l = x::n;; A cons cell is allocated,
5 but not the 4 or the empty list

4 []

x l n n2

Memory and Copying – p. 4

Memory and Copying
§2 Persistence

Illinois Institute of Technology Mattox Beckman

The Nature of Data in a Functional Language

In a functional language, data is not changed, it is copied.

1 # let incthree lst =
2 match lst with
3 a::b::c::xs -> a+1 :: b+1 :: c+1 :: xs;;
4 val incthree : int list -> int list = <fun>
5 # let ex1 = [2;3;4;5;6;7];;
6 val ex1 : int list = [2; 3; 4; 5; 6; 7]
7 # let ex2 = incthree ex1;;
8 val ex2 : int list = [3; 4; 5; 5; 6; 7]

ex1 2 · 3 · 4 · 5 · 6 · 7 · []

ex3 3 · 4 · 5 ·

Memory and Copying – p. 5

Memory and Copying
§2 Persistence

Illinois Institute of Technology Mattox Beckman

Delete First Zero

1 # let lst1 = [2;0;3;0;4];;
2 val lst1 : int list = [2; 0; 3; 0; 4]
3 # let rec delzero lst =
4 match lst with
5 0::xs -> xs
6 | x::xs -> x :: delzero xs
7 | [] -> [];;
8 # let lst2 = delzero lst1;;
9 val lst2 : int list = [2; 3; 0; 4]

lst1 2 · 0 · 3 · 0 · 4 · []

lst2 2 ·

Memory and Copying – p. 6

Memory and Copying
§2 Persistence

Illinois Institute of Technology Mattox Beckman

What if I wanted to delete all the zeros?

1 # let lst1 = [2;0;3;0;4];;
2 val lst1 : int list = [2; 0; 3; 0; 4];;
3 # let rec delzero lst =
4 match lst with
5 0::xs -> delzero xs
6 | x::xs -> x :: delzero xs
7 | [] -> [];;
8 # let lst2 = delzero lst1;;
9 val lst2 : int list = [2;3;4];;

lst1 2 · 0 · 3 · 0 · 4 · []

lst2 2 · 3 · 4 · []

Memory and Copying – p. 7

Memory and Copying
§2 Persistence

Illinois Institute of Technology Mattox Beckman

Trees and Persistent Structures

Definition of Binary Search Tree
1 # type tree = Branch of int * tree * tree
2 | Leaf of int | Empty ;;
3 # let t1 = Branch(15, Branch(8, Leaf 4, Leaf 10),
4 Branch(20, Leaf 18, Leaf 27));;

15

8

4 10

20

18 27

Suppose I want to add 19 to this tree?
(Note we are using a shorthand notation. . .)

Memory and Copying – p. 8

Memory and Copying
§2 Persistence

Illinois Institute of Technology Mattox Beckman

add in scheme

1 (define (add tree item)
2 (if (eq? tree ’empty) (make-leaf item)
3 (if (leaf? tree)
4 (if (> (leaf-item tree) item)
5 (make-branch (leaf-item tree)
6 (make-leaf item) ’empty)
7 (make-branch (leaf-item tree)
8 ’empty (make-leaf item)))
9 (if (> (branch-item tree) item)

10 (make-branch (branch-item tree)
11 (add (branch-leftt tree) item)
12 (branch-right tree))
13 (make-branch (branch-item tree)
14 (branch-left tree)
15 (add (branch-right tree) item))))))

Memory and Copying – p. 9

Memory and Copying
§2 Persistence

Illinois Institute of Technology Mattox Beckman

add

1 # let rec add item atree = match atree with
2 Empty -> Leaf item
3 | Leaf old -> if item<old then Branch(old,Leaf item,Empty)
4 else Branch(old,Empty,Leaf item)
5 | Branch(old,t1,t2) ->
6 if item < old then Branch(old, add item t1, t2)
7 else Branch(old, t1, add item t2)

15

8

4 10

20

18 27

Result of let t2 = add 19 t1

⇒ 15

8

4 10

20

18

19

27

The black nodes
are shared, the blue
nodes are new.

Memory and Copying – p. 10

Memory and Copying
§2 Persistence

Illinois Institute of Technology Mattox Beckman

Adding to a tree, part 2

When a change is made to data, new nodes must be created
from the point of change to the root of the data.

15
New Root t2

15
t1

8

4 10

2020

1818

19 Point of Change

27

The old node t1 is still
around, and points to the
original tree (without the 19).

Suppose we now add 9 to this tree, and assign it to t3?
(By the way, this is a trick question.)

Memory and Copying – p. 11

Memory and Copying
§3 Writing An Interpreter

Illinois Institute of Technology Mattox Beckman

How can we use this?

At this point we can write an interpreter for a small language
with “undo” capability.

Commands: Add, Show, Undo.

What will we need?
A way to process commands. We can use a data-type:

1 type command = Add of int | Show | Undo

A notion of the current tree
A stack of past trees

Memory and Copying – p. 12

Memory and Copying
§3 Writing An Interpreter

Illinois Institute of Technology Mattox Beckman

A Small Interpreter

Current Tree Command List Tree Stack
The Interpreter

1 let eval commands =
2 let rec aux tree commands stack =
3 match commands with
4 (Add i)::xs ->
5 aux (add i tree) xs (tree::stack)
6 | Show :: xs ->
7 show tree ; aux tree xs stack
8 | Undo :: xs ->
9 aux (List.hd stack) xs (List.tl stack)

10 | [] -> print_string "Done\n" in
11 aux Empty commands []

Memory and Copying – p. 13

Memory and Copying
§4 Activity

Illinois Institute of Technology Mattox Beckman

Problems

1. In the lecture we discussed the consequences of adding a
second new element to the tree. Draw the result of the
command (define t3 (add t2 9)).

15
t2

15t1

8

4 10

2020

1818

19

27

2. Write the delzeros function, but make it able to share the
data.

Memory and Copying – p. 14

Memory and Copying
§4 Activity

Illinois Institute of Technology Mattox Beckman

Problem 1

15
t2

15 15 t3t1

8 8

4 10 10

9

2020

1818

19

27

Memory and Copying – p. 15

Memory and Copying
§4 Activity

Illinois Institute of Technology Mattox Beckman

Problem 2

1 let rec getLastZero lst pos save = match lst with
2 | [] -> save
3 | 0::xs -> getLastZero xs (1+pos) (1+pos)
4 | x::xs -> getLastZero xs (1+pos) save
5

6 let rec delzero lst = match lst with
7 | 0::xs -> delzero xs
8 | x::xs -> x :: delzero xs
9 | [] -> [];;

10

11 let rec shareDelZero lst =
12 let last = getLastZero lst 0 0 in
13 (delzero (take last lst)) @ (drop last lst);;

Memory and Copying – p. 16

Memory and Copying
§4 Activity

Illinois Institute of Technology Mattox Beckman

Further Reading

If you like this, you will definitely want to see the work of Chris
Okasaki. For example:

Simple and Efficient Purely Functional Queues and Deques

Catenable Double-Ended Queues

Three algorithms on Braun trees

Memory and Copying – p. 17

http://citeseer.nj.nec.com/okasaki95simple.html
http://citeseer.nj.nec.com/okasaki97catenable.html
http://citeseer.nj.nec.com/okasaki97functional.html

	Objectives
	Type Constructors and Memory
	Memory Diagram
	The Nature of Data in a Functional Language
	Delete First Zero
	What if I wanted to delete emph {all} the zeros?
	Trees and Persistent Structures
	add in scheme
	add
	Adding to a tree, part 2
	How can we use this?
	A Small Interpreter
	Problems
	Problem 1
	Problem 2
	Further Reading

