
References, Local State, and Objects Whenever

Illinois Institute of Technology Mattox Beckman

References, Local State, and Objects
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

References, Local State, and Objects – p. 1

References, Local State, and Objects Whenever
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

The lack of mutable variables gives us the ability to perform many
analyses using mathematics. In this lecture we talk about
equational reasoning and references, and see techniques for
limiting the scope of the state to improve the reliability of your code.

Be able to explain equational reasoning and give an example.

Know the syntax of references in OCaml.

Know the tradeoffs between imperative and functional features.

Know the constructions to define a function with local state.

Be able to state the benefits of local state and give an example.

Be able to use tuples to allow multiple functions access to the
same state.

References, Local State, and Objects – p. 2

References, Local State, and Objects Whenever
§0 Objectives

Illinois Institute of Technology Mattox Beckman

More Objectives

In this lecture we also extend the idea of local state to create a
simple implementation of objects, and discuss its limitations. We
will also show the message dispatch model of objects, which allows
for inheritance and virtual functions.
Your objectives:

Be able to explain what an object is.

Know how to implement an object using records and HOFs.

Know how to implement an object using a message dispatcher.

Be able compare the record and dispatcher models.

Major goal 1: be able to simulate objects in a language lacking
them.

Major goal 2: understand how objects work “under the hood”.

References, Local State, and Objects – p. 3

References, Local State, and Objects Whenever
§1 Equational Reasoning

Illinois Institute of Technology Mattox Beckman

Definition

The rule of referential transparency:

e1 ⇓ v e2 ⇓ v f e1 ⇓ w

f e2 ⇓ w

If you have two expressions that evaluate to be the same thing
then you can use one for the other without changing the
meaning of the whole program.

e.g. f(x) + f(x) == 2 * f(x)

You can prove this by induction, using the natural semantic
rules from the previous lectures.

References, Local State, and Objects – p. 4



References, Local State, and Objects Whenever
§1 Equational Reasoning

Illinois Institute of Technology Mattox Beckman

You can use equational reasoning to make the following
equivalence:

f(if e1 then e2 else e3) ≡ if e1 then f(e2) else f(e3)

1 x * (if foo then 20 / x else 23 / x) equivalent to
2 if foo then 20 else 23 (well, mostly)

You have the basis now of many compiler optimization
opportunities!

References, Local State, and Objects – p. 5

References, Local State, and Objects Whenever
§1 Equational Reasoning

Illinois Institute of Technology Mattox Beckman

A Complication

1 # let counter = something
2 val counter : unit -> int = <fun>
3 # counter ();;
4 - : int = 1
5 # counter ();;
6 - : int = 2
7 # counter ();;
8 - : int = 3
9 #

Can we still use equational reasoning to talk about programs
now?

References, Local State, and Objects – p. 6

References, Local State, and Objects Whenever
§1 Equational Reasoning

Illinois Institute of Technology Mattox Beckman

A Counterexample

f(x) + f(x) == 2 * f(x)

1 # 2 * counter ();;
2 - : int = 8
3 # counter () + counter ();;
4 - : int = 11

Congratulations. You just broke mathematics.

References, Local State, and Objects – p. 7

References, Local State, and Objects Whenever
§2 References

Illinois Institute of Technology Mattox Beckman

Reference Operator

Transition Semantics
ref v → $i, where $i is a free location in the state, initialized to v.
! $i → v, if state location $i contains v

$i := v → (), and state location $i is assigned v.
(); e → e

Note that references are different than pointers: once created, they
cannot be moved, only assigned to and read from.

References, Local State, and Objects – p. 8



References, Local State, and Objects Whenever
§2 References

Illinois Institute of Technology Mattox Beckman

Natural Semantics

e ⇓ v

ref e ⇓ $i
, where $i is a free location in the state, initialized to v.

e ⇓ $i

!e ⇓ v
, if state location $i contains v.

e1 ⇓ $i e2 ⇓ v

e1 := e2 ⇓ ()
, and location $i is set to v.

e1 ⇓ () e2 ⇓ v

e1; e2 ⇓ v

References, Local State, and Objects – p. 9

References, Local State, and Objects Whenever
§2 References

Illinois Institute of Technology Mattox Beckman

Counter, Method 1

1 # let ct = ref 0;;
2 val ct : int ref = {contents=0}
3 # let counter () =
4 ct := !ct + 1;
5 !ct;;
6 val counter : unit -> int = <fun>
7 # counter ();;
8 - : int = 1
9 # counter ();;

10 - : int = 2

References, Local State, and Objects – p. 10

References, Local State, and Objects Whenever
§2 References

Illinois Institute of Technology Mattox Beckman

Bad Things for Counter

ct is globally defined. Two bad things could occur because of this.

1. What if you already had a global variable ct defined?
Correct solution: use modules.

2. The Stupid UserTM might decide to change ct just for fun.
Now your counter won’t work like it’s supposed to. . .
Now you can’t change the representation without getting
tech support calls.
Remember the idea of abstraction.

References, Local State, and Objects – p. 11

References, Local State, and Objects Whenever
§2 References

Illinois Institute of Technology Mattox Beckman

Conclusions about State

State is bad because:

it breaks our ability to use equational reasoning

users can get to our global variables and change them without
permission

State is good because:

Certain constructs are almost impossible withouth state (e.g.,
Graphs)

Our world is a stateful one

References, Local State, and Objects – p. 12



References, Local State, and Objects Whenever
§3 Scoping

Illinois Institute of Technology Mattox Beckman

Review of Scope

1 let x = 10;;
2

3 let foo y = match y with
4 | 0,b -> let c = b * b in
5 let d = c * c in
6 b * c * d
7 | a,b -> map (fun z -> z + a + x) [a;b]

x exists from line 2–7.

y exists from line 3–7.

b exists from line 4–6.

c exists from line 5–6.

d exists on line 6 only.

a and b exist on line 7 only.

z exists on line 7, after the
fun z until the ).

References, Local State, and Objects – p. 13

References, Local State, and Objects Whenever
§4 Local State

Illinois Institute of Technology Mattox Beckman

Using local state

1 # let counter =
2 let ct = ref 0 in
3 fun () -> ct := !ct + 1; !ct;;
4 val counter : unit -> int = <fun>
5 # counter ();;
6 - : int = 1
7 # counter ();;
8 - : int = 2

This protects ct, making it available only to counter.

References, Local State, and Objects – p. 14

References, Local State, and Objects Whenever
§4 Local State

Illinois Institute of Technology Mattox Beckman

Random Number Generators

1 # let mkRandom s =
2 fun () -> s := (!s * 9 + 5) mod 1024; !s;;
3 val mkRandom : int ref -> unit -> int = <fun>
4 # let rnd0 = mkRandom (ref 1);;
5 val rnd0 : unit -> int = <fun>
6 # rnd0 ();;
7 - : int = 14
8 # rnd0 ();;
9 - : int = 131

10 # rnd0 ();;
11 - : int = 160

In this version we pass the reference into the function rather
than creating our own.

References, Local State, and Objects – p. 15

References, Local State, and Objects Whenever
§4 Local State

Illinois Institute of Technology Mattox Beckman

Function Tuples

1 # let (counter, reset) =

2 let ct = ref 0 in

3 (fun () -> ct := !ct + 1; !ct),

4 (fun nv -> ct := nv);;

5 val counter : unit -> int = <fun>

6 val reset : int -> unit = <fun>

7 # counter ();;

8 - : int = 1

9 # reset 5;; (* This trick brought to you by *)

10 - : unit = () (* higher order functions, tuples, *)

11 # counter ();; (* and the principle of orthogonality. *)

12 - : int = 6

References, Local State, and Objects – p. 16



References, Local State, and Objects Whenever
§4 Local State

Illinois Institute of Technology Mattox Beckman

Passing Counters Around

1 # let enumerate lst (ctfun, rsfun) =
2 rsfun 0;
3 List.map (fun x -> (ctfun (), x)) lst;;
4 val enumerate : ’a list ->
5 (unit -> ’b) * (int -> ’c) -> (’b * ’a) list = <fun>
6 # enumerate ["hello";"there";"class"]
7 (counter, reset);;
8 - : (int * string) list = [1, "hello"; 2, "there";
9 3, "class"]

10 #

We can give the counter to another function.

This is not good. Why not?

References, Local State, and Objects – p. 17

References, Local State, and Objects Whenever
§5 Activity

Illinois Institute of Technology Mattox Beckman

Activity

1. Supposing you wanted a counter that did not use references,
how would you go about writing it?

2. The random number function generator does not have a way to
reset the state. We would also like to be able to ask “what was
the last random number generated” without changing the seed.
Write a (group of) functions to do this.

3. Suppose we want a more generic way to represent
counters—in fact, suppose you want several counters in your
program, each with an init and a reset. You could just repeat the
code several times, but there are serious flaws to that approach.
What are they? How might you go about fixing them?

References, Local State, and Objects – p. 18

References, Local State, and Objects Whenever
§5 Activity

Illinois Institute of Technology Mattox Beckman

Answer to 2

1 # let mkRandom init =
2 let seed = ref init in
3 (( fun () -> seed := !seed * 4; !seed),
4 ( fun ns -> seed := ns),
5 ( fun () -> !seed) );;
6 val mkRandom : int -> (unit -> int) * (int ->
7 # let (rnd, reset, last) = mkRandom 4;;
8 val rnd : unit -> int = <fun>
9 val reset : int -> unit = <fun>

10 val last : unit -> int = <fun>

References, Local State, and Objects – p. 19

References, Local State, and Objects Whenever
§6 Motivating Objects

Illinois Institute of Technology Mattox Beckman

Preliminaries

We will use the following functions during our discussion....

1 let pi1 (x,y) = x
2 let pi2 (x,y) = y
3 let report (x,y) = print_string "Point: ";
4 print_int x;
5 print_string ",";
6 print_int y;
7 print_newline ()
8 let movept (x,y) (dx,dy) = (x+dx,y+dy)

References, Local State, and Objects – p. 20



References, Local State, and Objects Whenever
§6 Motivating Objects

Illinois Institute of Technology Mattox Beckman

Point

Here is an example of a point using local state.

1 let mktPoint myloc =
2 let myloc = ref myloc in
3 ( myloc,
4 (fun () -> pi1 !myloc),
5 (fun () -> pi2 !myloc),
6 (fun () -> report !myloc),
7 (fun dl -> myloc := movept !myloc dl) )

This defines a tuple of functions that share a common state.

It is cumbersome to use.

let (lref,getx,gety,show,move) = mktPoint (2,4);;

References, Local State, and Objects – p. 21

References, Local State, and Objects Whenever
§6 Motivating Objects

Illinois Institute of Technology Mattox Beckman

Improvement: Use records.

1 type point = {
2 loc : (int * int) ref; getx : unit -> int;
3 gety : unit -> int; draw : unit -> unit;
4 move : int * int -> unit;
5 }
6 let mkrPoint newloc =
7 let myloc = ref newloc in
8 { loc = myloc;
9 getx = (fun () -> pi1 !myloc);

10 gety = (fun () -> pi2 !myloc);
11 draw = (fun () -> report !myloc);
12 move = (fun dl -> myloc := movept !myloc dl)}

References, Local State, and Objects – p. 22

References, Local State, and Objects Whenever
§7 Objects

Illinois Institute of Technology Mattox Beckman

Objects?

What is an object?

Data and functions are grouped together.

Functions have their own local state.

Objects can send and receive messages.

Objects can refer to themselves.

This has a profound effect on the way programs are written.
Remember the basic premise of this course: how you think about
data has a great impact on the way a program is written.

How is the mkrPoint example like an object?

How is the mkrPoint example not like an object?

References, Local State, and Objects – p. 23

References, Local State, and Objects Whenever
§7 Objects

Illinois Institute of Technology Mattox Beckman

Adding Self

By the way, this lecture is really about recursion.

1 let mkPoint newloc =
2 let rec this =
3 { loc = ref newloc;
4 getx = (fun () -> pi1 !(this.loc));
5 gety = (fun () -> pi2 !(this.loc));
6 draw = (fun () -> report !(this.loc));
7 move = (fun dl ->
8 this.loc := movept !(this.loc) dl)}
9 in this;;

We can store “this” explicitly in the record if we want.

References, Local State, and Objects – p. 24



References, Local State, and Objects Whenever
§7 Objects

Illinois Institute of Technology Mattox Beckman

Memory

The record point contains references to the fields. If you copy
a point, the data does not get copied!

1 # let p1 = mkPoint (4,7);;
2 val p1 : point = {loc={contents=4, 7}; ...}
3 # let p2 = mkPoint (6,2);;
4 val p2 : point = {loc={contents=6, 2}; ...}
5 # let p3 = p1;;
6 val p3 : point = {loc={contents=4, 7}; ...}
7 # p1.move (5,5);;
8 - : unit = ()
9 # p3;;

10 - : point = {loc={contents=9, 12}; ...}

References, Local State, and Objects – p. 25

References, Local State, and Objects Whenever
§8 Dispatching

Illinois Institute of Technology Mattox Beckman

So far...

We used a record to implement a type for points.
Advantages:

Every method had its own name and type.

Simple syntax for manipulating the object.

It’s fast: we know at compile time which method is being called.

Disadvantages:

Inheritance is very difficult with this model.

Adding a new message type means updating everything.

References, Local State, and Objects – p. 26

References, Local State, and Objects Whenever
§8 Dispatching

Illinois Institute of Technology Mattox Beckman

Message Dispatching

Last time we said that an object is a kind of data that can receives
messages from the program or other objects.

Q: How do we normally represent messages?

A: With strings!

Let a point object be a function which takes a string and returns an
appropriate function matching that string.

Question: Suppose p is our point object. What will be its type?

References, Local State, and Objects – p. 27

References, Local State, and Objects Whenever
§8 Dispatching

Illinois Institute of Technology Mattox Beckman

mkPoint

1 let mkPoint x y =
2 let x = ref x in
3 let y = ref y in
4 fun st ->
5 match st with
6 | "getx" -> (fun _ -> !x)
7 | "gety" -> (fun _ -> !y)
8 | "movx" -> (fun nx -> x := !x + nx; nx)
9 | "movy" -> (fun ny -> y := !y + ny; ny)

10 | _ -> raise (Failure "Unknown message.")

All methods now have to have type int -> int.

References, Local State, and Objects – p. 28



References, Local State, and Objects Whenever
§8 Dispatching

Illinois Institute of Technology Mattox Beckman

Subclassing

Warmup exercise: How would we add a report method?

Another one: How would we add this support?

Let’s say we want a fastpoint, which moves twice as fast as the
original point. What does it mean for fastpoint to be a subclass
of point?

fastpoint should respond to the same messages.
It may override some of them.
It may add its own.
It may not remove any methods.

The fastpoint object will need access to some of the data in
point.

References, Local State, and Objects – p. 29

References, Local State, and Objects Whenever
§8 Dispatching

Illinois Institute of Technology Mattox Beckman

Implementing

Two entities involved: the superclass (point) and the subclass
(fastpoint).

fastpoint needs to create an instance of point.

point construction needs to return the “public” data to
fastpoint.

fastpoint returns a dispatcher:
if the fastpoint dispatcher can handle a message, it does.
Otherwise, it sends the message to point.

References, Local State, and Objects – p. 30

References, Local State, and Objects Whenever
§8 Dispatching

Illinois Institute of Technology Mattox Beckman

Code: point

1 let mkSuperPoint x y =
2 let x = ref x in
3 let y = ref y in
4 ((x,y), (* This part returns the local state *)
5 fun st ->
6 match st with
7 | "getx" -> (fun _ -> !x)
8 | "gety" -> (fun _ -> !y)
9 | "movx" -> (fun nx -> x := !x + nx; nx)

10 | "movy" -> (fun ny -> y := !y + ny; ny)
11 | _ -> raise (Failure "Unknown message."));;
12 val mkSuperPoint : int -> int ->
13 (int ref * int ref) * (string -> int -> int) = <fun>

References, Local State, and Objects – p. 31

References, Local State, and Objects Whenever
§8 Dispatching

Illinois Institute of Technology Mattox Beckman

Code: fastpoint

1 let mkFastpoint x y =
2 let ((x,y),super) = mkSuperPoint x y in
3 fun st ->
4 match st with
5 | "movx" -> (fun nx -> x := !x + 2 * nx; nx)
6 | "movy" -> (fun ny -> y := !y + 2 * ny; ny)
7 | _ -> super st;;

This technique is flexible; we can add methods very easily.

But it’s also slow. Imagine if we had a chain of 20 classes....

References, Local State, and Objects – p. 32



References, Local State, and Objects Whenever
§9 Real Life

Illinois Institute of Technology Mattox Beckman

C++

Methods and variables are kept in a table: a fixed location.

“this” is an implicit argument, allowing only one copy of the
function to be needed.

Virtual methods are kept in a vtable, which counts as local data.

Local data for point or fastpoint:
x value of x
y value of y
vtable pointer to vtable

Vtable for point:
movx pointer to point.movx
movy pointer to point.movy

(fastpoint vtable is similar.) getx, etc. is static.

References, Local State, and Objects – p. 33

References, Local State, and Objects Whenever
§9 Real Life

Illinois Institute of Technology Mattox Beckman

Discussion

Other languages (i.e., smalltalk) use a technique very similar to
this one.

Java uses the “every object is of type Object” technique.

A strong type system makes it somewhat cumbersome to
simulate objects. You either have to:

define a new type to encompass all objects, or
force all methods to have the same type.

Important concept: polymorphism — when functions can
operate on multiple types. (This is different than overloading —
when multiple functions exist with the same name, but different
inputs.)

References, Local State, and Objects – p. 34

References, Local State, and Objects Whenever
§9 Real Life

Illinois Institute of Technology Mattox Beckman

Polymorphism Example

1 # let p1,p2,p3,p4 = mkPoint 2 3, mkPoint 3 2,
2 mkFastpoint 5 3, mkFastpoint 3 9;;
3 # List.map (fun pt -> pt "report" 0)
4 [p1; p2; p3; p4];;
5 Point: 2,3 points
6 Point: 3,2
7 Point: 5,3 fastpoints
8 Point: 3,9

The function passed to map will use both point and fastpoint
types.
You have seen polymorphism in the course before.

References, Local State, and Objects – p. 35

References, Local State, and Objects Whenever
§9 Real Life

Illinois Institute of Technology Mattox Beckman

Conclusions

Objects have a lot of flexibility, and allow us to create useful
abstractions.

They can be implemented using functions.

These are useful enough in practice, and difficult enough to
implement, that most modern languages now include them,
including OCaml. (That’s where the O comes from.)

References, Local State, and Objects – p. 36


	Objectives
	More Objectives
	Definition
	A Complication
	A Counterexample
	Reference Operator
	Natural Semantics
	Counter, Method 1
	Bad Things for Counter
	Conclusions about State
	Review of Scope
	Using local state
	Random Number Generators
	Function Tuples
	Passing Counters Around
	Activity
	Answer to 2
	Preliminaries
	Point
	Improvement: Use records.
	Objects?
	Adding Self
	Memory
	So far...
	Message Dispatching
	mkPoint
	Subclassing
	Implementing
	Code: 	exttt {point}
	Code: 	exttt {fastpoint}
	C++
	Discussion
	Polymorphism Example
	Conclusions

