
Type Derivations

Illinois Institute of Technology Mattox Beckman

Type Derivations
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

Type Derivations – p. 1

Type Derivations
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

In order to express the meaning of a program, we need a formal
language to capture these meanings. One way to express meaning
is to say something about the types of the expressions. By the end
of lecture, you should know

what the word “semantics” means.

how to structure a proof-tree

how use the type rules to prove the type of an expression

write your own type rule for an expression

Type Derivations – p. 2

Type Derivations
§1 Why Type Checking is Good

Illinois Institute of Technology Mattox Beckman

Strongly vs. Weakly Typed

Strongly Typed Languages

e.g., ML, Haskell, most of C++, C
You have to declare all your types at the beginning
No type checks during run-time (faster, safer code)

Weakly Typed Languages

e.g., Perl, Lisp, some parts of Java
Very flexible programming
Types must be checked at run-time or Bad Things happen

Type Derivations – p. 3

Type Derivations
§1 Why Type Checking is Good

Illinois Institute of Technology Mattox Beckman

Other advantages of strong typing...

Engineering

A program that type-checks is likely to be correct.
Types constrain the use of a function.

Safety Every try casting an integer into a pointer in C?
1 int i = 5;
2 *((int *)i) = 10;

A type error in an untyped language can be very hard to
detect.

Theory

It is much easier to verify the operation of type-correct code.

Type Derivations – p. 4

Type Derivations
§2 Formal Systems

Illinois Institute of Technology Mattox Beckman

Parts of a Formal System

To create a formal system, you must specify the following:

A set of symbols or an alphabet.

A definition of a valid sentence.

A set of transformation rules to make new valid sentences out
of old ones.

A set of initial valid sentences.

You do NOT need:

An interpretation of those symbols.
They are highly recommended, but the formal system can exist
and do its work without one.

Type Derivations – p. 5

Type Derivations
§2 Formal Systems

Illinois Institute of Technology Mattox Beckman

Example

Symbols S, (,), Z, P , x, y.

Definition of a furbitz

Z is a furbitz. x and y are variables of type furbitz.
if x is a furbitz, then S(x) is a furbitz.
if x and y are furbitzi, then P (x, y) is a furbitz.

Definition of the gloppit relation

Z has the gloppit relation with Z.
If x and y have the gloppit relation, then S(x) and S(y) have
the gloppit relation.
If α and β, then we can write αgβ.

True Sentences If αgβ, then also
P (S(α), β)gP (α, S(β)), and P (Z, α)gα

Type Derivations – p. 6

Type Derivations
§2 Formal Systems

Illinois Institute of Technology Mattox Beckman

Example

Symbols S, (,), Z, P , x, y.

Definition of an integer

0 is an integer. x and y are variables of type integer.
if x is an integer, then S(x) is an integer.
if x and y are integers, then P (x, y) is an integer.

Definition of the equality relation

0 has the equality relation with 0.
If x and y have the equality relation, then S(x) and S(y) have
the equality relation.
If α and β, then we can write α = β.

True Sentences If α = β, then also
P (S(α), β) = P (α, S(β)), and P (0, α) = α

Type Derivations – p. 7

Type Derivations
§3 Type Judgments

Illinois Institute of Technology Mattox Beckman

Format of a Type Judgment

An type judgment has the following form:

Γ ⊢ e : τ

where Γ is a type environment, e is some expression, and τ is a
type.

Γ ⊢ if true then 4 else 38 : int

Γ ⊢ true && false : bool

Note: the ⊢ is pronounced “turnstile” or “entails”.

Type Derivations – p. 8

Type Derivations
§3 Type Judgments

Illinois Institute of Technology Mattox Beckman

The Parts of a Rule

Assumptions

Γ ⊢ e1 : bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ

Conclusion

If a rule has no assumptions, then it is called an axiom.

Γ is a list of the form [x : τ ; . . .].

Γ may be left out if we don’t need a type environment (see next
slide).

Basic Idea : The meaning of an expression can be determined
by combining the meaning of its parts.

Type Derivations – p. 9

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Axioms

Constants ⊢ n : int (assuming n is an int)

⊢ true : bool

⊢ false : bool

Variables Γ ⊢ x : τ
, if x : τ ∈ Γ

The Variable Rule is actually a bit more complicated in real life,
but this form is sufficient.

These are rules that are true no matter what the context is.

Type Derivations – p. 10

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Simple Rules

Arithmetic
Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 ⊕ e2 : int

Relations
Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 ∼ e2 : bool

Booleans
Γ ⊢ e1 : bool Γ ⊢ e2 : bool

Γ ⊢ e1&& e2 : bool

Γ ⊢ e1 : bool Γ ⊢ e2 : bool

Γ ⊢ e1|| e2 : bool

These are combination rules.

Type Derivations – p. 11

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Simple Example

Suppose we want to prove that Γ ⊢ (x ∗ 5 > 7)&& y : bool .
Assume that Γ = [x : int ; y : bool]

First thing: Write down the thing you are trying to prove, and put a
bar over it.

Γ ⊢ (x ∗ 5 > 7)&& y : bool

Look at the outermost expression. What kind of expression is this?

Use the rule
Γ ⊢ e1 : bool Γ ⊢ e2 : bool

Γ ⊢ e1&& e2 : bool

You need the “and” rule. It will tell you which parts of the goal need
to be proved next.

Type Derivations – p. 12

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Simple Example

Suppose we want to prove that Γ ⊢ (x ∗ 5 > 7)&& y : bool .
Assume that Γ = [x : int ; y : bool]

Write parts on top and put a bar over them as well.

Γ ⊢ x ∗ 5 > 7 : bool Γ ⊢ y : bool

Γ ⊢ (x ∗ 5 > 7)&& y : bool

What to do next? Let’s work left to right. The expression we want
next is a “greater” expression. (Besides, the y expression is already
an axiom.)

Type Derivations – p. 12

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Simple Example

Suppose we want to prove that Γ ⊢ (x ∗ 5 > 7)&& y : bool .
Assume that Γ = [x : int ; y : bool]

Following the “greater” rule, we break the x * 5 > 7 into two
parts.

Γ ⊢ x ∗ 5 : int Γ ⊢ 7 : int

Γ ⊢ x ∗ 5 > 7 : bool Γ ⊢ y : bool

Γ ⊢ (x ∗ 5 > 7)&& y : bool

We will turn our attention to the multiplication now.

Type Derivations – p. 12

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Simple Example

Suppose we want to prove that Γ ⊢ (x ∗ 5 > 7)&& y : bool .
Assume that Γ = [x : int ; y : bool]

At this point, there are no more subtrees to expand out. We are
done.

Γ ⊢ x : int Γ ⊢ 5 : int

Γ ⊢ x ∗ 5 : int Γ ⊢ 7 : int

Γ ⊢ x ∗ 5 > 7 : bool Γ ⊢ y : bool

Γ ⊢ (x ∗ 5 > 7)&& y : bool

Type Derivations – p. 12

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Type Variables in Rules

If
Γ ⊢ e1 : bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ

The τ means “any type at all”—but whatever type τ you pick it
has to be the same for the three places it shows up in this rule.

So... the if rule says that if can result in any type, as long as
the then and else branches have the same type. This could
even include functions.

Type Derivations – p. 13

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Function Application

Γ ⊢ e : τ1 → τ2 → · · · → τn → τ Γ ⊢ e1 : τ1 · · · Γ ⊢ en : τn

Γ ⊢ e e1 e2 · · · en : τ

If you have a function of type τ1 → τ2 → · · · → τn → τ , and if
every argument ei has type τi, then applying them in that order
will produce an expression of type τ .

Γ ⊢ map : (α → β) → α list → β list Γ ⊢ f : (α → β) Γ ⊢ lst : α list

Γ ⊢ map f lst : β list

For “compound types” like α list, we only substitute in the α

parts.

Type Derivations – p. 14

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Functions and Let

Important point: the rules describe types, but they also describe
when you may change Γ.

You may NOT change Γ except as described!

Functions
Γ ∪ [x1 : τ1; · · · ; xn : τn] ⊢ e : τ

Γ ⊢ fun x1 · · · xn−>e : τ1 → · · · → τn → τ

Let
Γ ⊢ e1 : τ Γ ∪ [x : τ] ⊢ e2 : τ ′

Γ ⊢ let x = e1 in e2 : τ ′

Let Rec
Γ ∪ [x : τ] ⊢ e1 : τ Γ ∪ [x : τ] ⊢ e2 : τ ′

Γ ⊢ let rec x = e1 in e2 : τ ′

Type Derivations – p. 15

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Example: Type-checking Compose

Type-checking compose:

Γ ⊢ fun f g x −> f (g x) : (α → β) → (δ → α) → δ → β

Before using the function rule:

Γ ∪ [x1 : τ1; · · · ; xn : τn] ⊢ e : τ

Γ ⊢ fun x1 · · · xn−>e : τ1 → · · · → τn → τ

Type Derivations – p. 16

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Example: Type-checking Compose

Type-checking compose:

Γ′ = Γ ∪ {f : (α → β); g : (δ → α); x : δ} ⊢ f (g x) : β

Γ ⊢ fun f g x −> f (g x) : (α → β) → (δ → α) → δ → β

After using the function rule:

Γ ∪ [x1 : τ1; · · · ; xn : τn] ⊢ e : τ

Γ ⊢ fun x1 · · · xn−>e : τ1 → · · · → τn → τ

Next, we use application.
Γ ⊢ e : τ1 → τ2 → · · · → τn → τ Γ ⊢ e1 : τ1 · · · Γ ⊢ en : τn

Γ ⊢ e e1 e2 · · · en : τ

Type Derivations – p. 16

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Example: Type-checking Compose

Type-checking compose:

Γ′ ⊢ f : (α → β) Γ′ ⊢ (g x) : (α)

Γ′ = Γ ∪ {f : (α → β); g : (δ → α); x : δ} ⊢ f (g x) : β

Γ ⊢ fun f g x −> f (g x) : (α → β) → (δ → α) → δ → β

The rule for parens is trivial... can you write it?
Next, we’ll use application again.

Type Derivations – p. 16

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Example: Type-checking Compose

Type-checking compose:

Γ′ ⊢ f : (α → β)

Γ′ ⊢ g : (δ → α) Γ′ ⊢ x : δ

Γ′ ⊢ (g x) : α

Γ′ = Γ ∪ {f : (α → β); g : (δ → α); x : δ} ⊢ f (g x) : β

Γ ⊢ fun f g x −> f (g x) : (α → β) → (δ → α) → δ → β

We are done. These rules are meant mainly to verify a type, but
they can be used to infer a type as well.

Type Derivations – p. 16

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Example: Type-inferencing Compose

At first, give everything a separate type.

Γ ⊢ fun f g x −> f (g x) : α → β → δ → γ

Type Derivations – p. 17

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Example: Type-inferencing Compose

Apply the function rule:

Γ′ = Γ ∪ {f : α; g : β; x : δ} ⊢ f (g x) : γ

Γ ⊢ fun f g x −> f (g x) : α → β → δ → γ

Type Derivations – p. 17

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Example: Type-inferencing Compose

Apply the application rule:

Γ′ ⊢ f : α Γ′ ⊢ (g x) :???

Γ′ = Γ ∪ {f : α; g : β; x : δ} ⊢ f (g x) : γ

Γ ⊢ fun f g x −> f (g x) : α → β → δ → γ

From here we see that α needs to be a function type. Also, we need
to decide a type for (g x).

Let (g x) have type ν.

Let f have type α = ν → γ.

We make the appropriate substitutions....

Type Derivations – p. 17

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Example: Type-inferencing Compose

Apply the application rule:

Γ′ ⊢ f : (ν → γ) Γ′ ⊢ (g x) : ν

Γ′ = Γ ∪ {f : (ν → γ); g : β; x : δ} ⊢ f (g x) : γ

Γ ⊢ fun f g x −> f (g x) : (ν → γ) → β → δ → γ

Now we use the application rule for (g x).

Type Derivations – p. 17

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Example: Type-inferencing Compose

Apply the application rule:

Γ′ ⊢ f : (ν → γ)

Γ′ ⊢ g : β Γ′ ⊢ x : δ

Γ′ ⊢ (g x) : ν

Γ′ = Γ ∪ {f : (ν → γ); g : β; x : δ} ⊢ f (g x) : γ

Γ ⊢ fun f g x −> f (g x) : (ν → γ) → β → δ → γ

We know that β needs to be δ → ν, because of our rule.

Substituting, we get...

Type Derivations – p. 17

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Example: Type-inferencing Compose

Apply the application rule:

Γ′ ⊢ f : (ν → γ)

Γ′ ⊢ g : (δ → ν) Γ′ ⊢ x : δ

Γ′ ⊢ (g x) : ν

Γ′ = Γ ∪ {f : (ν → γ); g : (δ → ν); x : δ} ⊢ f (g x) : γ

Γ ⊢ fun f g x −> f (g x) : (ν → γ) → (δ → ν) → δ → γ

Now we’re done.

Type Derivations – p. 17

Type Derivations
§4 Typing Rules

Illinois Institute of Technology Mattox Beckman

Another example

Here’s an example I showed one time I gave this lecture.

Γ ∪ [x : τ] ⊢ x : τ

Γ ⊢ fun x −>x : τ → τ

Γ1 ⊢ id : τ → τ

Γ1 ⊢ id : τ → τ Γ1 ⊢ 10 : int

Γ1 ⊢ (id 10) : int

Γ1 ⊢ id (id 10) : int

Γ ⊢ let id = fun x −>x in id (id 10) : int

Let Γ1 = Γ ∪ [id : τ → τ]

What would be different if we’d used let rec instead?

Type Derivations – p. 18

Type Derivations
§5 Activity

Illinois Institute of Technology Mattox Beckman

Problems

Try these problems.

Prove that Γ ⊢ let f = fun x−>x + 2 in let g =
fun x−>x + 3 in (if 4 > 6 then f else g) 10 : int

Write a type judgment rule for the list operator ::.

Type Derivations – p. 19

	Objectives
	Strongly vs. Weakly Typed
	Other advantages of strong typing...
	Parts of a Formal System
	Example
	Example
	Format of a Type Judgment
	The Parts of a Rule
	Axioms
	Simple Rules
	Simple Example
	Simple Example
	Simple Example
	Simple Example

	Type Variables in Rules
	Function Application
	Functions and Let
	Example: Type-checking Compose
	Example: Type-checking Compose
	Example: Type-checking Compose
	Example: Type-checking Compose

	Example: Type-inferencing Compose
	Example: Type-inferencing Compose
	Example: Type-inferencing Compose
	Example: Type-inferencing Compose
	Example: Type-inferencing Compose
	Example: Type-inferencing Compose

	Another example
	Problems

