
Illinois Institute of Technology Department of Computer Science

Final Exam (Mostly Non-Cumulative)
CS 440— Programming Languages

Fall 2006
December 11, 2006 14:00–16:00

This is a closed book and closed notes exam.
You are not allowed to use calculators or computers during this exam.
Do ALL problems in this booklet. Read each question very carefully.

You may detach pages, but you must return all pages of this exam.

Name
Email ID @iit.edu

Do not place your social security number anywhere on this exam.

Problem Points Score

1 4
2 4
3 6
4 6
5 6
6 4
7 6
8 6
9 4
10 6
11 6
12 6
13 6
14 6
15 4
16 6
17 4

Total 90

Percent 100

CS 440 Final Exam (Mostly Non-Cumulative) Fall 2006

1 Higher Order Functions

Question 1) (4 points) Write the code for map : (’a -> ’b) -> ’a list -> ’b list.

Question 2) (4 points) Write the code for fold right: (’a -> ’b -> ’b) -> ’a list -> ’b

-> ’b.

Page 2

CS 440 Final Exam (Mostly Non-Cumulative) Fall 2006

Question 3) (6 points) Using either map or fold right, write the function product xx : int

list -> int, which computes Πn

i=0
ai from the list [a0; a1; . . . ; an]. You may not use explicit

recursion.

let product xx = ...

val product : int list -> int = <fun>

product [3;1;9];;

- : int = 27

Question 4) (6 points) Using either map or fold right, write the function decList xx : int

list -> int list, which decrements each element of a list. You may not use explicit recursion.

let decList xx = ...

val decList : int list -> int = <fun>

decList [2;4;6];;

- : int list = [1;3;5]

Page 3

CS 440 Final Exam (Mostly Non-Cumulative) Fall 2006

2 Prolog

Question 5) (6 points)
Consider the following Prolog code.

length([],0).

length([H|T],X) :- length(T,Y), X is Y + 1.

Show how to write the prod predicate, which is true when the second argument is the product
of the elements of the first argument.

Question 6) (4 points) For what kind of applications is Prolog well-suited? Give an example.

Page 4

CS 440 Final Exam (Mostly Non-Cumulative) Fall 2006

Question 7) (6 points) Consider the following Prolog database.

connected(a,b).

connected(b,c).

connected(a,d).

connected(d,c).

etc...

This database represents the connections in a graph. Write a predicate pathfrom(X,Y) which
is true when there exists a path from X to Y in the database. (Don’t hard code it to this particular
database; we may add other connections later.)

Question 8) (6 points) Consider the following Prolog database.

pet(puppy).

pet(tarantula).

adjective(happy).

adjective(hairy).

adjective(dangerous).

If you give the query

?- adjective(X), pet(Y).

how many results are returned?

Show how to insert a cut operator so that only one result will be returned.

What will that result be?

Page 5

CS 440 Final Exam (Mostly Non-Cumulative) Fall 2006

Question 9) (4 points)
Consider the following Prolog code.

valid(X) :- (pre1(X); pre2(X)), post(X).

The idea is that X is valid if it satisfies one of the two preconditions pre1 and pre2; and then
also satisfies the postcondition post. The predicate post is very expensive to run, however. Show
how we can use the cut operator to make this query more efficient (without causing it to reject X’s
that are valid, of course).

Page 6

CS 440 Final Exam (Mostly Non-Cumulative) Fall 2006

3 Recursion

Use recursion to write the following function. You do not have to use tail recursion, but you may
do so if you want. You are always allowed to make helper functions.

Question 10) (6 points) Write a recursive function sumonen : int -> int that takes an integer
n and returns the sum Σn

i=1
i. If n < 0 simply return 0.

let rec sumonen n = ...

val sumonen : int -> int = <fun>

sumonen 10;;

val - : int = 55

Question 11) (6 points) Write the function sum xx : int list -> int, which returns the sum
Σn

i=1
ai from the list [a0; a1; . . . ; an]. Use tail recursion. You may write a helper function, or use

standard library functions if you want.

Page 7

CS 440 Final Exam (Mostly Non-Cumulative) Fall 2006

4 State

Question 12) (6 points) Suppose you want to write an accumulator function. It keeps a local
state, starting at 0, and then keeps a running total of the input. Here is a session:

let acc = some secret stuff

val acc : int -> int = <fun>

acc 2;;

- : int = 2

acc 3;;

- : int = 5

acc 5;;

- : int = 10

Give the code for acc that has the behavior above. You may not use a global variable.

Question 13) (6 points) State makes it difficult to use equational reasoning. Give an example,
using the acc function above, that illustrates this.

Page 8

CS 440 Final Exam (Mostly Non-Cumulative) Fall 2006

Question 14) (6 points) Using local state, we can simulate objects. We also need a mechanism
for simulating inheritance. Describe the message dispatcher model, and how it handles methods
inherited from another object. (As a reminder, here is a counter object being called.)

ct "inc" ();;

- : int = 1

ct "reset" ();

- : int = 0

ct "inc" ();;

- : int = 1

If you can describe how a “fast counter” might work, inheriting the reset method but overriding
the inc method, that would answer the question nicely. You do not need to give code unless it helps
your explanation.

Question 15) (4 points) We have commented that state makes equational reasoning difficult.
But, we sometimes use it anyway. What is the advantage? (You will NOT get credit if you just
say that it “makes programming easier,” you need to be more specific than that.)

Page 9

CS 440 Final Exam (Mostly Non-Cumulative) Fall 2006

5 Unification

Question 16) (6 points) Solve the following unification problem. Show your work to allow for
partial credit if something goes wrong. The Greek letters are the variables.

{g(α, x) = g(y, β), h(γ, z) = h(f(α), z)}

Question 17) (4 points) Give an example of a language feature (from any language) which is
implemented using unification.

Page 10

