
Assert in Prolog

Illinois Institute of Technology Mattox Beckman

Assert in Prolog
Mattox Beckman

beckman@iit.edu

Illinois Institute of Technology

Assert in Prolog – p. 1

Assert in Prolog
§0 Objectives

Illinois Institute of Technology Mattox Beckman

Objectives

You can often tell what the language designers thought about their
language by the libraries that are included with it. Many of Prolog’s
involve the analysis of structres. In this lecture we will go over some
of the builtin predicates of Prolog.

Know how to use call and assert

Know how to use findall and checklist.

Assert in Prolog – p. 2

Assert in Prolog
§1 Mapping in prolog

Illinois Institute of Technology Mattox Beckman

Two useful list predicates

findall(X,T,Y) finds all values of X that make T true, and
puts them into Y.

checklist(P,Y) is true if predicate P is true for all values in
list Y.

1 ?- findall(X,possible(X),Xs).
2 X = _G306
3 Xs = [anna, beth, cindy, david, ernest, frank, gloria,
4 ?- checklist(student,[anna,beth]).
5 Yes
6 24 ?- checklist(student,[anna,harry]).
7 No

Assert in Prolog – p. 3

Assert in Prolog

§2 Structures and Patterns

Illinois Institute of Technology Mattox Beckman

Pairs

The term socrates is a pattern. But patterns can have
structure....

1 pair((X,Y)).
2 key((X,Y),X).
3 value((X,Y),Y).
4 assoc(X,Y,[H|T]) :- key(H,X), value(H,Y);
5 assoc(X,Y,T).
6 ?- assoc(2,X,[(3,hi),(4,there),(2,guys)]).
7 X = guys
8 ?- assoc(X,there,[(3,hi),(4,there),(2,guys)]).
9 X = 4

Assert in Prolog – p. 4

Assert in Prolog

§2 Structures and Patterns

Illinois Institute of Technology Mattox Beckman

Trees

Here we use a pattern called bst, which is a functor.

1 find(X,bst(X,_,_)).
2 find(X,bst(Y,A,_)) :- X < Y, find(X,A).
3 find(X,bst(Y,_,B)) :- X >= Y, find(X,B).
4 ?- find(3,bst(4,bst(5,null,null),bst(3,null,null))).
5 No
6 ?- find(3,bst(4,bst(3,null,null),bst(5,null,null))).
7 Yes
8 ?- find(X,bst(4,bst(3,null,null),bst(5,null,null))).
9 X = 4 ;

10 ERROR: Arguments are not sufficiently instantiated
11 Exception: (6) find(_G474, bst(4, bst(3, null, null),

Assert in Prolog – p. 5

Assert in Prolog

§2 Structures and Patterns

Illinois Institute of Technology Mattox Beckman

Tree Example

1 bstgt(X,null).
2 bstgt(X,bst(A,_,_)) :- X > A.
3 bstle(X,null).
4 bstle(X,bst(A,_,_)) :- X =< A.
5 isbst(null).
6 isbst(bst(X,A,B)) :- bstgt(X,A), isbst(A),
7 bstle(X,B), isbst(B).
8 ?- isbst(bst(4,bst(3,null,null),bst(5,null,null))).
9 Yes

10 ?- isbst(bst(4,bst(5,null,null),bst(3,null,null))).
11 No

Assert in Prolog – p. 6

Assert in Prolog
§3 Examining Terms

Illinois Institute of Technology Mattox Beckman

Examine Thyself

One power that Prolog programs have is the ability to examine and
modify themselves.

Used for AI — real learning requires the ability to “examine
yourself”.

Prolog structures and prolog programs have the same form.
Assembly language: bit patterns
Scheme and Lisp: lists
Prolog: structures

1 likes(john,mary).
2 ?- isbst(bst(5,null,null)).

Functors: likes,isbst, and bst.
Assert in Prolog – p. 7

Assert in Prolog
§3 Examining Terms

Illinois Institute of Technology Mattox Beckman

Types of a term

We have predicates that will determine the type of a term.

1 ?- atom(3).
2 No
3 ?- atom(hi).
4 Yes
5 ?- atomic(3).
6 Yes
7 ?- integer(3).
8 Yes
9 ?- integer(f).

10 No

1 ?- X = 20, integer(X).
2 X = 20
3 Yes
4 ?- var(X).
5 Yes
6 ?- X = 20, var(X).
7 No

Assert in Prolog – p. 8

Assert in Prolog
§3 Examining Terms

Illinois Institute of Technology Mattox Beckman

Name

The name predicate turns a term into a string (and back).

1 ?- name(foo,X).
2 X = [102, 111, 111]
3 ?- name(X,"foo").
4 X = foo
5 chop(X,Y) :- name(X,[_|S]), name(Y,S).
6 ?- chop(asymmetric,X).
7 X = symmetric

This will be very useful for natural language processing.

Assert in Prolog – p. 9

Assert in Prolog
§3 Examining Terms

Illinois Institute of Technology Mattox Beckman

Look what you’ve done!

The listing predicate will print out the definitions we have so
far.

1 ?- listing(mortal).
2

3 mortal(A) :-
4 human(A).
5

6 Yes

Assert in Prolog – p. 10

Assert in Prolog
§3 Examining Terms

Illinois Institute of Technology Mattox Beckman

Accessing Parts of Functors

functor(T,F,N) — F will contain the name of the functor, N
will contain the number of arguments.

arg(N,T,A) — A will be argument number N of T

1 -? functor(isbst(5,null,null),F,N).
2 F = isbst
3 N = 3
4 -? arg(1,isbst(5,null,null),A).
5 A = 5

Assert in Prolog – p. 11

Assert in Prolog
§3 Examining Terms

Illinois Institute of Technology Mattox Beckman

The =.. operator

Another way to deconstruct terms is with “=..”.

1 ?- bst(5,null,null) =.. L.
2 L = [bst, 5, null, null] ;
3 ?- L =.. [likes,john,X].
4 L = likes(john, _G276)
5 X = _G276
6 (mortal(X) :- human(X)) =.. L.
7 X = _G324
8 L = [(:-), mortal(_G324), human(_G324)]

Note that :- is a functor!

Assert in Prolog – p. 12

Assert in Prolog
§3 Examining Terms

Illinois Institute of Technology Mattox Beckman

Database modification

assert allows you to modify things while prolog is running.

This only works for “dynamic” procedures, though.

retract allows you to undo an assertion.

1 ?- assert(prime(2)).
2 ?- assert(prime(3)).
3 ?- assert(prime(5)).
4 ?- assert(prime(7)).
5 ?- prime(3).
6 Yes
7 ?- retract(prime(3)).
8 ?- prime(3).
9 No

Assert in Prolog – p. 13

Assert in Prolog
§3 Examining Terms

Illinois Institute of Technology Mattox Beckman

Making things dynamic

1 ?- dynamic likes/2.
2 ?- likes(john,mary).
3 No
4 ?- assert(likes(X,Y) :- likes(Y,X)).
5 ?- assert(likes(john,mary)).
6 ?- likes(mary,X).
7 ERROR: Out of local stack
8 ?- retract(likes(john,mary)).
9 Yes

10 ?- asserta(likes(john,mary)).
11 Yes
12 ?- likes(mary,X).
13 X = john

Assert in Prolog – p. 14

Assert in Prolog
§3 Examining Terms

Illinois Institute of Technology Mattox Beckman

Executing Code

The call predicate will execute its argument.

Note that implications are asserted, not called.

1 ask_about(X,Y) :- Q =.. [Y,X], call(Q).
2 ?- ask_about(socrates,mortal).
3 Yes
4 ?- call(funny(X) :- human(X)). See, I told you....
5 ERROR: Undefined procedure: (:-)/2
6 ?- assert(funny(X) :- human(X)).
7 X = _G324
8 Yes
9 ?- funny(X).

10 X = socrates
11 X = muller

Assert in Prolog – p. 15

Assert in Prolog
§3 Examining Terms

Illinois Institute of Technology Mattox Beckman

Example: answer

Now you can use prolog to keep track of students’ questions.

1 answer(X) :- question(X,Q), !, write(Q),
2 retract(question(X,Q)), call(Q).
3 ?- assert(question(jonny,mortal(muller))).
4 ?- assert(question(jonny,mortal(socrates))).
5 ?- answer(jonny).
6 mortal(muller)
7 Yes
8 ?- answer(jonny).
9 mortal(socrates)

10 Yes
11 ?- answer(jonny).
12 No

Assert in Prolog – p. 16

Assert in Prolog
§4 Activity

Illinois Institute of Technology Mattox Beckman

Problems

1. Write a function “says” that takes two arguments. The first is
the name of a person making the implication. The second is a
prolog expression. Record the claim, and then tell the prolog.

2. Next, suppose we can find out later that some people aren’t
reliable, and we should no longer believe anything they say.
Write a function “disbelieve” that takes the name of a person
and retracts everything they said before.

1 ?- says(frank,likes(john,mary)).
2 ?- likes(john, mary).
3 Yes
4 ?- disbelieve(frank).
5 ?- likes(john, mary).
6 No

Assert in Prolog – p. 17

Assert in Prolog
§4 Activity

Illinois Institute of Technology Mattox Beckman

Answers

1 says(P,X) :- assert(claims(P,X)), assert(X).
2 disbelieve(X) :- findall(Y,claims(X,Y),YL),
3 checkall(retract,YL).

Assert in Prolog – p. 18

	Objectives
	Two useful list predicates
	Pairs
	Trees
	Tree Example
	Examine Thyself
	Types of a term
	Name
	Look what you've done!
	Accessing Parts of Functors
	The =.. operator
	Database modification
	Making things dynamic
	Executing Code
	Example: answer
	Problems
	Answers

