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Solution

1. (#48 in page 529) Suppose that R and S are reflexive relations on a set A. Prove or disprove each of
these statements.

(a) R ∪ S is reflexive

(b) R ∩ S is reflexive

(c) R ⊕ S is irreflexive

(d) R − S is irreflexive

(e) S ◦ R is reflexive

Solution:

(a) Since R contains all the pairs (x, x), so does R ∪ S. Therefore, R ∪ S is reflexive.

(b) Since R and S each contain all the pairs (x, x), so does R ∩ S. Therefore, R ∩ S is reflexive.

(c) Since R and S each contain all the pairs (x, x), we know that R ⊕ S contains none of these pairs.
Therefore R ⊕ S is irreflexive.

(d) Since R and S each contain all the pairs (x, x), we know that R − S contains none of these pairs.
Therefore R − S is irreflexive.

(e) Since R and S each contain all the pairs (x, x), so does R ◦ S. Therefore, R ◦ S is reflexive.

2. (#34 in page 544) Let R be a relation on a set A. Explain how to use the directed graph representing
R to obtain the directed graph representing the complementary relation R̄.

Solution: For each pair (a, b) of vertices (including the pairs (a, a) in which the two vertices are the
same), if there is an edge from a to b, then erase it, and if there is no edge from a to b, then add it in.

3. (#54 in page 565) Suppose that R1 and R2 are equivalence relations on a set A. Let P1 and P2 be
the partitions that correspond to R1 and R2, respectively. Show that R1 ⊆ R2 if and only if P1 is a
refinement of P2.

Solution: First, suppose that R1 ⊆ R2. We must show that P1 is a refinement of P2. Let [a]R1
be an

equivalence class in P1. We must show that [a]R1
is contained in an equivalence class in P2. In fact, we

will show that [a]R1
⊆ [a]R2

. To this end, let b ∈ [a]R1
. Then (a, b) ∈ R1 ⊆ R2. Therefore b ∈ [a]R2

, as
desired.

Conversely, suppose that P1 is a refinement of P2. Since a ∈ [a]R2
, the definition of “refinement” forces

[a]R1
⊆ [a]R2

for all a ∈ A. This means that for all b ∈ A we have (a, b) ∈ R1 → (a, b) ∈ R2; in other
words, R1 ⊆ R2.

4. (#44 in page 580) Determine whether these posets are lattices.
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(a) ({1, 3, 6, 9, 12}, |)

(b) ({1, 5, 25, 125}, |)

(c) (Z,≥)

(d) (P (S),⊇), where P (S) is the power set of a set S

Solution: In each case, we need to decide whether every pair of elements has a least upper bound and
a greatest lower bound.

(a) This is not a lattice, since the elements 6 and 9 have no upper bound.

(b) This is a lattice; in fact it is a linear order, since each element in the list divides the next one.
The least upper bound of two numbers in the list is the larger, and the greatest lower bound is the
smaller.

(c) Again, this is a lattice because it is a linear order.

(d) This is similar to Example 24, with the roles of subset and superset reversed. Here the g.l.b. of
two subsets A and B is A ∪ B, and their l.u.b. is A ∩ B.

5. (# 34 in page 610) How many edges does a graph have if its degree sequence is 4, 3, 3, 2, 2? Draw such
a graph.

Solution: The 4-wheel (see Figure 5) with one edge along the rim deleted is such a graph. It has
(4 + 3 + 3 + 2 + 2)/2 = 7 edges.

6. (#40 in page 632) Show that if a connected simple graph G is the union of the graphs G1 and G2, then
G1 and G2 have at least one common vertex.

Solution: By definition of graph, both G1 and G2 are nonempty. If they have no common vertex,
then there clearly can be no path from v ∈ G1 to v2 ∈ G2. In that case G would not be connected,
contradicting the hypothesis.

7. (#10 in page 644) Can someone cross all the bridges shown in this map exactly once and return to the
starting point? (The map is shown in the text in page 644.)

Solution: Each vertex has even degree, so the graph has an Euler ciruit. Therefore a walk of the type
described is possible.

8. (#48 in page 646) Can you find a simple graph with n vertices with n ≥ 3 that does not have a Hamilton
circuit, yet the degree of every vertex in the graph is at least (n − 1)/2?

Solution: We want to look only at odd n, since if n is even, then being at least (n − 1)/2 is the same
as being at least n/2, in which case Dirac’s Theorem would apply. One way to avoid having a Hamilton
circuit is to have a cut vertex – a vertex whose removal disconnects the graph. The simplest example
would be the “bow-tie” graph with five vertices (a, b, c, d, e), where cut vertex c is adjacent to each of
the other vertices, and the only other edge are ab and de. Every vertex has degree at least (5−1)/2 = 2,
but there is no Hamilton circuit.


