
Stack and Queue Lab
CS 331 — Fall, 2010

Revision 1.0

Assigned
Due

1 Introduction
As we discussed in lecture, stacks and queues are easy to code if you already have a working linked list
implementation. In this lab, you will encapsulate a linked list (provided for you) to implement a stack class
and a queue class. You will also write JUnit tests to make sure this thing really works.

1.1 Objectives
• Have experience using encapsulation to create new behaviors.

• Implement a stack.

• Implement an efficient queue.

2 Given Files
You are given 7 files for this lab. They are in the stack-queue-lab directory of your repository. Do a
git pull to download them.

• List.java — A linked list implementation. Read it to see what kinds of methods are available. It
should look pretty familiar to you.

• Makefile — the scripts needed to compile your files and run the tests. It supports the following
targets:

compile Compiles everything.

compile-stack Just compiles the Stack and List classes (and tests).

compile-queue Just compiles the Queue and List classes (and tests).

tests Tests everything.

test-stack Just tests the Stack and List classes.

test-queue Just tests the Queue and List classes.

• TestList.java — These are the test cases for the List class.

• Stack.java — The empty Stack class.

1



• Queue.java — The empty Queue class.

• TestStack.java — The shell for the Stack class testing functions.

• TestQueue.java — The shell for the Queue class testing functions.

Note that the stack and queue code will not work out of the box.

3 Command Line Hint of the Day
Most people who use a command line have this habit: every time you change to a new directory, run ls to
see what’s in it. Typically, you already know what should be there, but if you are accidentally in the wrong
directory, you’ll see it right away, before you start adding files or changing things.

4 Your Work
For both of these classes, you must implement the methods listed below, and you must use the List class
we’ve provided. We highly recommend that you write the test cases before you write the methods. It’s okay
if you write your test case, then after writing the method you decide to make changes to the test case. The
point is that you should be making a good effort to write the test cases first.

4.1 The Stack Class
Stack<E> The constructor.

Inputs none

Output none

push

Inputs E data

Output none

Actions Adds an element to the top of the stack.

pop

Inputs none

Output E — the element at the top of the stack. Return null if the stack is empty.

Actions Removes the element at the top of the stack. No action if the stack is empty.

top

Inputs none

Output E — the element at the top of the stack. Return null if the stack is empty.

Actions none

size

2



Inputs none

Output int — the number of elements in the stack.

Actions none

For testing, you will want to test several things.

• That an empty stack behaves properly. (Size returns zero, pop and top return null.)

• That push and top work together properly. After every push, the top method should return what
was just pushed.

• Elements pushed onto the stack are popped out in the proper order, and the size is adjusted properly.

4.2 The Queue Class
Queue<E>

Inputs none

Output none

enqueue

Inputs E — the data to enqueue

Output none

Actions Adds the data to the back of the queue.

There were two ways given to implement this in class. For this version, it is probably best to use a
List class which has a last pointer in it, a insertAtEnd method, and a deleteFromFront
method. Then you can enqueue by inserting into the back of the list, and dequeue by removing from
the front of the list.

If you prefer, you can use the two-list method.

dequeue

Inputs none

Output E — the data. Return null if the queue is empty.

Actions Removes the data from the queue.

front

Inputs none

Output E — the data. Return null if the queue is empty.

Actions none

size

Inputs none

Output int — the number of elements in the queue.

3



Actions none

For testing, you will want to test several things.

• That an empty queue behaves properly. (Size returns zero, dequeue and front return null.)

• That enqueue and front work together properly. After every enqueue, the front method
should return the first thing enqueued, and after every dequeue, the front method should return
what will be dequeued next.

• Elements enqueued are dequeued in the proper order, and the size is adjusted properly.

5 Handing In
To hand in your code, commit your final changes to the repository. The grading script (which will be turned
on later) will grade your lab and put the results into your repository.

4


