
Doubly Linked List Lab
CS 331 — Fall 2010

Revision 1.0

Assigned
Due

1 Objectives
In this lab you will create a doubly linked list, with four iterators.

• Create a doubly linked list.

• Have more experience using the Interface feature of Java.

• Use inheritance to enable you to reuse code.

2 Doubly-Linked Lists
As we discussed in lecture, a doubly linked list node has two pointers: next and prev. Instead of just
going forward through the list, you can also go backwards. This is very convenient, because we can back up
as well as go forward, but it also means that there are two pointers per node that must be maintained, and it
is easy to cause inconsistencies.

3 Given Files
You are given 4 files for this lab. They are in the doubly-linked-lists directory of your repository.
Do an git pull to download them. Here are the files you will find:

• DList.java — A skeletal doubly-linked list implementation. Please review this code carefully
before using it, it’s not meant to be complete.

• Iterator.java — An interface file for the Iterator. This is the same one you had from last
time.

• Makefile — the scripts needed to compile your files and run the tests. It supports the following
targets:

compile Compiles everything.

tests Tests everything.

• TestDList.java — another skeleton test file.

1



4 Your Work
First you will need to implement the doubly-linked list methods. After that, you will get to write four
iterators.

4.1 Doubly Linked Lists
You will need to implement at least the following methods. You may add more if you feel they are necessary.

constructor This just creates an empty list.

int size() Return the number of elements stored in the list. This should run in O(1) time.

void insertFront(E data) Insert an element at the front of the list. This should run in O(1) time.

void insertEnd(E data) Insert an element at the back of the list. This should run in O(1) time.

void deleteFront() Delete the first element, if one exists. This should run in O(1) time.

void deleteEnd() Delete the last element, if one exists. This should run in O(1) time.

Iterator makeFwdIterator() Create a forward iterator.

Iterator makeRevIterator() Create a reverse iterator. It starts from the last element and works its way to
the first element.

Iterator makeFwdFindIterator(E data) Create a find iterator that moves forward.

Iterator makeRevFindIterator(E data) Create a find iterator that moves backward.

Suggested order: write the constructor and size method first1. After that, write insertFront,
makeFwdIterator, and makeRevIterator to test insertions. It will be best if you test these three at
once—each time you test a new method that updates the list, make a forward iterator and a reverse iterator
and make sure they both return the proper elements. This will ensure your list’s consistency. Next add the
rest of the methods, and finally the find iterators.

Oh, one other thing. Use Sentinels!! Of course, it’s totally up to you whether you use them or not. But
it is much easier to use them than not to use them.

4.2 The Iterators
In this lab you will write four iterators. The methods are the same as last time.

constructor we need to create them, after all!

E get() Return the current element. It does not advance the cursor! If there is no current element, return
null.

void next() Advance the iterator’s cursor. If the iterator is currently invalid, do nothing.

boolean isValid() Return true if the iterator still has data.
1I will assume that when I say “write method x,” that you actually write the test case for x first, then write the method.

2



void delete() We’ve added this one to the usual mix. It will delete the current element from the original list,
and advance the iterator’s cursor. Do nothing if the cursor is invalid.

One note about delete: when delete is called on an iterator, all other iterators are considered “unde-
fined”. You don’t have to remove them, but do NOT write any tests against other iterators that were
not part of the delete. For example, suppose you have three iterators i1, i2, and i3. If you call delete
on i2, then your tests should not require anything of i1 or i3. What happens to them is up to you.

Now, before you go making a bunch of iterators, you should think about it for a minute. Look at your
iterators from the Iterator lab. You will notice that isValid, delete, and get are the same. At least,
they should be. It’s only next and the constructors that are different.

In this lab, you must use inheritance to take advantage of this situation. First, write a member class
called AllIterator. This class should define the methods we mentioned above, and simply declare the
next method.

After that, define the class FwdIterator which extends AllIterator. It will inherit all those
methods from AllIterator, and all you have to do is write the next method for it. Later, you can write
FwdFindIterator, and override the next method to skip ahead until it finds matches.

Similarly, RevIterator will inherit from AllIterator, and RevFindIterator will inherit
from RevIterator. Here’s a class diagram.

AllIterator

FwdIterator RevIterator

FwdFindIterator RevFindIterator

Confused? This time we did much of the work for you. The AllIterator is defined, and the
FwdIterator is defined as well, inherited from AllIterator. We’ll let you do the other three.

You’ll notice a few interesting things about the AllIterator class. First, the header uses the keyword
abstract:

private abstract class AllIterator implements Iterator<E> {

This tells Java that we are going to declare some of the methods, but not all of them. Sure enough, later
in the definition we find:

public abstract void next();

Again the abstract keyword. You’ll notice the ; after next(). This tells Java that we are not going
to give a definition for this method, we just want to say that it needs to exist. The abstract keyword here
tells Java that, yes, we really meant to leave it undefined, we didn’t forget.

Another interesting thing is that cursor is protected. This allows it to be accessed by inherited
classes, but not by DList or other outsiders. If we made it public, anyone could get it. If we made it
private, then the FwdIterator class wouldn’t be able to use it either.

3



You’ll also notice that the delete() method is defined, it is not abstract, but the code is empty. You
get to write this one. There are several conditions you need to be sure to handle. You are highly encouraged
to draw a memory diagram before you start coding to make sure your thinking is clear.

4.3 Find Iterators
You’ll notice the header to the DList class contains a strange thing:

public class DList<E extends Comparable> { ... }

This says that the type E must have the compareTo method defined for it. It works like this: given two
variables x and y, you can call x.compareTo(y) and get one of the following results:

< 0 if x < y.

0 if x = y.

> 0 if x > y.

Use this instead of memory equality for the Find iterators.

5 Handing In
To hand in your code, commit your final changes to the repository. We will test your code with our own
JUnit tests. It is due in one week, once the grading script starts. We will announce when that has happened.

4


