
Binary Tree Traversals
CS 331 — Fall, 2010

Revision 1.0

Assigned 2010-10-18
Due 2010-11-01

1 Objectives
In this lab you will create a binary search tree and write some traversal iterators for it.

• Be able to write iterators for DFS, BFS, Frontier, Preorder, Postorder, and Inorder.

2 Binary Search Trees
The tree you implement will be similar to the BST from last time. This tree will only accept int (don’t use
generics!) and will only be a container, not a dictionary. You need to implement void add(int), but not
boolean find(int), or void delete(int).

3 Given Files
A directory has been created in your repository called traversal-lab, in it is the file Iterator.java.
This file gives you the interface for the iterators. No other files are given, other than the Makefile.

You will need to create two files at a minimum: Tree.java, which will contain your Tree class, and
TestTree.java, which will contain your test cases.

You will very likely want to have other files, such as List.java, etc.; feel free to add them as you find
necessary.

4 Your Work
You will need to implement at least the following methods. You may add more if you feel they are necessary.
If you do so, do not make your test cases depend on them, since they are not part of the spec.

constructor This just creates an empty tree.

void add(int i) Insert an element into the tree. There will be only one place in the tree where it should be
inserted. This should run in O(lg n) time. If the integer already exists in the tree, simply return.

Iterator mkBFSIterator() You did this in your last lab, so it should be relatively straightforward to port it
to this one.

Iterator mkDFSIterator() This iterator traverses in depth-first order.

1



Iterator mkPreorderIterator() Gives a preorder traversal.

Iterator mkInorderIterator() Gives an inorder traversal.

Iterator mkPostorderIterator() Gives a postorder traversal.

Iterator mkFrontierIterator() Iterates over the leaves of the tree, from left to right.

You do not have to implement size, find, or delete. You may if you want, but do not write tests that
depend on them or else the grading script will break and blame you for it.

Hint: some of these are much much easier if you maintain a parent pointer.

5 Tests
As always, you should write good test cases. These will count for more than half the grade. Be very sure
that you use the correct method names!

You should create several different trees to test these iterators. Some traversal patterns are tricky, and
that will not always be revealed in every tree.

2


	Objectives
	Binary Search Trees
	Given Files
	Your Work
	Tests

