
Illinois Institute of Technology
Department of Computer Science

Lectures 23–24: November 22–29, 2010
CS 430 Introduction to Algorithms

Fall Semester, 2010

Clarke’s Second Law: The only way to find the limits of the possible is by going beyond them

to the impossible. –Arthur C. Clarke

1 NP-completeness

Over the past few months we have developed and examined algorithms in many problem domains. Although
these algorithms have been of varying efficiencies, they have all run in polynomial time—that is, in time
O(nk) for some constant k. Do any problems require more than polynomial time?

Yes. However, more interesting than problems that are known to require superpolynomial time are the so-
called NP-complete problems,1 whose status is unknown—it is not known whether NP-complete problems
can be solved in polynomial time or not. Although the complexity of NP-complete problems is not known, if it
could be shown that a single NP-complete problem could be solved in polynomial time, then all NP-complete
problems could be solved in polynomial time. Conversely, if it were shown that a single NP-complete problem
could not be solved in polynomial time, then no NP-complete problem could be solved in polynomial time.
Many problems in diverse areas have been shown to be NP-complete, including graph-theoretic problems,

number-theoretic problems, scheduling problems, and even narrow tree drawing. Hence the P
?
= NP question

is perhaps the most significant open question in computer science.

1.1 Decision Problems

Before proceeding further it is important to understand how we talk about problems in the context of
complexity. For the purposes of the study of NP-completeness we restrict our attention to decision problems.
A decision problem asks a yes/no question about some input, or instance. For example, given an integer n,
we could ask if n is a composite number and expect an answer of either “yes” or “no.”

Many problems are not naturally expressed as decision problems. For example, one problem we recently
dealt with was that of finding a shortest path in a graph between two vertices u and v. Although this
problem is not a decision problem, it can be easily recast as one: “Given an integer k and a graph G with
two distinguished vertices u and v does there exist a path from u to v of length at most k?” This technique
can be used to transform many optimization problems to decision problems.

1NP-complete problems are studied in depth, in a somewhat different fashion, in chapters 34 and 35 of CLRS.

CS 430—Fall, 2010 2 Lectures 23–24: November 22–29, 2010

1.2 Polynomial-time solvability and the class P

We define the complexity class P to be the set of decision problems that can be solved in time O(nk) for
some constant k.2 This class, then, includes all of the problems we have studied so far in this course (or,
actually, the decision problems corresponding to them).

1.3 Polynomial-time verifiability and the class NP

It is useful to think about algorithms for verifying solutions to problems. For instance, consider the problem
of determining if a number is composite. Let us not think about algorithms for solving the problem from
scratch; instead, say that I claim that some number n is composite but that you don’t believe me. I can
provide you with a certificate, or piece of evidence, namely a set of factors of n. You can then verify, in
polynomial time, that the product of those factors is n and, hence, that n is indeed composite.

In general, a problem can be verified in polynomial time if there exists some polynomial-length certificate
that can be used to verify an answer of “yes” to the problem in polynomial time. We can then define the
class NP as the set of problems that can be verified in polynomial time.3 Note that answers of “no” need
not be verifiable in polynomial time, only answers of “yes.”

Certain problems, though, have “no” answers that can be verified in polynomial time. We call the class
containing these problems co-NP. An alternate definition of co-NP is that it consists of the complements of
problems in NP, where the complement of a problem Q is simply Q with its yes/no outputs reversed. For
instance, the problem of determining if a number is prime is in co-NP, since it is the complement of the
problem of determining if a number is composite, which we have already shown to be in NP.

1.4 Reductions and Hardness

Crucial to the study of NP-completeness is the notion of reductions. Intuitively, we can reduce a problem
Q to another problem Q′ if we can take an instance of Q and quickly “dress it up” as an instance of Q′

that will correctly solve the original problem Q. More formally, we say that Q is polynomial-time reducible
to Q′, or that Q′ is harder than Q, written Q ≤P Q′, if there is some function f that can be computed in
polynomial time such that Q(x) = Q′(f(x)) for all instances x.

1.5 NP-hardness and NP-completeness

As we will see, it useful to deal with problems that are at least as hard as all problems in the class NP. We
say that a problem Q is NP-hard if it is harder than every problem in NP—formally, Q is NP-hard if and
only if Q′ ≤P Q for all Q′ ∈ NP.

Finally, we define NP-completeness. A problem Q is NP-complete if Q ∈ NP and Q is NP-hard. That is,
the NP-complete problems can be thought of as the hardest problems in NP.

It is not difficult to see that if any NP-complete problem is solvable in polynomial time, then P = NP. Say
that Q is such a problem, so Q ∈ P and Q is NP-complete. The definition of NP-completeness requires that
Q ≤P Q

′ for every Q′ ∈ NP. Clearly, then, every such Q′ is also in P.

2Note that a problem is in P if some polynomial-time algorithm exists to solve the problem, not that you personally know
of one. Your inability to find a polynomial-time algorithm is not evidence that a problem is not in P; it may be that you just
have not found one yet.

3The class NP can be defined in various ways; in particular, the name NP stands for “nondeterministic polynomial-time,”
and indeed NP is the set of problems that can be solved in polynomial time on a nondeterministic machine. Although these
define the same set, the notion of polynomial-time verifications is more useful here.

CS 430—Fall, 2010 3 Lectures 23–24: November 22–29, 2010

We can also prove that if any problem in NP is not solvable in polynomial time, then no NP-complete
problem is solvable in polynomial time. Consider the NP-complete problem Q ∈ NP − P. Say that some
other problem Q′ ∈ P is NP-complete. In that case, since Q ≤P Q′, clearly Q ∈ P, contradicting the
assumption.

This leads to the following strategy for proving that some problem Q is NP-complete:

• Prove that Q ∈ NP. This can be done by showing how Q can be verified in polynomial time. This step
is generally fairly simple, but it can be easy to forget.

• Prove that Q is NP-hard. This can be done by selecting some problem Q′ that is known to be NP-
complete and showing that Q′ ≤P Q—that, given an instance of Q′, it can be dressed up as an equivalent
instance ofQ in polynomial time.4 Notice that showing instead thatQ ≤P Q

′ gives no useful information;
it is crucial to perform the reduction in the correct direction. It is often not immediately obvious which
NP-complete problem to select as Q′. Theoretically, if a reduction exists from one NP-complete problem,
it exists from all others as well, but there is usually one “most appropriate” NP-complete problem that
makes the reduction relatively simple.

1.6 Bootstrapping: proving the NP-completeness of circuit satisfiability

At this stage, we cannot yet use the above strategy, since we have not yet established the NP-completeness of
any problem. Cook (1971) proved that the problem of satisfiability (defined below) is NP-complete without
appealing to a reduction from another NP-complete problem. We instead sketch a proof that the similar
problem of circuit satisfiability (CIRCUIT-SAT) is NP-complete.

A satisfying assignment for a boolean combinational circuit is some set of boolean input values that causes
the output of the circuit to be 1. A circuit is satisfiable if it has some satisfying assignment. Given a
boolean combinational circuit C consisting of AND, OR, and NOT gates, CIRCUIT-SAT returns “yes” if C
is satisfiable and “no” otherwise. Our goal is to prove that CIRCUIT-SAT is NP-complete.

Recall that for CIRCUIT-SAT to be NP-complete, it must be included in the class NP and it must be NP-
hard. First we prove that CIRCUIT-SAT ∈ NP. This can be done by showing that there is a polynomial-time
algorithm to verify a “yes” solution given a polynomial-length certificate. In this case, the certificate is a
satisfying assignment, and the algorithm simply evaluates the circuit using the satisfying assignment as
inputs; if the solution is correct, the output must be 1. Clearly this algorithm takes polynomial time.

A formal proof that CIRCUIT-SAT is NP-hard is beyond the scope of this course, but we sketch an argument
here. The text (Lemma 36.6) gives a slightly more detailed version of this argument, but the proof itself
requires the formal language material covered in CS 375. For CIRCUIT-SAT to be NP-hard, there must be
reductions from all problems in NP to CIRCUIT-SAT. It seems plausible that any problem in NP can be
solved on a computer. How can an instance of an arbitrary problem Q be “dressed up” as a CIRCUIT-SAT
instance? Here we rely on the fact that every computer is physically realized as a large boolean combinational
circuit. Thus, we build a circuit that outputs 1 if the input is a correct solution to Q and outputs 0 otherwise,
basically encoding the algorithm the computer would have followed in the circuit. If this circuit is satisfiable,
then some solution must exist.

4It is sufficient to prove Q′ ≤P Q for any NP-complete problem Q′ since we already know that any other problem in NP is
reducible to Q′ and the ≤P relation is transitive.

CS 430—Fall, 2010 4 Lectures 23–24: November 22–29, 2010

1.7 Further NP-completeness results

Now that we have found an NP-complete problem, we can build a chain of NP-completeness results from it.
As soon as we determine that a problem is NP-complete, we can use it to prove other problems NP-complete,
so it is in our interests to generate a reasonably large set.

1.7.1 Satisfiability

The problem of (formula) satisfiability (SAT) is similar to the problem of circuit satisfiability. Given some
boolean formula φ consisting of boolean variables x1, x2, . . ., boolean connectives ∧, ∨, →, and ↔, and
parentheses, φ is satisfiable if there is some assignment of 0 and 1 to each of the variables xi under which φ
evaluates to 1. Given some such φ, SAT asks if φ is satisfiable.

For SAT to be NP-complete, we must show that SAT ∈ NP and that SAT is NP-hard. To verify a “yes”
solution, we use a satisfying assignment as a certificate; in polynomial time, we can easily plug the assignment
into the formula and verify that it indeed evaluates to 1.

To prove that SAT is NP-hard, we reduce it from CIRCUIT-SAT. The idea behind the reduction is to assign
a variable to each wire in the circuit and to express correct operation of each wire in φ. The full reduction
is given in the text.

1.7.2 3-CNF satisfiability

A formula φ is said to be in 3-conjunctive normal form, or 3-CNF, if it is of the form (l11 ∨ l12 ∨ l13)∧ (l21 ∨
l22 ∨ l23) ∧ · · · ∧ (ln1 ∨ ln2 ∨ ln3), where lij is any literal (variable or negated variable) li1, li2, and li3 are
distinct for any i—that is, if φ is made up of the conjunction of any number of clauses, where each clause is
the disjunction of exactly three distinct literals. The 3-CNF-SAT problem is identical to the SAT problem,
only we restrict the input to a formula in 3-CNF.

The containment of 3-CNF-SAT in NP follows directly from our proof that SAT ∈ NP. To establish the
NP-completeness of 3-CNF-SAT, then, we need only prove its NP-hardness. That is, for a given formula
φ, we must show how to construct some formula φ′ in 3-CNF such that φ′ is satisfiable if and only if φ is
satisfiable. This can be done by first forming a binary parse tree for φ (see figure 36.9 on page 943 of the text)
and then representing each node of the tree with a clause. This produces a formula that is a conjunction of
clauses, each of which has at most three literals, but the clauses are not disjunctions of literals. A technique
for creating these clauses and converting them to 3-CNF form is given in the text.

1.7.3 Graph 3-coloring

The graph 3-coloring problem is

Input: An undirected graph G = (V,E).

Output: Is there a a coloring
c : V → {red, blue, green}

such that for every edge e in E the vertices joined by e are not colored with the same color?

Construct a 2-or-3-SAT Boolean expression from a graph 3-coloring problem G as follows.

CS 430—Fall, 2010 5 Lectures 23–24: November 22–29, 2010

• For each vertex vi include a subexpression

(Ri ∨ Bi ∨Gi) ∧ (Ri ∧Gi) ∧ (Ri ∧ Bi) ∧ (Bi ∧Gi)
= (Ri ∨ Bi ∨Gi) ∧ (R̄i ∨ Ḡi) ∧ (R̄i ∨ B̄i) ∧ (B̄i ∨ Ḡi)

• For an edge e connecting vi and vj include a subexpression

(Ri ∧ Rj) ∧ (Gi ∧Gj) ∧ (Bi ∧ Bj)
= (R̄i ∨ R̄j) ∧ (Ḡi ∨ Ḡj) ∧ (B̄i ∨ B̄j)

• Replace each 2-literal term (a ∨ b) with (a ∨ b ∨ t) ∧ (a ∨ b ∨ t̄) for a new variable t.

• Construct a graphG from the 3-SAT expression as shown by the example below for the 3-SAT expression
(a ∨ b̄ ∨ c) ∧ (b ∨ d ∨ ē):

Palette

T F

N

ā a

b̄ b

c̄ c

d̄ d

ē e

V
a
ria

b
les

or

or

or

or

Claim: These nodes col-
orable “T” iff at least one of
the “inputs” is colored “T”.

1.7.4 Clique

Given an undirected graph G = (V,E), recall that a clique is some subset of vertices V ′ ⊆ V that is a
complete subgraph of G—each pair of vertices in V ′ is connected by some edge in E. For a graph G and a

CS 430—Fall, 2010 6 Lectures 23–24: November 22–29, 2010

positive integer k, the CLIQUE problem asks if G contains a clique of size k.5

Clearly CLIQUE ∈ NP—given a set of edges V ′ and an integer k, it is easy to verify that V ′ is a clique of size k.
To prove NP-hardness of CLIQUE, we reduce from 3-CNF-SAT. Given a 3-CNF formula φ = C1 ∧ · · · ∧Cn,
φ is satisfiable if and only if at least one literal from each clause Ci can be set to 1 without creating a
contradiction (that is, without setting a literal and its negation both to 1). If we represent each literal as a
vertex and we insert edges between vertices representing literals in different clauses which are not negations
of each other, then a clique of size equal to the number of clauses in φ exists if and only if φ is satisfiable.

1.7.5 Vertex cover

Given an undirected graph G = (V,E), a vertex cover is some subset of vertices V ′ ⊆ V such that if
(u, v) ∈ E, then u ∈ V ′ or v ∈ V ′. For a graph G and a positive integer k, the VERTEX-COVER problem
asks if G contains a vertex cover of size k.

Proving VERTEX-COVER ∈ NP is simple, as above. A reduction from CLIQUE to VERTEX-COVER is
not difficult to see. Given an undirected graph G = (V,E), its complement is defined as G = (V,E), where
E = {(u, v) | (u, v) 6∈ E}. It can be easily confirmed that G has a clique of size k if and only if G has a
vertex cover of size |V | − k.

1.7.6 Subset-sum

Given a finite set of natural numbers S and some number t, SUBSET-SUM asks if there is some subset
S′ ⊆ S such that t =

∑
s∈S′ s, in other words, “is there is some subset of S whose elements sum to t?” The

verification algorithm proving that SUBSET-SUM ∈ NP is simple if we take the certificate to be the subset
itself. The reduction from VERTEX-COVER is covered in CLRS, pages 1097–1100.

1.7.7 Narrow tree drawing

Recall the discussion of tree drawing in the first lecture. While we arrived at an algorithm to draw trees, it
was under the stipulation that they need not be drawn as narrowly as possible. Now we require this. Given
a tree T and a width w, the TREE-DRAWING problem asks if it is possible to draw T in width w.

It is easy to verify a proposed solution, so TREE-DRAWING ∈ NP. The reduction from 3-CNF-SAT is
complex, and relies on the encoding of clauses of a formula in 3-CNF with portions of a tree. The reduction
is given in K.J. Supowit and E.M. Reingold, “The Complexity of Drawing Trees Nicely,” Acta Informatica
18 (1982), pp. 377-392.

5The size of a clique is the number of vertices it contains. A more natural form of the problem asks for the largest clique in
a graph, but we are considering here only decision problems.

	NP-completeness
	Decision Problems
	Polynomial-time solvability and the class P
	Polynomial-time verifiability and the class NP
	Reductions and Hardness
	NP-hardness and NP-completeness
	Bootstrapping: proving the NP-completeness of circuit satisfiability
	Further NP-completeness results
	Satisfiability
	3-CNF satisfiability
	Graph 3-coloring
	Clique
	Vertex cover
	Subset-sum
	Narrow tree drawing

