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1 Approximation algorithms

In the last several lectures we have discussed NP-complete problems, problems which we believe (but do
not know!) cannot be solved in polynomial time. This class includes many important problems, so of which
MUST be solved in various applications. What can one do when confronted with an NP-complete problem
which must be solved? If an exact solution is required, the problem must be brute-forced with an algorithm
which runs in exponential time (assuming P 6= NP ). However, certain NP-complete problems can be
solved approximately in polynomial time. Many of these are optimization problems, those with an associated
parameter k which must be maximized or minimized. An approximation algorithm is a polynomial time
algorithm whose solution is not necessarily optimal, but instead is guaranteed to be within some factor of
optimal. Ideally this factor is close to 1, but it can be some other constant or a function of n.

In these lectures, we examine a number of approximation algorithms and sketch proofs of their bounds.

1.1 Traveling salesman problem

1.1.1 The nearest-neighbor heuristic

In the nearest-neighbor approximation to the traveling salesman problem, we begin by selecting an arbitrary
city as a starting point. From the set of cities not yet visited, select as the next city the one closest to the
last city added to the tour, or, if all cities have been visited, return to the origin.

Let the edge lengths of a tour selected with this algorithm be labeled so that l1 ≥ l2 ≥ · · · ≥ ln, where∑n
i=1 li = HEUR. Next, let the city we exited via edge li be labeled ci. Note that, because we are choosing

the labels so that the sequence of edge lengths is in decreasing order, we do not know anything about the
other endpoint of edge li or the order in which the cities are visited. As one final bit of notation, let Ca,b be
the cost of the edge from a to b.

We can begin bounding the heuristic’s performance by observing that

OPT ≥ 2l1 (1)

by the triangle inequality, since the endpoints of l1 must be visited sometime during the optimal tour.

Next we show that

OPT ≥ 2

2k∑

i=k+1

li (2)

for all values of k. To prove this, we define Tk as the optimal tour of cities c1 through ck and let tk be its
length. Since this subset of cities must be visited in the optimal tour, the triangle inequality tells us that
OPT ≥ t2k. Now, consider two cities ci and cj such that (ci, cj) is an edge in the tour T2k. If ci precedes cj
in the heuristic tour, then Cci,cj ≥ li since cj had not been visited so edge (ci, cj) could have been chosen
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for the heuristic tour. On the other hand, if cj precedes ci in the heuristic tour, then Ccj ,ci ≥ lj by the same
reasoning. Since Ccicj = Ccjci , in either case, Ccicj ≥ min{li, lj}.
Summing this inequality over the edges of T2k gives T2k ≥

∑
min{li, lj}. Each li appears in this list at most

twice. Further, because the edges were labled in decreasing order, we can replace edges in the first k li with
members of the last k edges li. Since there are 2k edges in T2k, this process yields T2k ≥ 2

∑2k
i=k+1 li. Using

our previous observation that OPT ≥ T2k gives the inequality (2).

Finally, with a similar proof, we have

OPT ≥ 2
n∑

i=dn2 e+1

li (3)

Summing both sides of (1), (3), and (2) for k = 1, 2, 22, . . . , 2dlgne−2, we conclude that

(dlg ne+ 1) OPT ≥ 2

n∑

i=1

li

= 2HEUR

or, alternatively,
HEUR

OPT
≤ dlg ne+ 1

2

This result comes from D. J. Rosenkrantz, R. E. Stearns, and P.M. Lewis II, “An analysis of several heuristics
for the traveling salesman problem,” SIAM Journal on Computing, 6(3):563-581, September 1977.
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