
Illinois Institute of Technology
Department of Computer Science

First Examination
CS 430 Introduction to Algorithms

Spring, 2009

11:25am–12:40pm, Wednesday, February 23, 2009
104 Stuart Building

Print your name and student ID, neatly in the space provided below; print your name at the upper
right corner of every page. Please print legibly.

Name:

Student ID:

This is an open book exam. You are permitted to use the textbook, any class handouts, anything
posted on the web page, any of your own assignments, and anything in your own handwriting.
Foreign students may use a dictionary. Nothing else is permitted : No calculators, laptops, cell
phones, etc.!

Do all five problems in this booklet. All problems are equally weighted, so do not spend too much
time on any one question.

Show your work! You will not get partial credit if the grader cannot figure out how you arrived at
your answer.

Question Points Score Grader

1 20

2 20

3 20

4 20

5 20

Total 100



CS 430 First Exam—Spring, 2009 2 Name:

1. Randomized Min

Consider the following algorithm to find the minimum element in an unordered array of n
elements:

1: RandomMin(A[1..n])
2: m←∞
3: for i← 1 to n in random order do
4: if A[i] < m then
5: m← A[i]
6: end if
7: end for
8: return m

Notice that the for loop (line 3) takes the numbers 1, 2, . . . , n in random order.

(a) In the worst case, how many times does RandomMin execute line 5?

(b) What is the probability that nth (last) iteration executes line 5?

(c) Analyze the expected number of executions of line 5.



CS 430 First Exam—Spring, 2009 3 Name:

2. Unusual Sorting Algorithm

A TA in CS 430 suggested the following unusual algorithm to sort n elements in an ar-
ray:

1: TaSort(A[0..n− 1])
2: if n = 2 and A[0] > A[1] then
3: swap A[0]↔ A[1]
4: else
5: if n > 2 then
6: m← d2n/3e
7: TaSort(A[0..m− 1])
8: TaSort(A[n−m..n− 1])
9: TaSort(A[0..m− 1])

10: end if
11: end if

(a) Prove that TaSort correctly sorts its input.

(b) When the TA first proposed the algorithm, she mistyped line 6 using the floor instead
of the ceiling operation. The algorithm failed to sort correctly; explain why.

(Hint : Consider n = 4.)

(c) State (using precise floor/ceiling operations) the recurrence relation and initial values
describing the number of comparisons A[0] > A[1] performed in line 2 of the algorithm
in the worst case. Then, ignoring the floor/ceiling operations, solve the recurrence.



CS 430 First Exam—Spring, 2009 4 Name:

3. Special Hardware Priority Queue

Distressed by the results of the previous problem, the TA has developed a hardware priority
queue for his computer. The priority queue device can store up to p records, each consisting
of a key and a small amount of satellite data (such as a pointer). The computer to which it
is attached can perform Insert and ExtractMin operations on the priority queue, each of
which takes O(1) time, no matter how many records are stored in the device. The TA wishes
to use the hardware priority queue to help implement a sorting algorithm on his computer.
He has n records stored in the primary memory of his machine. If n ≤ p, the TA can
certainly sort the keys in O(n) time by first inserting them into the priority queue, and then
repeatedly extracting the minimum. Design an efficient algorithm for sorting n > p items
using the hardware priority queue. Analyze your algorithm in terms of both n and p.



CS 430 First Exam—Spring, 2009 5 Name:

4. Augmented Binary Search Trees

Suppose we augment a red-black tree so each node has a field giving the height of its subtree.
Show that a rotation in such a tree can be done in time O(1), correctly maintaining the height
fields.



CS 430 First Exam—Spring, 2009 6 Name:

5. Maximum External Path Length in Binary Search Trees

Given a binary tree with n internal nodes and n + 1 leaves, what is the maximum possible
external path length? Prove your answer.


