
Illinois Institute of Technology
Department of Computer Science

Lecture 12: October 6, 2010
CS 430 Introduction to Algorithms

Fall Semester, 2010

"Greed is good. Greed works." –Gordon Gekko (the 1987 movie Wall Street).

"Greedy is pretty good. Greedy sometimes works." –Edward Reingold (CS 430, Fall, 2010).

1 The Greedy Heuristic

Greedy algorithms make decisions according to a greedy heuristic which chooses the best local decision
possible without paying attention to the long-term consequences. For example, a greedy hare competing
with a turtle, might run as fast as he can for as long as he can, and then have to rest for a long time because
he is tired. The non-greedy turtle, on the other hand, might conserve his energy and be able to beat the
hare by not requiring a rest.

Greedy algorithms are appropriate for many types of problems, and we will look at some examples where
the greedy algorithm works well.

2 Activity Selection

Consider a simplified version of job scheduling:

You are given a list of jobs J1, J2, J3, . . . Jn to run on a single processor; each job has a start time si when
it must start and finish time fi at which point it must conclude. However, the processor can only run one
job at any given moment. Your task is to schedule the maximum number of jobs to run on the processor.

Clearly this formulation of job scheduling is unrealistic because it ignores important constraints such as the
fact that some jobs are more important than others and that some jobs absolutely must be run for the system
to remain operational, etc. It is precisely this simplistic formulation which allows the greedy heuristic to
work well.

Consider the following list of jobs:



CS 430—Fall, 2010 2 Lecture 12: October 6, 2010

There are many ways to do optimally schedule these jobs. In the exhaustive scheduling method, we could
just examine every subset of these jobs and see which subset has the largest cardinality (i.e. number of jobs).
There are 2n ways to make a subset of a set of size n, so our exhaustive algorithm will require exponential
time.

If we allow for some preprocessing, we could significantly improve this algorithm using the greedy heuristic.
Specifically, consider first sorting the jobs in ascending order of finish time:

Now, we may start at the top of our sorted list and greedily include the first job in our schedule. The second
and third jobs conflict with our current job selection, so we skip over them and pick add the fourth job to our
schedule. In this way we can go through the entire list of jobs, greedily adding jobs that fit to our schedule
to get the following list of jobs:

This method is called the GREEDY ACTIVITY SELECTOR, where “activity” refers to a job, in the current
context. The code for GREEDY ACTIVITY SELECTOR may be found in CLRS (page 421). We will now analyze
the running time of this algorithm.

GREEDY ACTIVITY SELECTOR visits each item to be scheduled once, therefore the selection part requires
time proportional to n. Remember that we first sorted the list, which required O(n log n) time, so the



CS 430—Fall, 2010 3 Lecture 12: October 6, 2010

entire algorithm has a complexity of O(n+ n logn) which is O(n lg n). This is much better than 2n for the
exhaustive algorithm. However, recall that the exhaustive algorithm guaranteed us an optimal scheduling;
does this algorithm give us an optimal solution? In other words, does making locally optimal (“greedy”)
decisions give a globally optimal solution in this case?

The answer is “yes” and we prove the optimality of our greedy algorithm by comparing the set selected with
the greedy algorithm (called A) with a true optimal set (called B). If A is not optimal, there must be a
place where the greedy algorithm selected a non-globally-optimal choice. If a non-optimal choice was made,
there must be a first non-optimal choice. Let’s see where that first non-optimal choice could have been.

Proof of the Optimality of the Greedy Algorithm

Let A = {ax0 , ax1 , ax2 , ax3 , · · ·} be the greedily chosen set of jobs. Assume that after picking j − 1 jobs
correctly, the greedy algorithm makes a mistake. It picks an activity axj that could not possibly lead to an
optimal solution. Let us say that a correct choice of jobs was bxj that would lead to an optimal solution
B = {ax0 , ax1 , ax2 , ax3 , · · · , axj−1 , bxj , bxj+1 , · · ·}.
Clearly, axj must end before bxj or else our greedy selection would have picked bxj . Thus, switching axj and
bxj in the optimal solution B (to get a selection B′) must still give a valid activity selection (think about
this: remember that axj was an acceptable choice for jobs after j − 1 iterations). However, B ′ contains
the same number of elements as B and is, hence, optimal. Thus, the greedy choice does indeed provide the
possibility for an optimal solution, contrary to our original assumption. Since each choice of jobs by the
greedy strategy allows for an optimal solution, and we continue choosing jobs until exhaustion, the greedy
activity selection must be optimal overall.

3 Huffman Codes

We continue our discussion of greedy algorithms with the examination of Huffman codes.

Consider the problem of encoding the alphabet [a,b,c,...,z] in binary. We can use either 0’s and 1’s (or dots
and dashes like in Morse Code). Each letter has to have a unique encoding.

To we represent all the letters in binary, we will need at least lg(26) ≈ 4.70 bits. Since the number of bits
has to be integral, we will use 5 bits to represent each letter. We can generate the following encoding (Notice
that 11010 through 11111 are not assigned a letter and are therefore invalid encodings in this context):

00000 a 00111 h 01110 o 10101 v
00001 b 01000 i 01111 p 10110 w
00010 c 01001 j 10000 q 10111 x
00011 d 01010 k 10001 r 11000 y
00100 e 01011 l 10010 s 11001 z
00101 f 01100 m 10011 t
00110 g 01101 n 10100 u

If we had a simple message such as “One if by land ...”, How long would the encoding be? For this encoding,
exactly five characters are used for every letter, so since the above phrase of 11 characters (not including
spaces and punctuation) would take 55 bits to encode.

The fact is, however, that in English, for example, some letters are used more often than others. “E” is used
quite often while “Z” and “Q” are used rarely (some might say we could even do without them altogether).
Suppose we want to design a code that will take these frequencies into account. Specifically, we would encode
letter “E” with very few bits, and allow the letter “Q” to be encoded with many bits. The problem now



CS 430—Fall, 2010 4 Lecture 12: October 6, 2010

would be that it would really hard to tell when one letter ends and another letter begins. Consider a partial
listing of Morse Code, for example:

· e ·· i − t −− m
·− a · · · s −· n · · − u

If I gave the encoded string “· · ·−” you would not know whether it represents “eeet” or “eit” or “iet” or “st”
or “ia” or “eea”, etc.

For this reason, we desire our encodings to be prefix-free. A prefix-free code (also known as a prefix code) is a
code in which no one encoding is a prefix of any other encoding. For example, Morse Code is not prefix-free
because the encoding for “e” is a prefix of the encoding for “i” which is also a prefix of the encoding for “s”.

Our first encoding of the English letters, on the other hand, is prefix-free. No one encoding is a prefix of the
other. This prefix-free property allows us to arrange the encodings into a binary tree as follows:

0

0

0

0

A B

1

C D

1

0

E F

1

G H

1

0

0

I J

1

K L

1

0

M N

1

O P

1

0

0

0

R S

1

T U

1

0

V W

1

X Y

1

0

0

Z *

1

* *

1

0

* *

1

* *

The “*”’s denote unused encodings. Notice that each letter is at a leaf, which implies that the code is a
prefix-free code. If someone gave us the encoded message “0011101000”, we could merely follow the strings
down the binary tree; whenever we reach a leaf, we can output the letter at that leaf and then start at the
root of the tree again to decode the next letter. In this case, we decode to “HI” (you might want to actually
try this decoding at home...don’t worry, it’s safe).

On the other hand, consider a partial tree for Morse Code:

E

·

L

·

S U

A

−
T

−

N

·
M

−

Here the internal nodes are used as letters, which implies that Morse Code is not prefix-free.



CS 430—Fall, 2010 5 Lecture 12: October 6, 2010

3.1 Generating Huffman Codes

A Huffman code is a prefix-free code that minimizes the average (or expected) length of letter encodings.
Specifically, if letter li has a probability pi of occurring and requires depth(li) encoding bits, then the expected
length of an encoded letter is:

E(letter) =
∑

i∈alphabet

pi · depth(li)

Multiplying the expected length by the number of symbols in the data gives us a quantity known as the
weighted path length (WPL) of the corresponding encoding tree:

WPL =
∑

i∈alphabet

frequency(i) · depth(li)

In our first letter encoding, if the i’th letter has probability pi of occurring, then the expected encoding
length is E(letter) =

∑
i∈alphabet pi · 5 since each letter is at depth 5. We can manipulate this expression

to get that:

E(letter) =
∑

i∈alphabet

pi · 5

= 5
∑

i∈alphabet

pi

= 5 · 1 = 5

since the sum of all the probabilities of all the letters must always equal 1. This expected length is somewhat
obvious since each encoding has length 5.

For another example, consider the following tree with probabilities of p4, p3, p2 and p1:

p1 p2

p3

p4

This code has an expected encoding length of 3p1 + 3p2 + 2p3 + p4.

To generate our Huffman code we will start off by giving each letter its own one-vertex tree, whose value
will be the probability of that letter. We will then employ a greedy heuristic to merge some of these trees
together. Specifically, we will merge the two trees with the least values. The value of this merged tree will
be the sum of the values of the two component trees.

For example, suppose we get to a stage of our computation where we have the following trees (the value of
each tree is printed in the root node):



CS 430—Fall, 2010 6 Lecture 12: October 6, 2010

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Suppose that p3 and p4 are the lowest values. Then we would merge those two trees to get the following new
collection of trees:

p1 p2 p3 + p4

p3 p4

p5 p6 p7 p8 p9 p10

Again we would combine the two lowest values present. For example, suppose that p3 + p4 and p2 are now
two the lowest values. We would merge them to get the following set of trees:

p1 p2 + p3 + p4

p2 p3 + p4

p3 p4

p5 p6 p7 p8 p9 p10

and so forth until we have only one tree representing our Huffman code. The details of this algorithm are
also explained well in CLRS, section 16.3.

3.2 Optimality of Huffman Codes

We must wonder whether this greedy strategy really produces an optimal code. In this case, an optimal tree
has the lowest expected encoding length. We will prove the optimality of this strategy in the same way that



CS 430—Fall, 2010 7 Lecture 12: October 6, 2010

we proved the optimality of our greedy activity selector. Our proof in these lecture notes is sketchy because
a rigorous proof requires tedious attention to some important details. You should examine CLRS for a more
complete proof.

Suppose we have been constructing trees, and have gotten to a certain set of trees that can be appropriately
merged to an optimal tree, but that we make the wrong (greedy) choice for which trees to merge. In other
words, the greedy merging leaves us with a set of trees that cannot be merged to make an optimal tree. By
appropriately transforming our alphabet, we may assume that the greedy algorithm’s mistake is made on
the very first step.

In this case, the greedy algorithm must have made two symbols siblings, whereas the optimal algorithm
separated them:

Optimal

Nodes: P Q p q

Call the lowest two nodes (i.e. greatest depth) in the optimal tree P and Q and denote their length L. Call
the lowest frequency nodes in the optimal tree p and q and call their depth l.

We now claim that exchanging P ←→ p and Q←→ q does not increase the expected symbol length, implying
that the greedy choice can, in fact, lead to an optimal encoding.

To prove this claim, note that exchanging P ←→ p will increase the expected length by lP − Lp, where
P and p refer to the frequencies of the respective notes. However, since l ≤ L and p ≤ P (by the greedy
heuristic), lP − Lp ≤ 0 so that the expected length cannot increase. Moreover, it must be that p = P since
P belongs to an optimal tree. The same argument applies to q and leads to the result that q = Q.

As a side note, we may ask how to implement this algorithm; for instance, what data structure should we
use? The answer is that a heap or, more generally, a priority queue (first-in, highest-priority out) would be
best suited for this task. We would then need n insertions for each of the symbols in the initialization stage,
and n−1 delete, delete, insert combinations for each of the tree mergings, resulting in 2n−1 operations
in toto. Each operation requires Θ(logn) time giving an overall running time of O(n lg n).

Greedy algorithms tend to be simple and efficient, as the locally optimal solution to a problem is usually
easy to find. Unfortunately, greedy algorithms do not always yield optimal solutions.



CS 430—Fall, 2010 8 Lecture 12: October 6, 2010

4 Greedy algorithms and suboptimal solutions

Suppose you are given a set of points on the plane. Consider the problem of connecting each point to exactly
one other point in such a way that the cost, the sum of the lengths of the edges, is minimized.

A brute force approach to this problem is to generate each possible matching of points and to find the
corresponding costs. The matching with the minimum cost is thus the solution to the problem. While this
approach will inarguably produce correct results, it does require exponential time. This encourages us to
search for a more efficient algorithm.

One simple algorithm that comes to mind is a greedy algorithm. Find the two nearest points that are not
yet connected (to other points) and connect them. Repeat this process exhaustively. In the case of a tie,
select a pair of points arbitrarily. How efficient is this algorithm? If there are n points, it will take time(
n
2

)
+
(
n−2

2

)
+
(
n−4

2

)
+ · · · = Θ(n3) to iteratively look for two nearest points..

Before declaring success, we must ask if our algorithm is correct: does it, in fact, give optimal results?
Unfortunately it does not. Consider four points equally spaced along a line:

� � � �

In the first iteration, there are three optimal pairs of points, so the algorithm chooses a pair arbitrarily. Say
it chooses the two points in the middle and is then forced to connect the two remaining points: 1

� � � �

This is clearly not the optimal solution, however. The optimal solution connects the two leftmost points and
the two rightmost points:

� � � �

In fact, we can exploit the above problem with the greedy algorithm by putting two instances of the above
problem side by side:

� � � � � � ��

Again, the optimal solution does much better:

� � � � � � ��

1This choice of the middle points first can forced by separating the points by distances 1, 1− ε, and 1, where ε is some small
positive number.



CS 430—Fall, 2010 9 Lecture 12: October 6, 2010

We can repeat this process to get examples where the greedy performance gets worse and worse. Specifically,
consider repeating this process until we have N = 2n points. The minimum cost of the optimal algorithm is:

OPTn = 2n−1, where OPT1 = 1

Compare this to the solution given by the greedy algorithm. Let Ln be the length from the leftmost point
to the rightmost point if there are 2n points. This leads to the recurrence:

GREEDYn = 2GREEDYn−1 + Ln − 2Ln−1 + Ln−1

= 2GREEDYn−1 + Ln − ln−1

= 2GREEDYn−1 + 3n−1 − 3n−2

The recurrence is annihilated by (E− 2)(E− 3), leading to the solution:

GREEDYn = 2 · 3n−1 − 2n−1

The error in the greedy algorithm relative to the optimal solution is therefore:

GREEDYn

OPTn
=

2 · 3n−1 − 2n−1

2n−1

= 2 ·
(

3

2

)n−1

− 1

=
4

3

(
3

2

)n
− 1

=
4

3

(
3

2

)lgN

n− 1

=
4

3
N lg 3

2 − 1

≈ O(N0.5849625...)

Not only is the solution given by the greedy algorithm not optimal, its relative error grows with the size of
the problem! Clearly, the greedy approach is not efficient, in the worst case, for this problem.

Another example where the greedy algorithm fails is the problem of “nicely” printing a binary tree as
narrowly as possible, that we discussed in the first lecture. We noticed that, sometimes, the narrowest nice
printing of the tree involved a wider-than-necessary nice printing of the subtrees.


	The Greedy Heuristic
	Activity Selection
	Huffman Codes
	Generating Huffman Codes
	Optimality of Huffman Codes

	Greedy algorithms and suboptimal solutions

