
Illinois Institute of Technology
Department of Computer Science

Solutions to Second Examination
CS 430 Introduction to Algorithms

Spring, 2009

11:25am–12:40pm, Wednesday, April 8, 2009
104 Stuart Building

1. Dynamic Programming [25 points]

Let the n integers be ai, 1 ≤ i ≤ n.

One way to solve this problem is to generate a table T of n elements, where the Ti =
∑i
k=1 ak.

Ti = Ti−1 + ai, so these values can be computed in Θ(n) time. Then Tj − Ti =
∑i
k=j ak.

Thus, for 12 points of partial credit, one can simply go through all pairs (i, j), i ≤ j and pick
the maximum difference Tj − Ti found. Since there are

(n
2

)
= Θ(n2) such pairs, the overall

running time will be Θ(n2).

For full credit, however, we may observe that the maximum difference Tj − Ti will occur
between the largest value Tj and the smallest value Ti, for which j ≥ i. Thus, we can find the
maximum sum with a search of the T array from left to right keeping track of three items:

• The smallest value s seen so far

• The largest value l seen after s

• The largest contiguous sum σ seen so far

As we inspect an element e in the array, we consider two possibilities:

• e > l. In this case we substitute l ←− e, since we have come upon a contiguous vector
with larger contiguous sum. We update σ if necessary.

• e < s. In this case, our contiguous vector has terminated. We compute l−s and compare
it to σ, recording the greater value in σ. We reset s ←− e and l ←− e and update σ if
necessary.

Since we use a constant amount of time per array element, the overall running time is Θ(n).

Another linear-time solution is to define S0 = 0, Si = Si−1 + ai if Si−1 > 0 and Si = ai if
Si−1 ≤ 0. Induction shows that Si is the maximum sum ending at ai. The sequence of Si
can be can be computed in Θ(n) time; the maximum of that sequence, which can then be
computed in Θ(n) time, is the desired result.

2. Double-deletion Heaps [25 points]



2

(a) Let Gk be the minimum number of nodes in a tree whose root has degree k. We find
that G0 = 1, G1 = 2, and G2 = 3. For values larger than this, we have a root and k
subtrees. When the tree was constructed, there was one subtree of each degree from 0
to k− 1. However, since each of these subtrees can have lost its two largest children, the
first three subtrees (of original degree 0, 1, and 2) are now just a single node. The others
can be as small as the minimal subtrees with degrees ranging from 1 to k − 3. Thus,
Gk =

∑k−3
i=1 Gi for k ≥ 3. This is sufficient for the problem, but it can be simplified to

Gk = Gk−1 +Gk−3 without too much additional work.

(b) In order to have the same amortized running time, the degree of a node needs to grow
logarithmically in terms of the minimum number of nodes in its subtree. Put another
way, the minimum number of nodes must grow exponentially in terms of the degree of
the node. If this occurs, then the analysis for running times follows as in CLR. (This is
the case for Double-deletion heaps.)

3. Balloons [25 points]

A greedy heuristic works to pop all balloons. Sort the balloons by the position of the leading
edge (easily calculated from the xi and ri). Then, starting at the left end, we scan through
the list of balloons until we reach the trailing edge of a balloon that has not been popped
yet, and then fire at this location. This shot dispatches all balloons with lower starting
position. Continue this process until all the balloons are popped. Since the leading edge of
each balloon is visited once and each shot pops a balloon, the scan takes O(n) time. Allowing
the O(n log n) time for sorting the balloons, the entire algorithm takes O(n log n).

4. Combined-Min

(a) [12 points] In order to sort n items, we do the following three steps:

• make(x) for each item x; pad with ∞ as necessary to get the number of elements to
be a power of 2

• Group the sets in pairs and combine-equal to get sets of two items. Group the
resulting sets into pairs and combine-equal to get sets of four items. Continue
until you have one big set of all the items

• delete-min n times and keep track of the values it returns, which will be the n
items in sorted order

(b) [13 points] Suppose that combine-equal runs in time o(n) and delete-min runs in
o(log n). We claim that the procedure we have above then sorts in time o(n log n),
violating the information-theoretic bound on comparison-based sorting.

The make step in the algorithm requires Θ(n) time since it is applied to n items. The
combine-equal step iteratively combines n

2i
sets of size 2i, for log n iterations. This step

runs in time:
log n∑

i=1

n

2i
o(2i) = o(n log n)



3

The final delete-min computation is done as n operations, each requiring time o(log n),
giving a running time of o(n log n). Thus, the overall running time for our algorithm is
Θ(n) + o(n log n) + o(n log n)=o(n log n), contradicting our sorting lower bound.


