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Exam Statistics

41 students took the exam. The range of scores was 20-92, with a mean of 49.2, a median of 49,
and a standard deviation of 16.53. Very roughly speaking, if I had to assign final grades on the
basis of this exam only, above 70 would be an A (6), 50-69 a B (14), 4049 a C (8), 30-39 a D (8),
below 30 an E (5).

Problem Solutions

1. (a)

Yes, nodes can be augmented with width(x) because width(x) satisfies the hypothesis of
Theorem 14.1 (page 346 in CLRS), namely that width(x) depends only on width(z.left)
and width(x.right),

0 if x is a leaf,
width(z) = { max(width(z.left), width(z.right)) if width(z.left) # width(z.right),
width(z.left) + 1 otherwise.

When arithmetic expressions are written as binary trees, the “width” gives the number
of registers needed to evaluate the expression (why?). The “width” values are sometimes
called Strahler numbers, useful when trees are are used to model river systems.

No, nodes cannot be augmented with depth(z). depth(z) does not satisfy the hypothesis
of Theorem 14.1, but that does not mean it could not augment red-black tree nodes: the
theorem’s hypothesis is sufficient, but not necessary. However, under a left rotation—see
Figure 13.2 on page 313 of CLRS—all depth values in subtree o need to be decremented
by 1 and all depth values in subtree v need to be incremented by 1. That is, a tree of n
nodes may require O(n) changes, making O(logn) insertion/deletion impossible.

We can only reach step k from steps k£ — 1 or k — 2, so the Principle of Optimality tells

us
_ ) if k<2,
Ck) = { cr + min(C(k —1),C(k —2)) if k > 2.



(b)

()

(d)

To understand the time required when the recurrence in (a) is directly implemented
without memoization, it is sufficient to count the number of recursive calls. Let ¢, be
the number of recursive calls while computing C'(n). Then t9p =¢; = 0 and ¢, = 1+
tn—1+tn—2. Solving (using annihilators or some other method) we find that ¢,, = F,, — 1,
where F), is the nth Fibonacci number which grows like ¢", where ¢ = (1++/5)/2 ~ 1.61
is the golden ratio. The unmemoized implementation is thus exponential in time.

We memoize the computation with an array C
1: C[O] =0
2: C[l] =C
3: for k=2 tondo

4. if Clk — 1] < Clk — 2] then
5: C’[k]:ck—i—C[k}—l]

6: else

7 C’[k]:ck—i—C[k}—Q]

8 end if

9: end for

The cost of this computation is clearly O(n).
We keep track of which one of C[k — 1] or C[k — 2] is smaller at each iteration of the
loop:

1: C[O] =0

2: C[l] =C

3: R[O] =0

4: R[1]=0

5. for k =2 ton do

6: if C[k —1] < Clk — 2] then
7 C[k]:ck—i—C’[k}—l]
8: Rkl =k -1

9: else

10: C’[k]:ck—i—C’[k}—Q]
11: Rkl =k—2

12:  end if

13: end for

The cheapest way to get to the roof is on rungs ..., R[R[R[n]]], R[R[n]], R[n], n.

A simple greedy algorithm is to fill the tank with gasoline whenever the distance to the
next gas station (displayed on the GPS) is greater than the number of miles the car
drive on its remaining fuel (displayed on the dashboard).

To prove that the number of stops is minimal, suppose it is not, and ask when the first
mistake occurs. Thus, let the greedy sequence of stops be at gasoline stations g1, go,

.., gn and suppose the first mistake is when we stop at gasoline station gp; this means
that stops at gasoline stations g1, g2, ..., gx—1 can still lead to an optimal solution, say
15 925 -+ -5 Jk—1, Ok, Ok+1, - --- That first mistake could not be stopping too early—we



stop only when we would run out of gasoline before the next available station. So the
first mistake must have been not stopping at gasoline station oy after gp_; but before
gr. But then the sequence of stops g1, g2, ..., gk—1, Gk, Ok+1, ... would also work and
be optimal (it has the same number of stops and g, is beyond o, so we can reach ogy1).
That means that the first “mistake” was not a mistake at all, because there is an optimal
sequence of stops beginning g1, g2, ..., gr—1, gx- Thus the greedy strategy never makes
a mistake.

4. (a) The worst-case cost is O(m); specifically, m + 1 bits need to be examined /modified.

(b) We use the given potential function to compute the amortized costs of the INCREMENT
and RESET operations.
INCREMENT: Suppose that the increment resets t 1-bits and sets one 0-bit. The actual
cost of the INCREMENT is thus ¢ + 1. The amortized cost is t + 1 + P 4pt0r — Phefore Which
is

t + 1+ (Magter + number of 1-bits in Aafter) — (Mpefore + number of 1-bits in Apefore)-

But magter — Mpefore < 1 because the most significant 1-bit can move left by at most one
position, and (as in CLRS on page 461) the change in the number of 1-bits is (1 — ¢);
the amortized cost is thus O(1).

RESET: The actual cost is m + 1, the number of 1-bits does not increase, and the change
in m is Mafter — Mbefore = 0 — M = —m, so the change in potential is at most —m, giving
an amortized cost of O(1).

5. Yes, D(n) is still O(logn).

We need to prove an analogue of Lemma 19.4 on page 525 of CLRS in order to get an
analogue of Corollary 19.5 on page 526 for the modified Fibonacci heaps; to do that, we need
an analogue of Lemma 19.1 on page 523.

New Lemma 19.1: Let x be any node in a (modified) Fibonacci heap with degree(z) = k,
and children y1,ys, ..., yx (in the order in which they were linked to x, from earliest to latest).
Then degree(y;) >i—1, for 1 <1i <k.

The proof of this lemma is ezxactly the same as the first two sentences of the proof of the
original version.

New Lemma 19.3: Let  be any node in a (modified) Fibonacci heap, and let degree(z) = k.
Then size(z) > 2.

The proof of this lemma, which includes the observation that so = 1 and s; = 2, begins the
same as the proof of the original version, up to the phrase “To bound sg, we count...”. Then
we continue: To bound s, we count one for z itself and add the degrees of its children:

k k k—1

SIZE(z) > s, > 1+ Z S degree(y:) > 1+ Z si-1 > 1+ Z 8-
i=1 i=1 1=0



It now follows by induction that s; > 2* and we have the needed corollary,

New Corollary 19.5: The maximum degree D(n) of an node in an n-node (modified Fi-
bonacci heap is [lgn].

This corollary is (basically) the answer to Problem 19-2(d) on page 529—do you see why?



