[linois Institute of Technology
Department of Computer Science

Lecture 9: September 27, 2010

CS 430 Introduction to Algorithms
Fall Semester, 2010

1 Augmenting Balanced Trees

For particular applications, it is useful to modify a standard data structure to support additional function-
ality. Two examples are presented here, order-statistic trees and interval trees.

1.1 Order-Statistic Trees

In Lecture 5 (September 8) we discussed the selection problem: given an array, find the kth largest element.
Can we modify red-black trees to allow us to solve this problem? Indeed we can, with order-statistic trees.!

We augment the each node in the red-black tree with its size, where size(x) is defined as the number of items
in the subtree rooted at x. With this new information, finding the kth largest element of a tree is a simple
process which can be performed in O(height(T')) time—and since red-black trees are of height O(logn), the
running time of the selection algorithm is O(logn)?.

This size field must be updated whenever the tree is modified. Recall that insertion into a red-black tree
occurs in two phases. In the first phase, the new node is inserted as the child of an existing node, and
sizes can be updated by adding 1 to all size values along the path from the new node to the root. Since
the height of the tree is O(logn), this takes O(logn) time. In the second phase, rotations are performed
in order to restore the red-black properties of the tree. Fortunately, rotations make only local changes to
the nodes around the edge on which the rotation takes place. Since at most two rotations are required for
an insertion, maintaining the size information takes O(1) additional time. For similar reasons, updating the
size field after a deletion also requires only O(logn) time.

1.2 Interval Trees

Interval trees? are red-black trees extended to support operations on intervals of real numbers. In particular,
the data structure stores intervals and, when we search for an interval ¢ in the tree, a pointer is returned to
some interval in the tree that overlaps ¢, if one exists.

For each interval i in the tree we store its high endpoint, high(i), and its low endpoint, low(i). We use the
low endpoint as the key, so that the tree supports efficient search for low endpoints. At each node i we also
store maz(i), the maximum value of all the high endpoints in the subtree rooted at i.

Maintaining this supplementary information during insertions and deletions is not difficult. Clearly, maz(i) =
max{high(i), maz(left(i)), max(right(i))}, so the max field can be updated in constant time for each rotation
performed. Therefore, insertion and deletion still run in O(logn) time.

To search for an interval ¢ in the tree T', we compare maz(left(T')) to low(i). If low(i) is larger, no overlapping

1Order-statistic trees are discussed in section 14.1 of CLRS.
2Details of the procedure are worked out on page 341 of CLRS.
3Interval trees are discussed in section 14.3 of CLRS.



CS 430—Fall, 2010 2 Lecture 9: September 27, 2010

interval could possibly exist in the left subtree of T, so we search recursively for ¢ in right(T"). If max left(T)
is larger, if there is a solution, there must be a solution in left(T)E so we search recursively for ¢ in left(T).
Searching in this manner takes O(logn) time.

4There may also be a solution in right(T'), or there may be no solution at all, but there cannot only be a solution in right(T).



	Augmenting Balanced Trees
	Order-Statistic Trees
	Interval Trees


