
Illinois Institute of Technology
Department of Computer Science

Lectures 21–22: November 15–17, 2010
CS 430 Introduction to Algorithms

Fall Semester, 2010

1 Single-Source Shortest Paths

A common graph problem is to find the shortest path between two vertices in a graph G where weights have
been assigned to the edges. Currently there is no known algorithm for this specific problem, but is possible
to efficiently find the shortest paths from some vertex v to every other vertex in the graph. From this, it
is obviously very simple to solve our original problem. The new problem is called the single-source shortest
path problem and this lecture presents algorithms for solving it.1

Define the weight of path p = 〈v0, v1, . . . , vk〉 as

w(p) =

k∑

i=1

w(vi−1, vi)

The shortest-path weight can then be defined as

δ(u, v) =

{
min{w(p)|u p

; v} if there is a path from u to v
∞ otherwise

Before proceeding, we examine the issue of negative-weight edges. The existence of a negative-weight edge
does not affect the existence of a shortest-path weight. However, if there is a cycle c = 〈v0, v1, . . . , vk, v0〉
with a negative total weight, any path to any vertex reachable from c is undefined, as any proposed shortest
path could be made even shorter by adding a traversal of the cycle c. We define δ(s, v) = −∞ if there is a
negative-weight cycle on some path from s to v.

1.1 Relaxation

The algorithms presented here are based on the technique of relaxation. For each vertex v we maintain the
shortest-path estimate d[v], an upper bound on the weight of a shortest path from the source s to v. We
relax on the edge (u, v) by updating d[v] with min{d[v], d[u] + w(u, v)} and by appropriately updating the
path itself. We initialize all shortest-path estimates to ∞ except d[s] itself, where s is the source vertex.
Since no edges need to be traversed to get from s to s, we set d[s] to 0.

1.2 Dijkstra’s Algorithm

Dijkstra’s algorithm efficiently solves the single-source shortest path problem, but it requires the assumption
that the graph contains no negative weight edges. The algorithm itself is simple; using a priority queue
(we assume the use of a Fibonacci heap for efficiency), it repeatedly selects the vertex v with the smallest
shortest-path estimate and relaxes on all edges incident from v. The Decrease-Key function is used to

1This problem is discussed in chapter 24 of CLRS.

CS 430—Fall, 2010 2 Lectures 21–22: November 15–17, 2010

adjust the shortest-path estimate for a vertex if it needs to be changed. Since the algorithm executes at
most |E| Decrease-Key operations and |V | Extract-Min operations, it requires a total of O(E+V logV)
time. If each vertex stores the edge which caused it be be relaxed most recently, the actual shortest paths
can be determined as well as their costs.

How do we know that Dijkstra’s algorithm yields correct shortest paths? Say it does not yield correct
results—the actual length of the shortest path to some vertex is not the distance computed by Dijkstra’s
algorithm. Consider the first vertex v for which d[v] 6= δ(s, v). When v was removed from the priority queue,
it was the vertex with the lowest shortest-path estimate. Perhaps, however, there is some path to v that is
shorter than d[v]. This path must go from the set of vertices which have already been extracted from the
priority queue to the set of vertices still in the priority queue. Let x be the first vertex along this path still
in the priority queue at the time v was removed from the queue. Since the algorithm greedily chose v rather
than x, we know that d[x] ≥ d[v]. Thus, the path through x to v has a length at least as large as d[v] since
we have assumed that the graph has nonnegative edge weights. Thus, the selection of v must not have been
an error after all and the algorithm correctly identifies the minimum path lengths.

1.3 The Bellman-Ford Algorithm

The correctness of Dijkstra’s algorithm depends crucially on the nonexistence of negative-weight edges. If
there are negative-weight edges, we have to use another algorithm. One possibility is the Bellman-Ford
algorithm. Bellman-Ford starts by initializing the estimated distance to the start vertex to 0 and the
estimated distance to all other vertices in the graph to infinity. It then performs relaxations in |V |− 1 steps,
relaxing every edge of the graph during each step.

First we show that this algorithm correctly identifies the minimum path lengths. If the graph contains no
negative-weight cycles, we prove by induction that, if p = 〈v0, v1, . . . , vk〉 is a shortest path from s to v,
where s = v0 and v = vk, then for i = 0, 1, . . . , k, d[vi] = δ(s, vi) after the ith iteration and this property is
maintained after the ith iteration. The base case, that d[s] = δ(s, s) = 0 initially and at all points thereafter,
is immediately clear. Inductively, assume that d[vi−1] = δ(s, vi−1) after the (i − 1)st iteration. In the ith
iteration, the edge from vi−1 to vi is relaxed, so we know that d[i] = δ(s, vi−1) + w(vi−1, vi) = δ(s, vi)
afterwards. Since the longest possible path from s to any vertex in the graph visits |V |−1 other vertices, the
Bellman-Ford algorithm yields correct results provided the graph does not contain negative-weight cycles.

What happens if there is a negative-weight cycle? If there is a negative-weight cycle, there is no shortest
path to at least some vertices of the graph, so additional relaxations beyond |V | − 1 will continue to cause
shortest-path estimates to change. To detect negative-weight cycles, then, the algorithm performs one extra
relaxation iteration. If any distance estimates change, the algorithm reports the existence of a negative-
weight cycle.

Although this algorithm is more general than Dijkstra’s algorithm, it is less efficient, running in O(V E)
time. In essence, to allow for negative-weight edges, we dispense with the greedy strategy used in Dijkstra’s
algorithm and hence must perform more work.

1.4 Special Case: Directed Acyclic Graphs

In addition to the general algorithms given above, we would like to present a algorithm which works very
efficiently on a special case of the single-source shortest path problem. If the graph is a directed acyclic graph
(also called a DAG), then topologically sorting2 the vertices and relaxing their outgoing edges in this order

2It is assumed that the reader is familar with topological sorting. If this is not the case, you should review it in section 23.4
of the text

CS 430—Fall, 2010 3 Lectures 21–22: November 15–17, 2010

will correctly identify the shortest paths. The rationale for this is the same as in the proof of correctness
for Bellman-Ford; relaxing each edge along a path in the correct order identifies the shortest paths. By
topologically sorting the vertices, we insure that the edges along each path are relaxed in the proper order.
The running time is also very low; vertices in a graph can be topologically sorted in O(V + E) time while
the actual relaxation takes only O(E) time. Thus, we can solve this special case of the single-source shortest
path problem in only O(V +E) time.

We have discussed the problem of finding the shortest paths from a particular source s to all other vertices
in the graph. We came up with Dijkstra’s algorithm which computes these shortest paths through greedy
selections and relaxations. We saw that by using Fibonacci heaps, we could implement Dijkstra’s algorithm
in time:

O(V log V +E)

We now pose the question of finding the shortest paths between all pairs of vertices in a graph. As a natural
solution, we may simply run Dijkstra’s algorithm individually with every vertex as a source. This will require
running the algorithm |V | times, giving a running time of:

O(V 2 logV +EV)

We may similarly run Bellman-Ford’s algorithm |V | times to give the inferior running time of:

O(V 2E)

1.5 Representation

Can we do better than this? Well, first we have to understand the problem and figure out how to represent
its answer. Suppose we have n vertices. Then the input to our algorithm can be thought to be an n × n
adjacency matrix whose (i, j)’th entry wi,j is:

wi,j =





0 if i = j
∞ if (i, j) is not an edge of the graph
the weight of edge (i, j) if (i, j) is an edge of the graph

Our output comes in two parts. First we need to know the distance between the pairs of vertices. We can
represent this by a distance matrix D whose (i, j)’th entry di,j is the length of the shortest path from i
to j. However, this representation does not tell us the actual vertices on these shortest paths. For that
information, we need to return a predecessor matrix Π whose (i, j)’th entry πi,j is NIL if there is no path
from i to j, and otherwise points to a predecessor of j on the shortest path from i to j.

As an example, suppose you had a graph where the shortest path from vertex 1 to 5 went through vertices
6, 2, and 8, in that order, and had weight 4.0. Then d1,5 = 4.0 and π1,5 = 8;π1,8 = 2;π1,2 = 6;π1,6 = 1.

1.6 Computation

We can approach the problem of computing the distance matrix by using dynamic programming. Specifically,
we can define intermediate matrices Dm whose elements dmi,j represent the length of the shortest path from
i to j using at most m edges. Consider a path from vertex i to vertex j that uses at most m edges. If we
take out the last edge in this path, call it edge (k, j), then we are left with a path of at most m − 1 edges
from i to k. This is the crux of our dynamic programming: we consider all possible final edges in the path,
and minimize over them (taking into account the possibility that the path has at most m− 1 edges as well):

dmi,j = min

{
dm−1
i,j , min

1≤k≤n
{dm−1
i,k + wk,j}

}

CS 430—Fall, 2010 4 Lectures 21–22: November 15–17, 2010

The time needed to compute this expression is Θ(n), dictated by the number of terms we need to compare.
However, for the dynamic programming to work, we need to compute n matrices D1, D2, . . . , Dn, each of
which contains n2 elements, giving an overall running time of O(n4) which is already worse than what we
had by repeating Dijkstra’s algorithm.

A better dynamic programming strategy notices that any path from i to j that uses at most 2m edges will
be comprised of a path for at most m edges from i to k and another path of at most m edges from k to j
for some vertex k. Thus, we may formulate our recursive computation differently:

d2m

i,j = min
1≤k≤n

{d2m−1

i,k + d2m−1

k,j }

This way, we only need to compute lg n matrices D2m , giving a running time of O(n3 logn), which still worse
than our repeated Dijkstra implementation.

The Floyd-Warshall takes an even craftier dynamic programming approach. Instead of making matrices
according to the number of edges used in a path, it examines paths according to which vertices are used in
them. Specifically, we redefine our distance matrix to be ∆k whose (i, j)’th entry δki,j contains the length of
the shortest path from i to j that goes through only vertices {1, 2, 3 . . . k}. Now, the shortest path from i
to j either uses vertex k or not. In the former case, our path from i to j can be divided into two paths, one
from i to k and another from k to j, each of which only use vertices {1, 2, 3 . . . k − 1}. Thus, the dynamic
programming expression becomes:

δki,j = min{δk−1
i,j , δk−1

i,k + δk−1
k,j } (1)

The beauty of this is that the minimum is taken over only two elements, thus requiring Θ(1) time per term.
We still have to compute n matrices ∆k, and each has n2 elements, giving an overall running time of O(n3).
We can compute the matrices Π of predecessors with a similar recursive relationship where we compute
predecessors in the shortest paths rather than lengths. Completing the details of such an approach serve as
a good exercise and may be found in CLRS as Exercise 25.2-3 (page 699).

1.7 Negative Weight Edges

So far we have implicitly assumed that our graph has no negative-weight edges. In the case of negative-
weight edges, Johnson’s algorithm works by re-weighing the edges. Specifically, consider adding a huge
positive number to each edge; this would ensure that there are no negative-weight edges, but it might change
the shortest path because it introduces a dependence on the number of edges in the path. As another good
exercise, design a graph whose shortest paths change when the same positive weight is added to each edge.

The idea behind Johnson’s algorithm is to reweigh all edges in such a way that shortest paths use exactly
the same vertices after the re-weighing as they did before. Specifically, we start by adding a new source s
and edges of weight 0 from s to every node in the old graph. We now run Bellman-Ford’s algorithm from
the source s and record minimum distances d(i) to any vertex i. If Bellman-Ford reports a negative-weight
cycle, there is no solution to the problem as we may infinitely cycle around reducing shortest paths.

On the other hand, if Bellman-Ford does not report a negative-weight cycle, then we can take every edge
(u, v) of weight w and make it have weight w − d(v) + d(u). Clearly, the new weights must all be positive,
because if w − d(v) + d(u) ≤ 0 then d(u) + w ≤ d(v) contradicting our assertion that d(v) is the shortest
path from s to v. Moreover, in any path, the weights telescope. Thus, for example, a path progressing from
vertex 1 to 3 to 8 to 2 will have total weight:

w1,3 − d(3) + d(1) + w3,8 − d(8) + d(3) + w8,2 − d(2) + d(8)

= w1,3 + w3,8 + w8,2 + d(1)− d(2)

CS 430—Fall, 2010 5 Lectures 21–22: November 15–17, 2010

Thus, consider two paths from i to j, path p1 of weight w1 and path p2 of weight w2. After the re-weighing,
these paths will have weights w1 − d(j) + d(i) and w2 − d(j) + d(i) respectively. Thus, if p1 had less weight
before the reweighing, it will do so also after the reweighing, thus preserving all shortest paths. Overall then,
we need to run Bellman-Ford once, adjust all the edge weights, and then run Dijkstra’s algorithm on the
new graph of non-negative-weight edges. This gives an overall running time of O(V 2 logV + V E).

As a final note, we will see in the upcoming lectures that the problem of finding the longest path between
two vertices is a much more difficult problem, one we generally think cannot be done in polynomial time.
Why is it that we cannot just take the negatives of all edges and do a shortest-path search? This is for the
same reason that we had to do a more careful reweighing for Johnson’s algorithm.

	Single-Source Shortest Paths
	Relaxation
	Dijkstra's Algorithm
	The Bellman-Ford Algorithm
	Special Case: Directed Acyclic Graphs
	Representation
	Computation
	Negative Weight Edges

