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1 Dynamic Programming

We now introduce a useful approach to algorithm design: dynamic programming.1 The word “programming”
here is used as in the phrase “television programming” (that is, meaning to set a schedule), not in the sense
of “computer programming,” which originally had that sense also. Dynamic programming is typically used
on optimization problems, particularly optimization problems that exhibit optimal substructure: an optimal
solution is composed of optimal solutions to smaller subproblems. In dynamic programming, we store the
solutions to these subproblems in a table so we can avoid computing them multiple times.

1.1 Matrix-chain multiplication

In the problem of matrix-chain multiplication2 we are given a sequence (or chain) of n matrices that we
would like to multiply:

A1A2A3 · · ·An
CLRS describes an algorithm for multipling two matrices, but in this case we are multiplying together many
matrices, and have to do these multiplications two matrices at a time. Note that matrix multiplication is
associative: that is, A1(A2A3) = (A1A2)A3. Thus, if we wanted to compute A1A2A3, we could either first
multiply A1 and A2 and then multiply the result by A3 or we could first multiply A2 and A3 and then
multiply A1 by the result.

If the results are the same, why do we care? Recall that the efficiency of the CLRS matrix multiplication
algorithm depends on the dimensions of the matrices. Specifically, multiplying an a × b matrix by a b × c
matrix requires roughly abc computation steps.. In our example, we will let let A1 be a p0 × p1 matrix, A2

be a p1 × p2 matrix, and A3 be a p2 × p3 matrix.

Let us first consider A1(A2A3). Multiplying A2 and A3 using our simple algorithm will take (p1p2p3) steps
and multiplying A1 and A2A3 will take (p0p1p3) steps. (Recall that A2A3 is a p1 × p3 matrix.) Thus under
this parenthesization the total multiplication will take roughly (p0p1p3 + p1p2p3) steps.

Now consider (A1A2)A3. Multiplying A1 and A2 will take (p0p1p2) steps and multiplying A1A2 and A3 will
take (p0p2p3) steps. Thus under this parenthesization the total multiplication will take roughly (p0p1p2 +
p0p2p3) steps.

It is clear that for any given values of p0, p1, p2, and p3, one of the parenthesizations will likely yield
a more efficient multiplication procedure. For example, if p0 = 1, p1 = 2, p2 = 3, and p3 = 4, the
the first parenthesization will require roughly (p0p1p3 + p1p2p3) = 8 + 24 = 32 steps, though the second
parenthesization will require only roughly (p0p1p2 + p0p2p3) = 6 + 12 = 18 steps.

Our goal will be to determine the most efficient way to carry out the multiplication (i.e. parenthesize the
expression so that the amount of steps needed for multiplication are minimized). The naive way to do this

1Chapter 15 of CLRS is devoted to the topic of dynamic programming.
2Matrix-chain multiplication is discussed in section 15.2 of CLRS.
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is to try all possible parenthesizations, and pick the one that minimizes computation time.

For 4 matrices there are 5 different parenthesizations we would need to check: (A1A2)(A3A4), A1((A2A3)A4),
A1(A2(A3A4)), ((A1)A2)A3A4 and (A1(A2A3))A4.

For 5 matrices there are 15 different parenthesizations: 5 ways forA1(A2A3A4A5), 2 ways for (A1A2)(A3A4A5)
2 ways for (A1A2A3)(A4A5) and 5 ways for (A1A2A3A4)A5.

The number of parenthesizations grows quite quickly, and we can categorize this growth with a recurrence
relation. Specifically, suppose P (n) is the event of parenthesizing the product of n matrices. We apply the
rule of sum to P (n) to split it into events Ei according to the break for the last multiplication.

For example, when multiplying 5 matrices A0 . . . A5, E2 will be correspond to a last multiplication of
(A1A2)(A3A4A5). In other words, when multiplying these matrices we first multiplied A1A2 somehow,
and then multiplied A3A4A5 somehow, and our last multiplication is the product of these two quantities.

Therefore, the number of events in Ei will consist of the number of ways of parenthesizing A1 . . . Ai and
parenthesizing Ai+1 . . . An. In other words, Ei = P (i)P (n− i). Based on the rule of sum, we can therefore
establish the following recurrence for P (n):

P (n) =
n−1∑

k=1

P (k)P (n− k)

We can examine some values of this recurrence:

P (1) = 1

P (2) = 1

P (3) = P (1)P (2) + P (2)P (1) = 2

P (4) = P (1)P (3) + P (2)P (2) + P (3)P (1) = 5

P (5) = P (1)P (4) + P (2)P (3) + P (3)P (2) + P (4)P (1) = 14

P (6) = P (1)P (5) + P (2)P (4) + P (3)P (3) + P (4)P (2) + P (5)P (1) = 42

It turns out that this is an extremely messy recurrence to solve. Nevertheless, this is a very well-known
sequence of numbers called the Catalan Numbers. In fact:

P (n) =
1

n

(
2n− 2

n− 1

)

which is just the nth row center (from the top) of Pascal’s Triangle divided by n. Pretty neat, no?

Notice that the Catalan Numbers grow quite fast. If we exhaustively search each and very possible paren-
thesization, we would be in school for a very long time. Thus, we have to come up with a better solution
that is based on dynamic programming.

Specifically, suppose you had a magic oracle that could tell you the best place to perform the last multipli-
cation of a chain-multiplication. Then you could simply split up the chain-multiplication according to the
advice of the oracle, and then use the oracle again on the two sub-chains, etc.

The reason you can use this oracle is that if you have an optimal solution for the parenthesization, then every
subchain of the solution must also be optimally parenthesized (or else you could replace the non-optimal
parenthesization with an optimal one to get a better solution). This is a subtle point...think about it. This
property of a problem is often called optimal substructure.
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In reality, we do not have an oracle for the parenthesization, and we have to actually work to figure out the
solution the oracle would give us, but we can store the optimal sub-chains as we compute them so that they
do not need to be recomputed every time.

Specifically, let us define C(i, j) as the “cost” (# of steps) of multiplying Ai, Ai+1, · · · , Aj−1, Aj in the
optimal way. Clearly, C(1, n) is the optimal way to multiply all of our n matrices, which is what we are
trying to compute.

With careful examination, we can see that:

C(i, j) = min
i≤k<j

(C(i, k) + C(k + 1, j) + pi−1pkpj) (1)

In words, we look through every possibility for the last multiplication (mini≤k<j . . .) and check the cost of
the chain multiplication if we were to optimally multiply the sub-chains (C(i, k)+ C(k + 1, j)+ pi−1pkpj).

We know that C(i, i) = 0 so we may now recursively solve for C(i, j). Moreover, each time we calculate
C(i, j), we can store it in a cell location (i, j) on an n × n table, so that we would only have to compute
values of C(i, j) once for each i and j. Let’s draw this table more clearly:

j = 1 j = 2 j = 3 . . . j = n

i = 1 C(1, 1) C(1, 2) C(1, 3) · · · C(1, n)
i = 2 C(2, 1) C(2, 2) C(2, 3) · · · C(2, n)
i = 3 C(3, 1) C(3, 2) C(3, 3) · · · C(3, n)
...

...
...

...
. . .

...
i = n C(n, 1) C(n, 2) C(n, 3) · · · C(n, n)

We may now put in some knowledge about the table. Specifically, it makes sense that C(i, i) = 0 and that
C(i, j) is non-existent when i > j.

j = 1 j = 2 j = 3 . . . j = n

i = 1 0 C(1, 2) C(1, 3) · · · C(1, n)
i = 2 0 C(2, 3) · · · C(2, n)
i = 3 0 · · · C(3, n)
...

...
...

...
. . .

...
i = n · · · 0

Now to fill (or compute) cell (i, j) of the table, we need to have computed all the cells below (i, j) and also
all the cells to the left of (i, j), as we can see from our general minimization equation 1. Thus, one way to
fill all the cells in the table is to zig-zag across the table, computing cells in the following diagrammed order:

0 fill C(1, 3) · · · C(1, n)
0 fill · · · C(2, n)

0 fill C(3, n)
. . . fill

0

0 fill fill · · · C(1, n)
0 fill fill C(2, n)

0 fill fill
. . . fill

0

0 fill fill fill C(1, n)
0 fill fill fill

0 fill fill
. . . fill

0

When we finally get to C(1, n), we have compute the solution to our problem. This algorithm is such that
we will fill about n2/2 cells of the table. Each value requires about n work to fill (taking the minimum of
all the appropriate cell sums). The entire algorithm turns out to require about n3 steps.
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1.2 Optimal Polygon Triangulation

In the problem of optimal polygon triangulation, we determine a triangulation of a polygon3 such that the
sum of the lengths of the sides of the triangles is minimized.

Consider a polygon with n vertices, numbered 0 through n− 1:

0

.

.

k
.

.

n− 1

Clearly the edge between vertex 0 and vertex n − 1 must be on some triangle. If the third vertex on this
triangle is vertex k, this triangle is formed by the addition of the dotted lines shown. This gives us a natural
way to break the problem into smaller pieces: first draw the triangle shown and then triangulate the polygons
on vertices 0 through k and k through n − 1. Further, if we find optimal triangulations of these smaller
polygons, then the overall triangulation will be optimal.

Unfortunately, the problem is not this simple. We have no way of quickly knowing which vertex forms the
triangle with vertices 0 and n− 1. Therefore we have to try all possibilities. Generalizing this process leads
to the following recurrence for C(i, j), the lowest cost to triangulate the polygon on vertices i . . . j:

C(i, j) = min
i<k<j

[C(i, k) + C(k, j) + ik + kj]

C(i, i+ 2 mod n) = 0, 0 ≤ i ≤ n− 1

This recurrence can be translated into a straightforward recursive program to find the minimum triangulation.
Unfortunately, the resulting program runs in exponential time. The problem is that the smaller triangulation
problems are solved many times. To prevent this, the solutions to these subproblems should be stored in
a two-dimensional array. In fact, rather than making the recursive calls suggested above, the triangulation
problem can be solved by filling in the entries of this array, beginning with the base case elements (C(i, i+2)-
the second row above the diagonal) and working upward to the corner, which will hold the desired solution.
Since at most O(n) work is required to fill in an entry and there are O(n2) entries, this algorithm takes
O(n3) time.

1.3 Longest Common Subsequence

Next we examine the longest common subsequence problem. In this problem, we are given two sequences X
and Y and are asked to find the subsequence of both of maximum length. Importantly, we are looking for
a subsequence rather than a substring, i.e. the common elements do not need to be contiguous. This makes
the problem much harder since, in a sequence of length n, there are O(n2) substrings, but 2n subsequences.
4

To break the problem into smaller subproblems, we can compare the last elements. If these elements are
equal, then there must be a longest common subsequence which contains them. In this case, we search for

3A triangulation of a polygon is a set of chords of the polygon that divide it into disjoint triangles
4This problem is covered in section 15.4 of CLRS.
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the longest common subsequence of the remaining elements and then append the final matching element. If
the last elements are not equal, then the longest common subsequence must be either the longest common
subsequence of the first sequence and the last sequence minus the final element or the longest common
subsequence of the first sequence minus the final element and the second sequence.

Once again, the obvious recursive implementation of this property runs in exponental time, but the algorithm
can be made efficient by storing the solution to smaller problems in a two-dimensional array. If Lij is the
length of the longest common subsequence of the first i elements of the first sequence and the first j elements
of the second sequence, we get the following recurrence:

Lij =





0 if i = 0 or j = 0
Li−1,j−1 + 1 if xi = yj
max(Li,j−1,

Li−1,j) otherwise

This can be used to fill in the table of values of L, beginning with row 0 and column 0. The desired solution
will occupy Lnm, where n is the length of the first sequence and m is the length of the second sequence.
Since each entry can be computed in constant time, filling in the table takes O(nm) time.

1.4 Optimal Binary Search Trees

As we have seen, one property of binary search trees is that elements near the root of the tree can be accessed
relatively quickly, while elements far from the root take longer to access. In the problem of optimal binary
search trees, we are given a set of elements {x1, x2, . . . , xn}, along with search frequencies {q1, q2, . . . , qn}
and search failure frequencies {p0, p1, p2, . . . , pn}, where q(i) is the frequency of xi being accessed and pi is
the frequency of search failure occurring between xi and xi+1. We would like to build a binary search tree
with the property that the cost of an average search is minimized. (Note that the application here is one in
which a table is constructed once and accessed many times but is not modified often.) 5

For instance, consider the vowels A, E, I, O, and U, with their frequencies of occurrence in English text. We
might have the following frequencies:

i xi qi pi

0 0
1 A 32 34
2 E 42 38
3 I 26 58
4 O 32 95
5 U 12 21

This table tells us, for example, that the letter I occurs 26 times. Letters between E and I occur 38 times
and letters between I and O occur 58 times. One possible binary search tree representing these five letters
is:

5The example presented here is from section 7.2.1 of E. Reingold and W. Hansen, Data Structures in Pascal. Optimal binary
search trees are also discussed in section 6.5 of H. Lewis and L. Denenberg, Data Structures & Their Algorithms.
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O

32

E

42

A

32

0 34

I

26

38 58

U

12

95 21

We can formalize the notion of average search cost by defining the weighted path length:

WPL(T ) =

n∑

i=1

qi(1 + depth(xi)) +

n∑

i=0

pi · depth(yi)

where x1, x2, . . . , xn are internal nodes and y0, y1, y2, . . . , yn are external nodes. We can give an alternate
(and equivalent) recursive definition:

WPL
( )

= 0

WPL(T ) = WPL(Tl) + WPL(Tr) +
∑

pi +
∑

qi

It follows that the weighted path length divided by
∑
pi +

∑
qi is the average search time.

For the above tree T ,

WPL(T ) =

5∑

i=1

qi(1 + depth(xi)) +

5∑

i=0

pi · depth(yi)

= (32 · 3 + 42 · 2 + 26 · 3 + 32 · 1 + 12 · 2) + (0 · 3 + 34 · 3 + 38 · 3 + 58 · 3 + 95 · 2 + 21 · 2)

= 314 + 622

= 936

Dividing by
∑
pi +

∑
qi,

WPL(T )∑
pi +

∑
qi

=
936

390

= 2.4

One approach is to build all possible trees and then determine which is best. Unfortunately, the number of
trees is exponential in n. However, if we observe that, for any root, its subtrees must be optimal, we can
invoke dynamic programming.
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1.4.1 A Dynamic Programming Solution

Observe that, if T is an optimal binary search tree on weights p0, q1, p1, . . . , qn, pn with weight qi at the root,
the left subtree must be optimal on weights p0, q1, p1, . . . , qi−1, pi−1 and the right subtree must be optimal
on weights pi, qi+1, pi+1, . . . , qn, pn. If this were not the case, then we could replace one of the subtrees with
the optimal subtree, yielding a lower overall weighted path length, thereby yielding a contradiction. This is
simply the property of optimal substructure, and it steers us towards dynamic programming as a (hopefully)
efficient solution.

Let Cij , where 0 ≤ i ≤ j ≤ n, be the cost of an optimal tree over weights pi, qi+1, pi+1, . . . , pj , qj . By the
optimal substructure property above, we can define this recursively:

Cii = 0

Cij = min
i<k≤j

(Ci,k−1 + Ckj) +

j∑

t=i

pt +

j∑

t=i+1

qt

Defining

Wii = pi

Wij = Wi,j−1 + qj + pj , where i < j (2)

so that Wij = pi + qi+1 + pi+1 + · · ·+ qj + pj . We then have

Cii = 0

Cij = Wij + min
i<k≤j

(Ci,k−1 + Ckj) (3)

Finally, we define

Rij = a value of k that minimizes Ci,k−1 + Ckj in equation (3) (4)

As in the other dynamic programming problems, we could devise a recursive solution around equations (2)
and (3), but that would lead to the exponential blowup we are trying to avoid. Instead, we build a table
of values of Rij , Wij , and Cij for 0 ≤ i ≤ j ≤ n based on equations (2), (3), and (4). From the completed
table, we can easily construct the optimal tree.

Since the time required to compute one entry in the table is O(n), the total time required for the algorithm
is O(n3).

1.4.2 A Better Solution

We can improve on this solution by noticing that this algorithm does more work than is necessary. In
particular, there is an optimal tree over pi, qi+1, . . . , qj , pj whose root Rij satisfies Ri,j−1 ≤ Rij ≤ Ri+1,j .
This reduces the total amount of work required to fill in the table to O(n2).

2 The Travelling Salesman Problem

Dynamic programming does not always yield polynomial-time algorithms (a fact that the text does not
discuss), but even when it gives exponential-time algorithms, it can provide a useful framework for algorithm
design. In this section we’ll look at such an example, the Travelling Salesman Problem, or TSP for short.
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In the TSP, we are given n cities and a distance matrix C in which Cij is the distance from city i to city
j. These distances do not have to correspond to physical distances; they are costs. Because they are costs,
they do not need to satisfy constraints such as symmetry (the distance from i to j need not be the same as
the distance from j to i) or the triangle inequality (it is not necessarily shorter to go from i to j directly—it
mean be cheaper to go from i to k to j). We need to route a salesman from his home city, arbitrarily called
city 1, through all other n− 1 cities and then back home to city 1. Such a routing is called a tour. The TSP
is to find the cheapest tour.

There are (n − 1)! possible tours (why?), so a brute-force examination of the cost of each tour would take
time (n − 1) × (n − 1)! because it would take n − 1 additions to compute the cost of each tour (this could
be improved by choosing successive tours that differ only by the interchange of two cities). With a dynamic
programming approach we can improve this time bound to O(n22n). We define

T (i; j1, j2, . . . , jk) =





cost of the optimal tour from city i to city
1 that goes through each of the intermediate
cities j1, j2, . . . , jk exactly once, in any order, and
through no other cities.

The optimal substructure property tells us that

T (i; j1, j2, . . . , jk) = min
1≤m≤k

{Cijm + T (jm; j1, j2, . . . , jm−1, jm+1, . . . jk)}.

Furthermore,
T (i; ∅) = Ci1.

The value we want is
T (1; 2, 3, . . . , n).

Without memoization, direct evaluation of T (i; j1, j2, . . . , jk) takes time Θ(k) time plus the time for the k
recursive calls; if t(k) is the order of the time needed for k intermediate cities,

t(k) = k + k × t(k − 1)

and t(0) is constant. The overall time is then t(n− 1) > (n− 1)!.

With memoization, there are n−1 choices for city i and
(
n−2
k

)
sets of k intermediate cites chosen from among

all cities except cities 1 and i. The total number of memos [including the memo for T (1; 2, 3, . . . , n)] is thus

1 +

n−2∑

k=1

(n− 1)

(
n− 2

k

)
= 1 + (n− 1)

n−2∑

k=1

(
n− 2

k

)
= 1 + (n− 1)(2n−2 − 1).

Evaluating a memo once all the needed memos are available is O(n), so the overall cost of the memoized
algorithm is O(n22n).
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