
Illinois Institute of Technology
Department of Computer Science

Homework 1 Solutions
CS 430 Introduction to Algorithms

Fall Semester, 2010

1. Problem 2.3-3 on page 39

Solution:

We will verify by mathematical induction that T (n) = n lgn is the solution to the recurrence

T (n) =

{
2, if n = 2,

2T (n/2) + n, if n = 2k, k > 1.
(1)

Basis case: Let n = 2, then T (n) = 2 = 2(1) = 2 lg 2.

Inductive step: We assume the inductive hypothesis that T (n/2) = n/2 lgn/2, where n/2 = 2k for
some k ≥ 1. Now we need to show that T (n) = n lg n, where n = 2k+1.

T (n) = 2T (n/2) + n (2)

= 2(n/2 lgn/2) + n (3)

= n(lgn− lg 2) + n (4)

= n lgn− n+ n (5)

= n lgn (6)

2. Problem 2.3-4 on page 39.

Solution:

If n > 1, then the recurrence is T (n) = T (n− 1) + Θ(n). To sort n elements, we sort the first (n − 1)
elements using our recursive insertion sort procedure. Since there are n−1 elements, this takes T (n−1)
time. Then we insert the last element, A[n], into the inserted list. This step takes Θ(n) time.

Although, not required by the problem, we can solve this recurrence using the operator method presented
in class. To do this, we rewrite the recurrence as

tn = tn−1 + cn, (7)

where c is a positive constant. The annihilator for this recurrence is (E − 1)(E − 1)2 = (E − 1)3. Thus,
the general solution is tn = (α + βn + γn2)1n = Θ(n2). This shows that the recursive insertions sort
takes T (n) = Θ(n2) time which is the same as the non-recursive version.

3. Problem 2-3(a) on page 41.

Solution: Since each iteration of the loop takes a constant amount of time (i.e. the time taken for each
iteration does not depend on the degree of the polynomial), and the loop executes Θ(n) times, this code
fragment takes Θ(n · 1) = Θ(n) time.



CS 430—Fall, 2010 2 Homework 1 Solutions

4. Problem 3-3a, fourth column only , on pages 61-62

Solution: Rank as follows (from slowest to fastest):

lg(n!), n2, 4lgn, nlg lg n, 2n

n2 = ω(lg(n!)) since lg n! ≤ lg nn = n lgn and n2 = ω(n lgn).
4lgn = Θ(n2) since 4lgn = nlg 4 = n2.
nlg lgn = ω(n2) since lg lg n = ω(2).

nlg lgn = ω(2n) since lim
n→∞

nlg lgn

2n
= 0. This may be easier to see if we compare the log of both functions,

then we get lgnlg lgn = (lg lg n)(lg n) ≤ (lg n)(lg n) = lg2 n, lg 2n = n, and lim
n→∞

lg2 n

n
= 0.

5. Problem 4-3(a) on page 108

Solution: If we use a domain transformation then we can use the annihilator method to solve the
recurrence T (n) = 4T (n/3) + n lg n. We define the new function t(k) = T (3k). This gives us the
recurrence

t(k) = T (3k) = 4 · T (3k/3) + 3k lg 3k (8)

= 4 · T (3k−1) + 3k lg 3k (9)

= 4 · t(k − 1) + 3k lg 3k (10)

= 4 · t(k − 1) + 3k
1

log3 2
log3 3k (11)

= 4 · t(k − 1) + (
1

log3 2
)(k)3k. (12)

The annihilator for the homogeneous part of the recurrence is (E − 4) and the annihilator for the
nonhomogeneous part is (E− 3)2. Thus, the general solution is t(k) = α4k + (β+ γk)3k = Θ(4k). After
substituting n = 3k we get T (n) = Θ(4log3 n) = Θ(nlog3 4).


