
Illinois Institute of Technology
Department of Computer Science

Lecture 2: August 25, 2010
CS 430 Introduction to Algorithms

Fall Semester, 2010

1 Solving Recurrences

1.1 Fun with Fibonacci numbers

Consider the reproductive cycle of bees. Each male bee has a mother but no father; each female bee has
both a mother and a father. If we examine the generations we see the following family tree:

♂

♀

♀

♀

♀

♀

♀

♀ ♂

♂

♀

♂

♀

♀ ♂

♂

♀

♀

♀ ♂

♂

♀

♂

♀

♀

♀

♀ ♂

♂

♀

♂

♀

♀ ♂

♂

♀

♀

♀

♀

♀ ♂

♂

♀

♂

♀

♀ ♂

♂

♀

♀

♀ ♂

♂

♀

We easily see that the number of ancestors in each generation is the sum of the two numbers before it. For
example, our male bee has three great-grandparents, two grandparents, and one parent, and 3 = 2 + 1. The
number of ancestors a bee has in generation n is defined by the Fibonacci sequence; we can also see this by
applying the rule of sum.

As a second example, consider light entering two adjacent planes of glass:

At any meeting surface (between the two panes of glass, or between the glass and air), the light may either
reflect or continue straight through (refract). For example, here is the light bouncing seven times before it
leaves the glass.

CS 430—Fall, 2010 2 Lecture 2: August 25, 2010

In general, how many different paths can the light take if we are told that it bounces n times before leaving
the glass?

The answer to the question (in case you haven’t guessed) rests with the Fibonacci sequence. We can divide
the set of paths with n reflections into two subsets, depending on where the first reflection happens.

• Suppose the first bounce is on the boundary between the two panes. After the bounce, the light either
leaves the class immediately (so n = 1), or bounces again off the top of the upper pane. After the second
bounce, if any, the path is equivalent to a path that enters from the top and bounces n− 2 times.

• Suppose the first bounce is not at the boundary between the two panes. Then either there are no
bounces at all (so n = 0) or the first bounce is off the bottom pane. After the first bounce, the path
is equivalent to a path that enters from the bottom and bounces n − 1 times. Entering through the
bottom pane is the same as entering through the top pane (but flipped over).

Thus, we obtain the following recurrence relation for Fn, the number of paths with exactly n bounces. There
is exactly one way for the light to travel with no bounces—straight through—and exactly two ways for the
light to travel with only one bounce—off the bottom and off the middle. For any n > 1, there are Fn−1

paths where the light bounces off the bottom of the glass, and Fn−2 paths where the light bounces off the
middle and then off the top.

F0 = 1

F1 = 2

Fn = Fn−1 + Fn−2

Stump a professor

What is the recurrence relation for three panes of glass? This question once stumped an anonymous professor1

in a science discipline, but now you should be able to solve it with a bit of effort. Aren’t you proud of your
knowledge?

1Not me!

CS 430—Fall, 2010 3 Lecture 2: August 25, 2010

1.2 Sequences, sequence operators, and annihilators

We have shown that several different problems can be expressed in terms of Fibonacci sequences, but we
don’t yet know how to explicitly compute the nth Fibonacci number, or even (and more importantly) roughly
how big it is. We can easily write a program to compute the nth Fibonacci number, but that doesn’t help us
much here. What we really want is a closed form solution for the Fibonacci recurrence—an explicit algebraic
formula without conditionals, loops, or recursion.

In order to solve recurrences like the Fibonacci recurrence, we first need to understand operations on infinite
sequences of numbers. Although these sequences are formally defined as functions of mapping the natural
numbers to the real numbers,, we will write them either as A = 〈a0, a1, a2, a3, a4, . . .〉 when we want to
emphasize the entire sequence2, or as A = 〈ai〉 when we want to emphasize a generic element. For example,
the Fibonacci sequence is 〈0, 1, 1, 2, 3, 5, 8, 13, 21, . . .〉.
We can naturally define several sequence operators:

• We can add or subtract any two sequences:

〈ai〉+ 〈bi〉 = 〈a0, a1, a2, . . .〉+ 〈b0, b1, b2, . . .〉 = 〈a0 + b0, a1 + b1, a2 + b2, . . .〉 = 〈ai + bi〉

〈ai〉 − 〈bi〉 = 〈a0, a1, a2, . . .〉 − 〈b0, b1, b2, . . .〉 = 〈a0 − b0, a1 − b1, a2 − b2, . . .〉 = 〈ai − bi〉

• We can multiply any sequence by a constant:

c · 〈ai〉 = c · 〈a0, a1, a2, . . .〉 = 〈c · a0, c · a1, c · a2, . . .〉 = 〈c · ai〉

• We can shift any sequence to the left by removing its initial element:

E〈ai〉 = E〈a0, a1, a2, a3, . . .〉 = 〈a1, a2, a3, a4, . . .〉 = 〈ai+1〉

Example 1. We can understand these operators better by looking at some specific examples, using the
sequence T of powers of two.

T = 〈20, 21, 22, 23, . . .〉 = 〈2i〉
ET = 〈21, 22, 23, 24, . . .〉 = 〈2i+1〉
2T = 〈2 · 20, 2 · 21, 2 · 22, 2 · 23, . . .〉 = 〈21, 22, 23, 24, . . .〉 = 〈2i+1〉

2T −ET = 〈21 − 21, 22 − 22, 23 − 23, 24 − 24, . . .〉 = 〈0, 0, 0, 0, . . .〉 = 〈0〉
2It really doesn’t matter whether we start a sequence with a0 or a1 or a5 or even a−17. Zero is often a convenient starting

point for many recursively defined sequences, so we’ll usually start there.

CS 430—Fall, 2010 4 Lecture 2: August 25, 2010

1.2.1 Properties of operators

It turns out that the distributive property holds for these operators, so we can rewrite ET −2T as (E−2)T .
Since (E − 2)T = 〈0, 0, 0, 0, . . .〉, we say that the operator (E − 2) annihilates T , and we call (E − 2) an
annihilator of T . Obviously, we can trivially annihilate any sequence by multiplying it by zero, so as a
technical matter, we do not consider multiplication by 0 to be an annihilator.

What happens when we apply the operator (E − 3) to our sequence T ?

(E− 3)T = ET − 3T = 〈2i+1〉 − 3〈2i〉 = 〈2i+1 − 3 · 2i〉 = 〈−2i〉 = −T

The operator (E−3) did very little to our sequence T ; it just flipped the sign of each number in the sequence.
In fact, we will soon see that only (E− 2) will annihilate T , and all other simple operators will affect T in
very minor ways. Thus, if we know how to annihilate the sequence, we know what the sequence must look
like.

In general, (E− c) annihilates any geometric sequence A = 〈a0, a0c, a0c
2, a0c

3, . . .〉 = 〈a0c
i〉:

(E− c)〈a0c
i〉 = E〈a0c

i〉 − c〈a0ci〉 = 〈a0c
i+1〉 − 〈c · a0ci〉 = 〈a0c

i+1 − a0c
i+1〉 = 〈0〉

To see that this is the only operator of this form that annihilates A, let’s see the effect of operator (E− d)
for some d 6= c:

(E− d)〈a0c
i〉 = E〈a0c

i〉 − d〈a0ci〉 = 〈a0c
i+1 − da0ci〉 = 〈(c− d)a0c

i〉 = (c− d)〈a0c
i〉

So we have a more rigorous confirmation that an annihilator annihilates exactly one type of sequence, but
multiplies other similar sequences by a constant.

We can use this fact about annihilators of geometric sequences to solve certain recurrences. For example,
consider the sequence R = 〈r0, r1, r2, . . .〉 defined recursively as follows:

r0 = 3

ri+1 = 5ri

We can easily prove that the operator (E− 5) annihilates R:

(E− 5)〈ri〉 = E〈ri〉 − 5〈ri〉 = 〈ri+1〉 − 〈5ri〉 = 〈ri+1 − 5ri〉 = 〈0〉

Since (E− 5) is an annihilator for R, we must have the closed form solution ri = r05i = 3 · 5i. We can easily
verify this by induction, as follows:

r0 = 3 · 50 = 3 [definition]

ri = 5ri−1 [definition]

= 5 · (3 · 5i−1) [induction hypothesis]

= 5i · 3 [algebra]

1.2.2 Multiple operators

An operator is a function that transforms one sequence into another. Like any other function, we can apply
operators one after another to the same sequence. For example, we can multiply a sequence 〈ai〉 by a constant
d and then by a constant c, resulting in the sequence c(d〈ai〉) = 〈c · d · ai〉 = (cd)〈ai〉. Alternatively, we may
multiply the sequence by a constant c and then shift it to the left to get E(c〈ai〉) = E〈c · ai〉 = 〈c · ai+1〉.

CS 430—Fall, 2010 5 Lecture 2: August 25, 2010

This is exactly the same as applying the operators in the reverse order: c(E〈ai〉) = c〈ai+1〉 = 〈c · ai+1〉. We
can also shift the sequence twice to the left: E(E〈ai〉) = E〈ai+1〉 = 〈ai+2〉. We will write this in shorthand
as E2〈ai〉. More generally, the operator Ek shifts a sequence k steps to the left: Ek〈ai〉 = 〈ai+k〉.
We now have the tools to solve a whole host of recurrence problems. For example, what annihilates C =
〈2i + 3i〉? Well, we know that (E − 2) annihilates 〈2i〉 while leaving 〈3i〉 essentially unscathed. Similarly,
(E− 3) annihilates 〈3i〉 while leaving 〈2i〉 essentially unscathed. Thus, if we apply both operators one after
the other, we see that (E− 2)(E− 3) annihilates our sequence C.

In general, for any integers a 6= b, the operator (E−a)(E−b) annihilates any sequence of the form 〈c1a
i+c2b

i〉
but nothing else. We will often ‘multiply out’ the operators into the shorthand notation E2− (a+ b)E + ab.
It is left as an exhilarating exercise to the student to verify that this shorthand actually makes sense—the
operators (E− a)(E− b) and E2 − (a+ b)E + ab have the same effect on every sequence.

We now know finally enough to solve the recurrence for Fibonacci numbers. Specifically, notice that the
recurrence Fi = Fi−1 + Fi−2 is annihilated by E2 −E− 1:

(E2 −E− 1)〈Fi〉 = E2〈Fi〉 −E〈Fi〉 − 〈Fi〉
= 〈Fi+2〉 − 〈Fi+1〉 − 〈Fi〉
= 〈Fi−2 − Fi−1 − Fi〉
= 〈0〉

Factoring E2 −E− 1 using the quadratic formula, we obtain

E2 −E− 1 = (E− φ)(E− φ̂)

where φ = (1 +
√

5)/2 ≈ 1.618034 is the golden ratio and φ̂ = (1 −
√

5)/2 = 1 − φ = −1/φ. Thus, the

operator (E − φ)(E − φ̂) annihilates the Fibonacci sequence, so Fi must have the form

Fi = cφi + ĉφ̂i

for some constants c and ĉ. We call this the generic solution to the recurrence, since it doesn’t depend at
all on the base cases. To compute the constants c and ĉ, we use the base cases F0 = 0 and F1 = 1 to obtain
a pair of linear equations:

F0 = 0 = c+ ĉ

F1 = 1 = cφ+ ĉφ̂

Solving this system of equations gives us c = 1/(2φ− 1) = 1/
√

5 and ĉ = −1/
√

5.

We now have a closed-form expression for the ith Fibonacci number:

Fi =
φi − φ̂i√

5
=

1√
5

(
1 +
√

5

2

)i
− 1√

5

(
1−
√

5

2

)i

With all the square roots in this formula, it’s quite amazing that Fibonacci numbers are integers. However,
if we do all the math correctly, all the square roots cancel out when i is an integer. (In fact, this is pretty
easy to prove using the binomial theorem.)

1.2.3 Degenerate cases

We can’t quite solve every recurrence yet. In our above formulation of (E − a)(E − b), we assumed that
a 6= b. What about the operator (E − a)(E − a) = (E − a)2? It turns out that this operator annihilates

CS 430—Fall, 2010 6 Lecture 2: August 25, 2010

sequences such as 〈iai〉:

(E− a)〈iai〉 = 〈(i+ 1)ai+1 − (a)iai〉
= 〈(i+ 1)ai+1 − iai+1〉
= 〈ai+1〉

(E− a)2〈iai〉 = (E− a)〈ai+1〉 = 〈0〉

More generally, the operator (E− a)k annihilates any sequence 〈p(i) · ai〉, where p(i) is any polynomial in i
of degree k − 1. As an example, (E− 1)3 annihilates the sequence 〈i2 · 1i〉 = 〈i2〉 = 〈1, 4, 9, 16, 25, . . .〉, since
p(i) = i2 is a polynomial of degree n− 1 = 2.

As a review, try to explain the following statements:

• (E− 1) annihilates any constant sequence 〈α〉.

• (E− 1)2 annihilates any arithmetic sequence 〈α+ βi〉.

• (E− 1)3 annihilates any quadratic sequence 〈α+ βi+ γi2〉.

• (E− 3)(E− 2)(E− 1) annihilates any sequence 〈α+ β2i + γ3i〉.

• (E− 3)2(E− 2)(E− 1) annihilates any sequence 〈α+ β2i + γ3i + δi3i〉.

1.2.4 Summary

In summary, we have learned several operators that act on sequences, as well as a few ways of combining
operators.

Operator Definition
Addition 〈ai〉+ 〈bi〉 = 〈ai + bi〉

Subtraction 〈ai〉 − 〈bi〉 = 〈ai − bi〉
Scalar multiplication c〈ai〉 = 〈cai〉

Shift E〈ai〉 = 〈ai+1〉
Composition of operators (X + Y)〈ai〉 = X〈ai〉+ Y〈ai〉

(X−Y)〈ai〉 = X〈ai〉 −Y〈ai〉
XY〈ai〉 = X(Y〈ai〉) = Y(X〈ai〉)

k-fold shift Ek〈ai〉 = 〈ai+k〉

Notice that we have not defined a multiplication operator for two sequences. This is usually accomplished
by convolution:

〈ai〉 ∗ 〈bi〉 = 〈
i∑

j=0

ajbi−j〉.

Fortunately, convolution is unnecessary for solving the recurrences we will see in this course.

CS 430—Fall, 2010 7 Lecture 2: August 25, 2010

We have also learned some things about annihilators, which can be summarized as follows:

Sequence Annihilator
〈α〉 E− 1
〈αai〉 E− a

〈αai + βbi〉 (E− a)(E− b)
〈α0a

i
0 + α1a

i
1 + · · ·+ αna

i
n〉 (E− a0)(E− a1) · · · (E− an)

〈αi+ β〉 (E− 1)2

〈(αi+ β)ai〉 (E− a)2

〈(αi+ β)ai + γbi〉 (E− a)2(E− b)
〈(α0 + α1i+ · · ·αn−1i

n−1)ai〉 (E− a)n

If X annihilates 〈ai〉, then X also annihilates c〈ai〉 for any constant c.

If X annihilates 〈ai〉 and Y annihilates 〈bi〉, then XY annihilates 〈ai〉 ± 〈bi〉.

1.3 Solving Linear Recurrences

1.3.1 Homogeneous Recurrences

The general expressions in the annihilator box above are really the most important things to remember about
annihilators because they help you to solve any recurrence for which you can write down an annihilator. The
general method is:

1. Write down the annihilator for the recurrence
2. Factor the annihilator
3. Determine the sequence annihilated by each factor
4. Add these sequences together to form the generic solution
5. Solve for constants of the solution by using initial conditions

Example 2. Let’s show the steps required to solve the following recurrence:

r0 = 1

r1 = 5

r2 = 17

ri = 7ri−1 − 16ri−2 + 12ri−3

1. Write down the annihilator. Since ri+3−7ri+2+16ri+1−12ri = 0, the annihilator is E3−7E2+16E−12.

2. Factor the annihilator. E3 − 7E2 + 16E− 12 = (E− 2)2(E− 3).

3. Determine sequences annihilated by each factor. (E− 2)2 annihilates 〈(αi + β)2i〉 for any constants α
and β, and (E− 3) annihilates 〈γ3i〉 for any constant γ.

4. Combine the sequences. (E− 2)2(E− 3) annihilates 〈(αi+ β)2i + γ3i〉 for any constants α, β, γ.

5. Solve for the constants. The base cases give us three equations in the three unknowns α, β, γ:

r0 = 1 = (α · 0 + β)20 + γ · 30 = β + γ

r1 = 5 = (α · 1 + β)21 + γ · 31 = 2α+ 2β + 3γ

r2 = 17 = (α · 2 + β)22 + γ · 32 = 8α+ 4β + 9γ

CS 430—Fall, 2010 8 Lecture 2: August 25, 2010

We can solve these equations to get α = 1, β = 0, γ = 1. Thus, our final solution is ri = i2i + 3i ,
which we can verify by induction.

1.3.2 Non-homogeneous Recurrences

A height balanced tree is a binary tree, where the heights of the two subtrees of the root differ by at most one,
and both subtrees are also height balanced. To ground the recursive definition, the empty set is considered
a height balanced tree of height −1, and a single node is a height balanced tree of height 0.

Let Tn be the smallest height-balanced tree of height n—how many nodes does Tn have? Well, one of the
subtrees of Tn has height n− 1 (since Tn has height n) and the other has height either n− 1 or n− 2 (since
Tn is height-balanced and as small as possible). Since both subtrees are themselves height-balanced, the two
subtrees must be Tn−1 and Tn−2.

We have just derived the following recurrence for tn, the number of nodes in the tree Tn:

t−1 = 0 [the empty set]

t0 = 1 [a single node]

tn = tn−1 + tn−2 + 1

The final ‘+1’ is for the root of Tn.

We refer to the terms in the equation involving ti’s as the homogeneous terms and the rest as the non-
homogeneous terms. (If there were no non-homogeneous terms, we would say that the recurrence itself is
homogeneous.) We know that E2 − E − 1 annihilates the homogeneous part tn = tn−1 + tn−2. Let us try
applying this annihilator to the entire equation:

(E2 −E− 1)〈ti〉 = E2〈ti〉 −E〈ai〉 − 1〈ai〉
= 〈ti+2〉 − 〈ti+1〉 − 〈ti〉
= 〈ti+2 − ti+1 − ti〉
= 〈1〉

The leftover sequence 〈1, 1, 1, . . .〉 is called the residue. To obtain the annihilator for the entire recurrence, we
compose the annihilator for its homogeneous part with the annihilator of its residue. Since E−1 annihilates
〈1〉, it follows that (E2 −E− 1)(E− 1) annihilates 〈tn〉. We can factor the annihilator into

(E− φ)(E− φ̂)(E− 1),

so our annihilator rules tell us that
tn = αφn + βφ̂n + γ

for some constants α, β, γ. We call this the generic solution to the recurrence. Different recurrences can
have the same generic solution.

To solve for the unknown constants, we need three equations in three unknowns. Our base cases give us two
equations, and we can get a third by examining the next nontrivial case t1 = 2:

t−1 = 0 = αφ−1 + βφ̂−1 + γ = α/φ+ β/φ̂+ γ

t0 = 1 = αφ0 + βφ̂0 + γ = α+ β + γ

t1 = 2 = αφ1 + βφ̂1 + γ = αφ+ βφ̂ + γ

Solving these equations, we find that α =
√

5+2√
5

, β =
√

5−2√
5

, and γ = −1. Thus,

CS 430—Fall, 2010 9 Lecture 2: August 25, 2010

tn =

√
5 + 2√

5

(
1 +
√

5

2

)n
+

√
5− 2√

5

(
1−
√

5

2

)n
− 1

Here is the general method for non-homogeneous recurrences:

1. Write down the homogeneous annihilator, directly from the recurrence
11

2 . ‘Multiply’ by the annihilator for the residue
2. Factor the annihilator
3. Determine what sequence each factor annihilates
4. Add these sequences together to form the generic solution
5. Solve for constants of the solution by using initial conditions

1.3.3 Some more examples

In each example below, we use the base cases a0 = 0 and a1 = 1.

• an = an−1 + an−2 + 2

– The homogeneous annihilator is E2 −E− 1.

– The residue is the constant sequence 〈2, 2, 2, . . .〉, which is annihilated by E− 1.

– Thus, the annihilator is (E2 −E− 1)(E− 1).

– The annihilator factors into (E− φ)(E− φ̂)(E− 1).

– Thus, the generic solution is an = αφn + βφ̂n + γ.

– The constants α, β, γ satisfy the equations

a0 = 0 = α+ β + γ

a1 = 1 = αφ+ βφ̂ + γ

a2 = 3 = αφ2 + βφ̂2 + γ

– Solving the equations gives us α =
√

5+2√
5

, β =
√

5−2√
5

, and γ = −2

– So the final solution is an =

√
5 + 2√

5

(
1 +
√

5

2

)n
+

√
5− 2√

5

(
1−
√

5

2

)n
− 2

(In the remaining examples, I won’t explicitly enumerate the steps like this.)

• an = an−1 + an−2 + 3

The homogeneous annihilator (E2 − E − 1) leaves a constant residue 〈3, 3, 3, . . .〉, so the annihilator is

(E2 −E− 1)(E− 1), and the generic solution is an = αφn + βφ̂n + γ. Solving the equations

a0 = 0 = α+ β + γ

a1 = 1 = αφ+ βφ̂+ γ

a2 = 4 = αφ2 + βφ̂2 + γ

gives us the final solution an =

√
5 + 3√

5

(
1 +
√

5

2

)n
+

√
5− 3√

5

(
1−
√

5

2

)n
− 3

CS 430—Fall, 2010 10 Lecture 2: August 25, 2010

• an = an−1 + an−2 + 2n

The homogeneous annihilator (E2 − E − 1) leaves an exponential residue 〈4, 8, 16, 32, . . .〉 = 〈2i+2〉,
which is annihilated by E− 2. Thus, the annihilator is (E2 −E− 1)(E− 2), and the generic solution is

an = αφn + βφ̂n + γ2n. The constants α, β, γ satisfy the following equations:

a0 = 0 = α+ β + γ

a1 = 1 = αφ+ βφ̂+ 2γ

a2 = 5 = αφ2 + βφ̂2 + 4γ

• an = an−1 + an−2 + n

The homogeneous annihilator (E2 − E − 1) leaves a linear residue 〈2, 3, 4, 5 . . .〉 = 〈i + 2〉, which is
annihilated by (E − 1)2. Thus, the annihilator is (E2 − E − 1)(E − 1)2, and the generic solution is

an = αφn + βφ̂n + γ + δn. The constants α, β, γ, δ satisfy the following equations:

a0 = 0 = α+ β + γ

a1 = 1 = αφ+ βφ̂ + γ + δ

a2 = 3 = αφ2 + βφ̂2 + γ + 2δ

a3 = 7 = αφ3 + βφ̂3 + γ + 3δ

• an = an−1 + an−2 + n2

The homogeneous annihilator (E2−E−1) leaves a quadratic residue 〈4, 9, 16, 25 . . .〉 = 〈(i+ 2)2〉, which
is annihilated by (E − 1)3. Thus, the annihilator is (E2 − E − 1)(E − 1)3, and the generic solution is

an = αφn + βφ̂n + γ + δn+ εn2. The constants α, β, γ, δ, ε satisfy the following equations:

a0 = 0 = α+ β + γ

a1 = 1 = αφ+ βφ̂+ γ + δ + ε

a2 = 5 = αφ2 + βφ̂2 + γ + 2δ + 4ε

a3 = 15 = αφ3 + βφ̂3 + γ + 3δ + 9ε

a4 = 36 = αφ4 + βφ̂4 + γ + 4δ + 16ε

• an = an−1 + an−2 + n2 − 2n

The homogeneous annihilator (E2 − E − 1) leaves the residue 〈(i + 2)2 − 2i+2〉. The quadratic part
of the residue is annihilated by (E − 1)3, and the exponential part is annihilated by (E − 2). Thus,
the annihilator for the whole recurrence is (E2 − E− 1)(E− 1)3(E− 2), and so the generic solution is

an = αφn + βφ̂n + γ + δn+ εn2 + η2i. The constants α, β, γ, δ, ε, η satisfy a system of six equations in
six unknowns determined by a0, a1, . . . , a5.

• an = an−1 + an−2 + φn

The annihilator is (E2−E−1)(E−φ) = (E−φ)2(E−φ̂), so the generic solution is an = αφn+βnφn+γφ̂n.
(Other recurrence solving methods will have a “interference” problem with this equation, while the
operator method does not.)

Our method does not work on recurrences like an = an−1 + 1
n or an = an−1 + lg n, because the functions 1

n
and lg n do not have annihilators. Our tool, as it stands, is limited to linear recurrences.

CS 430—Fall, 2010 11 Lecture 2: August 25, 2010

1.4 Divide and Conquer Recurrences

Divide and conquer algorithms often give us running-time recurrences of the form

T (n) = a T (n/b) + f(n) (1)

where a and b are constants and f(n) is some other function. The so-called ‘Master Theorem’ gives us a
general method for solving such recurrences when f(n) is a simple polynomial.

Unfortunately, the Master Theorem doesn’t work for all functions f(n), and many useful recurrences don’t
look like (1) at all. Fortunately, there’s a more general technique to solve most divide-and-conquer recur-
rences, even if they don’t have this form. This technique is used to prove the Master Theorem, so if you
remember this technique, you can forget the Master Theorem entirely (which is what I did). Throw off your
chains!

I’ll illustrate the technique using the generic recurrence (1). We start by drawing a recursion tree. The root
of the recursion tree is a box containing the value f(n), it has a children, each of which is the root of a
recursion tree for T (n/b). Equivalently, a recursion tree is a complete a-ary tree where each node at depth
i contains the value aif(n/bi). The recursion stops when we get to the base case(s) of the recurrence. Since
we’re looking for asymptotic bounds, it turns out not to matter much what we use for the base case; for
purposes of illustration, I’ll assume that T (1) = f(1).

a

f(n/b)

f(n/b)2 f(n/b)2 f(n/b)2f(n/b)2

f(n)

a
f(n/b) f(n/b) f(n/b)

f(n/b)3

f()1

f(n)

a f(n/b)

a f(n/b)2 2

a f(n/b)33

a f(1)L

A recursion tree for the recurrence T (n) = a T (n/b) + f(n)

Now T (n) is just the sum of all values stored in the tree. Assuming that each level of the tree is full, we have

T (n) = f(n) + a f(n/b) + a2 f(n/b2) + · · ·+ ai f(n/bi) + · · ·+ aL f(n/bL)

where L is the depth of the recursion tree. We easily see that L = logb n, since n/bL = 1. Since f(1) = Θ(1),
the last non-zero term in the summation is Θ(aL) = Θ(alogb n) = Θ(nlogb a).

Now we can easily state and prove the Master Theorem, in a slightly different form than it’s usually stated.

The Master Theorem. The recurrence T (n) = aT (n/b) + f(n) can be solved as follows.
• If a f(n/b) = κ f(n) for some constant κ < 1, then T (n) = Θ(f(n)).
• If a f(n/b) = K f(n) for some constant K > 1, then T (n) = Θ(nlogb a).
• If a f(n/b) = f(n), then T (n) = Θ(f(n) logb n).
• If none of these three cases apply, you’re on your own.

CS 430—Fall, 2010 12 Lecture 2: August 25, 2010

Proof. If f(n) is a constant factor larger than a f(b/n), then by induction, the sum is a descending geometric
series. The sum of any geometric series is a constant times its largest term. In this case, the largest term is
the first term f(n).

If f(n) is a constant factor smaller than a f(b/n), then by induction, the sum is an ascending geometric
series. The sum of any geometric series is a constant times its largest term. In this case, this is the last
term, which by our earlier argument is Θ(nlogb a).

Finally, if a f(b/n) = f(n), then by induction, each of the L+1 terms in the summation is equal to f(n).

Here are a few canonical examples of the Master Theorem in action:

• Randomized selection: T (n) = T (3n/4) + n

Here a f(n/b) = 3n/4 is smaller than f(n) = n by a factor of 4/3, so T (n) = Θ(n)

• Karatsuba’s multiplication algorithm: T (n) = 3T (n/2) + n

Here a f(n/b) = 3n/2 is bigger than f(n) = n by a factor of 3/2, so T (n) = Θ(nlog2 3)

• Mergesort: T (n) = 2T (n/2) + n

Here a f(n/b) = f(n), so T (n) = Θ(n logn)

• T (n) = 4T (n/2) + n lgn

In this case, we have a f(n/b) = 2n lgn − 2n, which is not quite twice f(n) = n lgn. However, for
sufficiently large n (which is all we care about with asymptotic bounds) we have 2f(n) > af(n/b) >
1.9f(n). Since the level sums are bounded both above and below by ascending geometric series, the
solution is T (n) = Θ(nlog2 4) = Θ(n2). (This trick will not work in the second or third cases of the
Master Theorem!)

Using the same recursion-tree technique, we can also solve recurrences where the Master Theorem doesn’t
apply.

• T (n) = 2T (n/2) + n/ lgn

We can’t apply the Master Theorem here, because a f(n/b) = n/(lg n− 1) isn’t equal to f(n) = n/ lgn,
but the difference isn’t a constant factor. So we need to compute each of the level sums and compute
their total in some other way. It’s not hard to see that the sum of all the nodes in the ith level is
n/(lgn− i). In particular, this means the depth of the tree is at most lgn− 1.

T (n) =

lgn−1∑

i=0

n

lgn− i =

lgn∑

j=1

n

j
= nHlgn = Θ(n lg lg n)

• Randomized quicksort: T (n) = T (3n/4) + T (n/4) + n

In this case, nodes in the same level of the recursion tree have different values. This makes the tree
lopsided; different leaves are at different levels. However, it’s not to hard to see that the nodes in
any complete level (that is, above any of the leaves) sum to n, so this is like the last case of the
Master Theorem, and that every leaf has depth between log4 n and log4/3 n. To derive an upper bound,
we overestimate T (n) by ignoring the base cases and extending the tree downward to the level of
the deepest leaf. Similarly, to derive a lower bound, we overestimate T (n) by counting only nodes

CS 430—Fall, 2010 13 Lecture 2: August 25, 2010

in the tree up to the level of the shallowest leaf. These observations give us the upper and lower
bounds n log4 n ≤ T (n) ≤ n log4/3 n. Since these bound differ by only a constant factor, we have

T (n) = Θ(n logn) .

• Deterministic selection: T (n) = T (n/5) + T (7n/10) + n

Again, we have a lopsided recursion tree. If we look only at complete levels of the tree, we find that the
level sums form a descending geometric series T (n) = n+ 9n/10 + 81n/100 + · · ·, so this is like the first
case of the master theorem. We can get an upper bound by ignoring the base cases entirely and growing
the tree out to infinity, and we can get a lower bound by only counting nodes in complete levels. Either

way, the geometric series is dominated by its largest term, so T (n) = Θ(n) .

• T (n) =
√
n · T (

√
n) + n

In this case, we have a complete recursion tree, but the degree of the nodes is no longer constant, so we
have to be a bit more careful. It’s not hard to see that the nodes in any level sum to n, so this is like

the third case of the Master Theorem. The depth L satisfies the identity n2−L = 2 (we can’t get all the

way down to 1 by taking square roots), so L = lg lg n and T (n) = Θ(n lg lg n) .

• T (n) = 4
√
n · T (

√
n) + n

We still have at most lg lg n levels, but now the nodes in level i sum to 4in. We have an increasing
geometric series of level sums, like the second Master case, so T (n) is dominated by the sum over the

deepest level: T (n) = Θ(4lg lgnn) = Θ(n log2 n)

1.5 Transforming Recurrences

1.5.1 An analysis of mergesort: domain transformation

Previously we gave the recurrence for mergesort as T (n) = 2T (n/2) + n, and obtained the solution T (n) =
Θ(n logn) using the Master Theorem (or the recursion tree method if you, like me, can’t remember the
Master Theorem). This is fine is n is a power of two, but for other values values of n, this recurrence is
incorrect. When n is odd, then the recurrence calls for us to sort a fractional number of elements! Worse
yet, if n is not a power of two, we will never reach the base case T (1) = 0.

To get a recurrence that’s valid for all integers n, we need to carefully add ceilings and floors:

T (n) = T (dn/2e) + T (bn/2c) + n.

We have almost no hope of getting an exact solution here; the floors and ceilings will eventually kill us.
So instead, let’s just try to get a tight asymptotic upper bound for T (n) using a technique called domain
transformation. A domain transformation rewrites a function T (n) with a difficult recurrence as a nested
function S(f(n)), where f(n) is a simple function and S() has an easier recurrence.

First we overestimate the time bound, once by pretending that the two subproblem sizes are equal, and
again to eliminate the ceiling:

T (n) ≤ 2T
(
dn/2e

)
+ n ≤ 2T (n/2 + 1) + n.

Now we define a new function S(n) = T (n+α), where α is a unknown constant, chosen so that S(n) satisfies
the Master-ready recurrence S(n) ≤ 2S(n/2) + O(n). To figure out the correct value of α, we compare two

CS 430—Fall, 2010 14 Lecture 2: August 25, 2010

versions of the recurrence for the function T (n+ α):

S(n) ≤ 2S(n/2) +O(n) implies T (n+ α) ≤ 2T (n/2 + α) +O(n)

T (n) ≤ 2T (n/2 + 1) + n implies T (n+ α) ≤ 2T ((n+ α)/2 + 1) + n+ α

For these two recurrences to be equal, we need n/2 + α = (n + α)/2 + 1, which implies that α = 2. The
Master Theorem now tells us that S(n) = O(n log n), so

T (n) = S(n− 2) = O((n − 2) log(n− 2)) = O(n log n).

A similar argument gives a matching lower bound T (n) = Ω(n logn). So T (n) = Θ(n logn) after all, just

as though we had ignored the floors and ceilings from the beginning!

Domain transformations are useful for removing floors, ceilings, and lower order terms from the arguments
of any recurrence that otherwise looks like it ought to fit either the Master Theorem or the recursion tree
method. But now that we know this, we don’t need to bother grinding through the actual gory details!

1.5.2 A less trivial example

There is a data structure in computational geometry called ham-sandwich trees, where the cost of doing a
certain search operation obeys the recurrence T (n) = T (n/2) + T (n/4) + 1. This doesn’t fit the Master
theorem, because the two subproblems have different sizes, and using the recursion tree method only gives
us the loose bounds

√
n� T (n)� n.

Domain transformations save the day. If we define the new function t(k) = T (2k), we have a new recurrence

t(k) = t(k − 1) + t(k − 2) + 1

which should immediately remind you of Fibonacci numbers. Sure enough, after a bit of work, the annihilator
method gives us the solution t(k) = Θ(φk), where φ = (1 +

√
5)/2 is the golden ratio. This implies that

T (n) = t(lgn) = Θ(φlg n) = Θ(nlg φ) ≈ Θ(n0.69424).

It’s possible to solve this recurrence without domain transformations and annihilators—in fact, the inventors
of ham-sandwich trees did so—but it’s much more difficult.

1.5.3 Secondary recurrences

Consider the recurrence T (n) = 2T (n
3
− 1) + n with the base case T (1) = 1. We already know how to

use domain transformations to get the tight asymptotic bound T (n) = Θ(n), but how would we we obtain
an exact solution?

First we need to figure out how the parameter n changes as we get deeper and deeper into the recurrence.
For this we use a secondary recurrence. We define a sequence ni so that

T (ni) = 2T (ni−1) + ni,

So ni is the argument of T () when we are i recursion steps away from the base case n0 = 1. The original
recurrence gives us the following secondary recurrence for ni:

ni−1 =
ni
3
− 1 implies ni = 3ni−1 + 3.

CS 430—Fall, 2010 15 Lecture 2: August 25, 2010

The annihilator for this recurrence is (E − 1)(E − 3), so the generic solution is ni = α3i + β. Plugging in
the base cases n0 = 1 and n1 = 6, we get the exact solution

ni =
5

2
· 3i − 3

2
.

Notice that our original function T (n) is only well-defined if n = ni for some integer i ≥ 0.

Now to solve the original recurrence, we do a range transformation. If we set ti = T (ni), we have the
recurrence ti = 2ti−1 + 5

2 · 3i − 3
2 , which by now we can solve using the annihilator method. The annihilator

of the recurrence is (E− 2)(E− 3)(E− 1), so the generic solution is α′3i + β′2i + γ′. Plugging in the base
cases t0 = 1, t1 = 8, t2 = 37, we get the exact solution

ti =
15

2
· 3i − 8 · 2i +

3

2

Finally, we need to substitute to get a solution for the original recurrence in terms of n, by inverting the
solution of the secondary recurrence. If n = ni = 5

2 · 3i − 3
2 , then (after a little algebra) we have

i = log3

(
2

5
n+

3

5

)
.

Substituting this into the expression for ti, we get our exact, closed-form solution.

T (n) =
15

2
· 3i − 8 · 2i +

3

2

=
15

2
· 3(2

5n+ 3
5) − 8 · 2log3(2

5n+ 3
5) +

3

2

=
15

2

(
2

5
n+

3

5

)
− 8 ·

(
2

5
n+

3

5

)log3 2

+
3

2

= 3n− 8 ·
(

2

5
n+

3

5

)log3 2

+ 6

Isn’t that special? Now you know why we stick to asymptotic bounds for most recurrences.

1.6 The Ultimate Method: Guess and Confirm

Ultimately, there is one failsafe method to solve any recurrence:

Guess the answer, and then prove it correct by induction.

The annihilator method, the recursion-tree method, and transformations are good ways to generate guesses
that are guaranteed to be correct, provided you use them correctly. But if you’re faced with a recurrence that
doesn’t seem to fit any of these methods, or if you’ve forgotten how those techniques work, don’t despair!
If you guess a closed-form solution and then try to verify your guess inductively, usually either the proof
succeeds and you’re done, or the proof fails in a way that lets you refine your guess. Where you get your
initial guess is utterly irrelevant3—from a classmate, from a textbook, on the web, from the answer to a
different problem, scrawled on a bathroom wall in Siebel, dictated by the machine elves, whatever. If you
can prove that the answer is correct, then it’s correct!

3. . . except of course during exams, where you aren’t supposed to use any outside sources

CS 430—Fall, 2010 16 Lecture 2: August 25, 2010

1.6.1 Tower of Hanoi

The classical Tower of Hanoi problem gives us the recurrence T (n) = 2T (n − 1) + 1 with base case
T (0) = 0. Just looking at the recurrence we can guess that T (n) is something like 2n. If we write out the
first few values of T (n) all the values are one less than a power of two.

T (0) = 0, T (1) = 1, T (2) = 3, T (3) = 7, T (4) = 15, T (5) = 31, T (6) = 63, . . . ,

It looks like T (n) = 2n − 1 might be the right answer. Let’s check.

T (0) = 0 = 20 − 1

T (n) = 2T (n− 1) + 1

= 2(2n−1 − 1) + 1 [induction hypothesis]

= 2n − 1 [algebra]

We were right!

1.6.2 Fibonacci numbers

Let’s try a less trivial example: the Fibonacci numbers Fn = Fn−1 + Fn−2 with base cases F0 = 0
and F1 = 1. There is no obvious pattern (besides the obvious one) in the first several values, but we can
reasonably guess that Fn is exponential in n. Let’s try to prove that Fn ≤ a · cn for some constants a > 0
and c > 1 and see how far we get.

Fn = Fn−1 + Fn−2 ≤ a · cn−1 + a · cn−2 ≤ a · cn ???

The last inequality is satisfied if cn ≥ cn−1 + cn−2, or more simply, if c2 − c− 1 ≥ 0. The smallest value of
c that works is φ = (1 +

√
5)/2 ≈ 1.618034; the other root of the quadratic equation is negative, so we can

ignore it.

So we have most of an inductive proof that Fn ≤ a · φn for any constant a. All that we’re missing are the
base cases, which (we can easily guess) must determine the value of the coefficient a. We quickly compute

F0

φ0
= 0 and

F1

φ1
=

1

φ
≈ 0.618034 > 0,

so the base cases of our induction proof are correct as long as a ≥ 1/φ. It follows that Fn ≤ φn−1 for all
n ≥ 0.

What about a matching lower bound? Well, the same inductive proof implies that Fn ≥ b · φn for some
constant b, but the only value of b that works for all n is the trivial b = 0. We could try to find some
lower-order term that makes the base case non-trivial, but an easier approach is to recall that Ω() bounds
only have to work for sufficiently large n. So let’s ignore the trivial base case F0 = 0 and assume that F2 = 1
is a base case instead. Some more calculation gives us

F2

φ2
=

1

φ2
≈ 0.381966 <

1

φ
.

Thus, the new base cases of our induction proof are correct as long as b ≤ 1/φ2, which implies that Fn ≥
φn−2 for all n ≥ 1.

Putting the upper and lower bounds together, we correctly conclude that Fn = Θ(φn) . It is possible to

get a more exact solution by speculatively refining and conforming our current bounds, but it’s not easy;
you’re better off just using annihilators.

CS 430—Fall, 2010 17 Lecture 2: August 25, 2010

1.6.3 A divide-and-conquer example

Consider the divide-and-conquer recurrence T (n) =
√
n·T (

√
n)+n. It doesn’t fit into the form required by

the Master Theorem, but it still sort of resembles the Mergesort recurrence—the total size of the subproblems
at the first level of recursion is n—so let’s guess that T (n) = O(n log n), and then try to prove that our guess
is correct. Specifically, let’s conjecture that T (n) ≤ an lgn for all sufficiently large n and some constant a
to be determined later:

T (n) =
√
n · T (

√
n) + n

≤ √
n · a√n lg

√
n+ n [induction hypothesis]

= (a/2)n lgn+ n [algebra]

≤ an lgn

The last inequality assumes only that 1 ≤ (a/2) logn,or equivalently, that n ≥ 22/a. In other words, the
induction proof is correct if n is sufficiently large. So we were right!

But before you break out the champagne, what about the multiplicative constant a? The proof worked for
any constant a, no matter how small. This strongly suggests that our upper bound T (n) = O(n logn) is not
tight. Indeed, if we try to prove a matching lower bound T (n) ≥ b n logn for sufficiently large n, we run into
trouble.

T (n) =
√
n · T (

√
n) + n

≥ √
n · b√n log

√
n+ n [induction hypothesis]

= (b/2)n logn+ n

6≥ bn logn

The last inequality would be correct only if 1 > (b/2) logn, but that inequality is false for large values of n,
no matter which constant b we choose. Okay, so Θ(n logn) is too big. How about Θ(n)? The lower bound
is easy to prove directly:

T (n) =
√
n · T (

√
n) + n ≥ n

But an inductive proof of the lower bound fails.

T (n) =
√
n · T (

√
n) + n

≤ √
n · a√n+ n [induction hypothesis]

= (a+ 1)n [algebra]

6≤ an

Hmmm. So what’s bigger than n and smaller than n lgn? How about n
√

lgn?

T (n) =
√
n · T (

√
n) + n

≤ √
n · a√n

√
lg
√
n+ n [induction hypothesis]

= (a/
√

2)n
√

lgn+ n [algebra]

≤ an
√

lg n for large enough n

Okay, the upper bound checks out; how about the lower bound?

T (n) =
√
n · T (

√
n) + n ≥ √

n · b√n
√

lg
√
n+ n [induction hypothesis]

= (b/
√

2)n
√

lg n+ n [algebra]

6≥ b n
√

lg n

CS 430—Fall, 2010 18 Lecture 2: August 25, 2010

No, the last step doesn’t work. So Θ(n
√

lg n) doesn’t work. Hmmm. . . what else is between n and n lgn?
How about n lg lgn?

T (n) =
√
n · T (

√
n) + n ≤ √

n · a√n lg lg
√
n+ n [induction hypothesis]

= an lg lgn− an+ n [algebra]

≤ an lg lgn if a ≥ 1

Hey look at that! For once, our upper bound proof requires a constraint on the hidden constant a. This is
an good indication that we’ve found the right answer. Let’s try the lower bound:

T (n) =
√
n · T (

√
n) + n ≥ √n · b√n lg lg

√
n+ n [induction hypothesis]

= b n lg lgn− b n+ n [algebra]

≥ b n lg lgn if b ≤ 1

Hey, it worked! We have most of an inductive proof that T (n) ≤ an lg lg n for any a ≥ 1 and most of an
inductive proof that T (n) ≥ bn lg lgn for any b ≤ 1. Technically, we’re still missing the base cases in both

proofs, but we can be fairly confident at this point that T (n) = Θ(n log logn) .

1.7 References

Methods for solving recurrences by annihilators, domain transformations, and secondary recurrences are
nicely described in George Lueker’s paper “Some techniques for solving recurrences” (ACM Computing
Surveys 12(4):419–436, 1980). The Master Theorem is presented in Chapter 4 of CLRS. Sections 1–3 and 5
of this handout were based on notes taken by Ari Trachtenberg of lectures by Ed Reingold; the notes were
then revised by Jeff Erickson. Sections 4 and 6 are by Erickson.

	Solving Recurrences
	Fun with Fibonacci numbers
	Sequences, sequence operators, and annihilators
	Properties of operators
	Multiple operators
	Degenerate cases
	Summary

	Solving Linear Recurrences
	Homogeneous Recurrences
	Non-homogeneous Recurrences
	Some more examples

	Divide and Conquer Recurrences
	Transforming Recurrences
	An analysis of mergesort: domain transformation
	A less trivial example
	Secondary recurrences

	The Ultimate Method: Guess and Confirm
	Tower of Hanoi
	Fibonacci numbers
	A divide-and-conquer example

	References

