
Illinois Institute of Technology
Department of Computer Science

Second Examination
CS 430 Introduction to Algorithms

Spring, 2009

11:25am–12:40pm, Wednesday, April 8, 2009
104 Stuart Building

Print your name and student ID, neatly in the space provided below; print your name at the upper
right corner of every page. Please print legibly.

Name:

Student ID:

This is an open book exam. You are permitted to use the textbook, any class handouts, anything
posted on the web page, any of your own assignments, and anything in your own handwriting.
Foreign students may use a dictionary. Nothing else is permitted : No calculators, laptops, cell
phones, etc.!

Do all four problems in this booklet. All problems are equally weighted, so do not spend too much
time on any one question.

Show your work! You will not get partial credit if the grader cannot figure out how you arrived at
your answer.

Question Points Score Grader

1 25

2 25

3 25

4 25

Total 100



CS 430 Second Exam—Spring, 2009 2 Name:

1. Dynamic Programming

You are given an array of n integers. Consider the problem of finding the maximum sum in
any contiguous subvector of the input. For example, in the array:

{−6, 12,−7, 0, 14,−7,−3}

the maximum sum of 19 is achieved by summing the contiguous elements {12,−7, 0, 14}.
Give and explain a Θ(n)-time dynamic programming algorithm for solving this problem. For
some partial credit, you may instead give a Θ(n2)-time algorithm. Explain your algorithm in
words rather than just giving pseudocode.



CS 430 Second Exam—Spring, 2009 3 Name:

2. Double-deletion Heaps

A student suggested the following “extra lazy” variation of the Fibonacci heap called a Double-
deletion heap: rather than moving a node up to the root list after it loses its second child, a
node is only moved to the root list after it loses its third child. The student discovers that
most of the analysis follows as in CLRS, but he cannot bound the maximum degree and comes
to you for help.

(a) Give a recurrence for the minimum number of nodes in a subtree whose root has degree
k.

(b) What is a necessary and sufficient condition which would cause Double-deletion heaps
to have the same asymptotic amortized running times as standard Fibonacci heaps?



CS 430 Second Exam—Spring, 2009 4 Name:

3. Greedy Heuristic

You are walking along a path above which n balloons C1, C2, . . . , Cn are floating. You are
required to pop them all using a pistol and only shooting directly up. If a bullet hits a balloon
anywhere, it pops. You are told the position of balloon Ci as its distance xi along the path,
its altitude yi, and its radius ri. Assuming the balloons do not move while you are shooting
and that your pistol has enough range to pop the highest balloon, give an algorithm to pop
all the balloons using the least number of pistol shots. Prove that this algorithm uses the
smallest possible number of shots and analyze its time complexity in terms of n.

�������������������������

�������������������������

������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������

������
���
������
���

�������������������������

�������������������������

	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	


�
�
�
�


�
�
�
�


�
�
�
�


�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�


























y

x

C

C

C

C

C

1

3

2

5

4

This arrangement of 5 balloons requires 3 shots.



CS 430 Second Exam—Spring, 2009 5 Name:

3. Greedy Heuristic, continued.



CS 430 Second Exam—Spring, 2009 6 Name:

4. Combined-Min

Suppose you have a data structure that supports the following operations:

• make(x): make a new structure D containing only the element x.

• combine-equal(D1, D2): make a new structure D consisting of all the elements of D1

and D2; D1 and D2 must have an equal number of elements.

• delete-min(D): delete the minimum element from D and return its value.

You may assume that make requires O(1) time.

(a) Show how to sort any n items with this data structure.

(b) Prove that it is impossible for combine-equal to run in time o(n) if delete-min runs
in time o(log n). Hint: Recall that comparison-based sorting requires time Ω(n log n).


