
Illinois Institute of Technology
Department of Computer Science

Second Examination—Early Administration
CS 430 Introduction to Algorithms

Fall, 2010

6pm–7:15pm, Tuesday, November 2, 2010
Rice Campus

Print your name and student ID, neatly in the space provided below; print your name at the upper
right corner of every page. Please print legibly.

Name:

Student ID:
This is an open book exam. You are permitted to use the textbook, any class handouts, anything
posted on the web page, any of your own assignments, and anything in your own handwriting.
Foreign students may use a dictionary. Nothing else is permitted : No calculators, laptops, cell
phones, Ipods, Ipads, etc.!

Do all five problems in this booklet. All problems are equally weighted, so do not spend too much
time on any one question.

Show your work! You will not get partial credit if the grader cannot figure out how you arrived at
your answer.

In order for your examination to be graded, you must sign your name in the box, agreeing to the
stated condition.

I agree, on penalty of failure of CS 430, not to disclose to anyone any details of
the contents of this examination until 12:40pm, Wednesday, November 3, 2010.

Question Points Score Grader

1 20

2 20

3 20

4 20

5 20

Total 100



CS 430 Second Exam (Early)—Fall, 2010 2 Name:

1. Augmenting Red-Black Trees

(a) Define width(x), the width of a node x in a red-black tree T , as follows: The width of a
leaf is 0. The width of a non-leaf node x is the width of its wider child, if the children of
x have unequal widths; it is one plus the width of the child if the children of x have equal
widths. Can a red-black tree be augmented with the width(x) values without affecting
the O(log n) performance of the insertion and deletion algorithms? Prove your answer.

(b) Define depth(x), the depth of a node x in a red-black tree T , as the number of number
of nodes in the tree that are ancestors of x. Can a red-black tree be augmented with the
depth(x) values without affecting the O(log n) performance of the insertion and deletion
algorithms? Prove your answer.



CS 430 Second Exam (Early)—Fall, 2010 3 Name:

2. Dynamic Programming

A roofer has a ladder with n rungs, labeled 1 through n. To climb onto the roof, the roofer
must reach the top (nth) rung of the ladder, starting from the ground (0th rung). The roofer’s
legs are long enough to go up either 1 or 2 rungs at a time. Stepping on the ith rung has a
cost of ci dollars; assume c0 = 0.

(a) Let C(k) be the minimum cost of going from the ground to step k. Give a recurrence
relation for C(k), including initial conditions, based on the Principle of Optimality.

(b) Analyze a recursive, unmemoized algorithm based on your recurrence in part (a); you
need not write the algorithm.

(c) Give a memoized, iterative algorithm based on (a), and analyze it.

(d) What additional memoization is needed to determine the sequence of rungs used by the
roofer in the cheapest way to the top?



CS 430 Second Exam (Early)—Fall, 2010 4 Name:

3. Greedy Heuristics

Professor Reingold wants to drive from Chicago to Seattle along I-90, stopping as infrequently
as possible to buy gasoline. His GPS continuously shows him the distance to the next gas
station and his dashboard continuously displays the number of miles he can drive on his
remaining fuel, so that as he approaches a gas station he can tell if he has enough gas to
make it to the following station.

(a) Give a greedy algorithm for him to use in choosing where to stop for gas.

(b) Prove that your greedy algorithm has him stopping the fewest number of times possible.



CS 430 Second Exam (Early)—Fall, 2010 5 Name:

4. Amortized Analysis

We saw in class (October 13) and in CLRS (Chapter 17) that a k-bit binary counter can be
incremented in O(1) amortized time (bit changes). Now we want to add a Reset operation
that sets the counter to 1. We implement this operation by keeping track of m, the index
of the most significant (left-most) 1-bit in the counter. For simplicity we assume that the
counter has an unbounded number of bits. The Increment operation becomes

1: Increment(A,m)
2: i = 0
3: while A[i] == 1 do
4: A[i] = 0
5: i = i+ 1
6: end while
7: A[i] = 1
8: if i > m then
9: m = i

10: end if

and the Reset operation is

1: Reset(A,m)
2: for i = 0 to m do
3: A[i] = 0
4: end for
5: A[0] = 1
6: m = 0

(a) What is the worst-case running time of Reset?

(b) Assume that the counter starts at 1 with m = 1. Use the potential function

Φ(A) = m+ number of 1-bits in A

to prove that the amortized time per operation of any intermixed sequence of Reset
and Increment operations is O(1).



CS 430 Second Exam (Early)—Fall, 2010 6 Name:

4. Amortized Analysis, continued.



CS 430 Second Exam (Early)—Fall, 2010 7 Name:

5. Heaps

We decide that we don’t want to bother with the mark bits in Fibonacci heaps, so we change
the cascading-cut rule to cut a node from its parent as soon as it loses its first child. Is still
true that D(n) = O(log n)? Prove your answer.

(Hint : This is based on exercise 19.4-2 on page 526 of CLRS; it was suggested as a good
study problem in the lecture of October 25 and covered in a more general fashion in the TA’s
Friday recitation session of October 29.)


