
Illinois Institute of Technology
Department of Computer Science

Homework 7 Solutions
CS 430 Introduction to Algorithms

Fall Semester, 2010

1. Problem 23.2-3 on page 637.

Solution: The runtime of Prim’s algorithm is O(V lg V + E lgV) with a binary heap implementation
and O(V lg V + E) with a Fibonacci heap implementation. If |E| = Θ(V), then both implementations
are O(V lgV). However, if |E| = Θ(V 2), then the binary heap implementation is O(V 2 lgV) whereas
the Fibonacci heap implementation is O(V 2). Hence the Fibonacci heap implementation is faster for
dense graphs. If |E| = ω(V) (which implies that |V | = o(E)), then the Fibonacci heap implementation
is o(E lg V) which is faster than the binary heap implementation which is O(E lgV).

2. Problem 23-3(a) on page 640.

Solution: We shall prove this by contradiction. Suppose that a bottleneck spanning tree (BST) is not
a minimum spanning tree (MST). For a given undirected graph G, let T be a MST and T ′ be a BST
where e ∈ T and e′ ∈ T ′ are the edges with the maximum weight in their respective trees. Since T ′ is a
BST and T is not a BST, w(e′) < w(e). This implies that e 6∈ T ′, otherwise the max weight of T ′ would
be the same as T . If we add e to T ′, this creates a cycle. Since w(e) > w(e′), this makes e the edge
with the largest weight in the cycle. Therefore T is not a MST since substituting another edge in the
cycle for e would result in a tree with less weight. Hence, we have a contradiction, so our assumption
that a BST is not a MST is incorrect.

3. Problem 24.3-2 on page 663.

Solution: Consider the following graph. If we use Dijkstra’s algorithm to find the shortest paths from
vertex s, it will relax edges (s, u) and (s, v). At this point v.d = 1 < u.d = 3, so the next vertex to be
extracted from the heap will be v. Relaxing edge (v, w) results in w.d = 2. Next u is extracted from the
heap and edge (u, v) is relaxed resulting in v.d = −2 and v.π = u. However, since v has already been
extracted from the heap, the edge (v, w) is not relaxed again. Thus w.d remains 2 when the cost of the
shortest path from s to w is really -1.

The proof of Theorem 24.6 does not work with negative weight edges since when a vertex u is added to
the set S, u.d may not be δ(s, u). A negative edge from a vertex in V − S may result in a path with
weight δ(s, u).

v w

s

u

3

1

1

-5

CS 430—Fall, 2010 2 Homework 7 Solutions

4. Problem 25.2-6 on page 700.

Solution: There are at least two ways to detect negative weight cycles.

(a) Check the entries along the main diagonal of the matrix D(n). If d
(n)
ii < 0 for some vertex i, then

there is a negative weight cycle.

(b) Run the floyd-warshall algorithm for another iteration and check if any of the values in the
matrix D change. If there is a negative weight cycle, then some shortest path cost will decrease
with the extra iteration. If there are no negative weight cycles then none of the shortest path costs
will decrease with an extra iteration, since they are already optimal.

5. Problem 25.3-4 on page 705.

Solution: It changes the shortest paths. Consider the following graph. The min weight is −10 so we
add 10 to every weight to make ŵ. With w, the shortest path from s to y is s → x → y with weight
4. With ŵ, the shortest path from s to y is just s → y with weight 15 (the path s → x → y now has
weight 24). By adding the same constant amount to each edge, paths with more edges are penalized
even if their weights are relatively low.

s

x y z

2
5

-10

2

