
Illinois Institute of Technology
Department of Computer Science

Lecture 6: September 13, 2010
CS 430 Introduction to Algorithms

Fall Semester, 2010

1 Lower Bounds on Sorting

All of the sorting algorithms that we have seen have been based on element comparisons ai : aj of the
items being sorted; all of them use Ω(n logn) such comparisons. Today we’ll see that this is no coincidence:
Any sorting algorithm based on comparisons of the elements being sorted must use that many element
comparisons in both the worst case and on the average.

In this discussion we will consider only the case in which no two elements are equal, so such a comparison
results in either a > or < answer, never =. Any sorting algorithm that works correctly for all inputs must
work for this type of input.

For a fixed value of n, we can take such a sorting algorithm and expand it into a binary decision tree in
which internal nodes are the comparisons and leaves are the sorted elements—that is, a leaf corresponds to a
permutation of the input elements. For the algorithm to sort correctly, each of the possible n! permutations
must correspond to a unique leaf (if two or more permutations share a leaf, the algorithm cannot have
determined the unique sorted order; if some permutation is missing, the algorithm cannot sort correctly on
the corresponding input order).

1.1 Worst Case

Notice that the height of the decision tree is the number of comparisons used by the algorithm in the worst
case. Let S(n) denote the minimum number of comparisons required in the worst case by any sorting
algorithm based on element comparisons. A binary tree of height h can have at most 2h leaves, so

2S(n) ≥ n!

and hence
S(n) ≥ lgn! = Ω(n logn).

Thus any sorting algorithm based on element comparisons must use lg n! in the worst case.

1.2 Average Case

Now consider the minimum number of comparisons required in the average case by any sorting algorithm
based on element comparisons. The average number of comparisons used is the average of the depths of
all leaves: if we define EPL(T ), the external path length of a binary tree T , as the sum of the depths of all
leaves, then EPL(T )/n! gives the average number of comparisons used by the sorting algorithm represented
by the decision tree T .

Lemma 1. The binary tree T with the least external path length EPL(T ) has all of its leaves on levels l and
l + 1 for some value of l.



CS 430—Fall, 2010 2 Lecture 6: September 13, 2010

Proof. Suppose not; let T be a binary tree of n leaves with minimal external path length with lowest
(deepest) leaf at level L and shallowest (highest) leaf at level l < L − 1. Remove two sibling leaves from
level L, making their parent internal node into a leaf; replace a leaf at level l with and internal node and
two leaves as children. We now have a new tree T ′ of n leaves satisfying

EPL(T ′) = EPL(T )− 2L+ 2(l + 1) < EPL(T )

because l < L− 1 implies −2L+ 2(l + 1) < 0. That is, EPL(T ′) is less than the smallest possible external
path length in a tree with N leaves, contradicting our choice of T as a binary tree with minimal external
path length.

Lemma 2. If l1, l2, . . . , lN are the depths of the leaves in a binary tree, then

N∑

i=1

2−li ≤ 1.

This is called Kraft’s Inequality.

Proof. By induction or by water-pouring.

Now we can compute the minimum external path length in a binary tree with N leaves. Suppose, by the
first lemma, that there are k leaves at level l and N − k leaves at level l + 1, 1 ≤ k ≤ N (that is, all leaves
may be at level l with none on level l + 1). The second lemma tells us that

k2−l + (N − k)2−l−1 = 1

and hence
k = 2l+1 −N.

But k ≥ 1 so that 2l+1 > N ; similarly, k ≤ N so 2l ≤ N . Thus

l = blgNc .

Then k = 2l+1 −N gives
k = 2blgNc+1 −N

and the minimal external path length is thus

lk + (l + 1)(N − k) = N blgNc+ 2N − 2blgNc+1.

Define δ(N) = lgN − blgNc and hence 0 ≤ δ(N) < 1. The minimal external path length is then

N lgN +N(2− δ(N)− 21−δ(N)).

The function 2−δ(N)−21−δ(N) is small on the interval [0, 1]; specifically, 0 ≤ δ(N) ≤ 0.0861 on this interval.

We conclude that for a binary tree with N = n! leaves, the external path length, and hence the minimum
possible average sorting time (element comparisons) must be at least EPL(T )/n! where T is a tree of n!
leaves of least external path length; in other words, lg n!.



CS 430—Fall, 2010 3 Lecture 6: September 13, 2010

2 Sorting in Linear Time

The Ω(n logn) lower bounds we just proved do not apply if we can avoid element comparisons. For example,
if we know we are sorting a permutation of the numbers 1, . . . , n, then as we encounter each number we can
put it directly into its correct place in sorted order.

CLRS (sections 8.2–8.4) describes three sorting algorithms that do make comparisons of elements, but rather
sort based on information about the values of the input, their representation, or their distribution.


	Lower Bounds on Sorting
	Worst Case
	Average Case

	Sorting in Linear Time

