
Illinois Institute of Technology
Department of Computer Science

Solutions to First Examination
CS 430 Introduction to Algorithms

Fall, 2010

11:25am–12:40pm, Wednesday, September 22, 2010
121 Life Sciences Building

Exam Statistics

43 students took the exam. The range of scores was 47–96, with a mean of 72.51, a median of 73,
and a standard deviation of 11.08. Very roughly speaking, if I had to assign final grades on the
basis of this exam only, above 80 would be an A (10), 70–79 a B (17), 60–69 a C (11), 50–59 a D
(3), below 50 an E (2).

Problem Solutions

1. For a decrease by half:

(a) n2 becomes (n/2)2 = n2/4 so the algorithm runs 4 times as fast

(b) n3 becomes (n/2)3 = n3/8 so the algorithm runs 8 times as fast

(c) 100n becomes 100 · (n/2) = 50n so the algorithm runs twice as fast

(d) ndlg ne becomes (n/2)dlg(n/2)e = (ndlg ne)/2 − n/2 so the algorithm runs a bit more
than twice as fast as n gets large

(e) 2n becomes 2n/2 =
√

2n so the algorithm runs in the square root of the original time

For a decrease by 1:

(a) n2 becomes (n− 1)2 = n2 − 2n+ 1 so the algorithm saves (2n− 1) units of time

(b) n3 becomes (n− 1)3 = n3 − 3n2 + 3n− 1 so the algorithm saves (3n2 − 3n+ 1) units of
time

(c) 100n becomes 100(n − 1) = 100n− 100 so the algorithm saves 100 units of time

(d) ndlg ne becomes (n− 1)dlg(n− 1)e ≈ ndlg ne − dlg ne so the algorithm saves about lg n
units of time

(e) 2n becomes 2n−1 = 2n/2 so the algorithm runs twice as fast

2. Following the hint, we modify Merge-Sort (page 34 of CLRS) sort to count the number of
inversions (pairs (i, j) for which i < j and A[i] > A[j] in Θ(n log n) time.

To start, define a merge-inversion as a situation within the execution of merge sort in which
the Merge procedure (page 31 of CLRS), after copying A[p..q] to L and A[q+ 1..r] to R, has



2

values x in L and y in R such that x > y. Consider an inversion (i, j), and let x = A[i] and
y = A[j], so that i < j and x > y. We claim that if we were to run merge sort, there would
be exactly one merge inversion involving x and y. To see why, observe that the only way in
which array elements change their positions is within the Merge procedure. Moreover, since
Merge keeps elements within L in the same relative order to each other, and correspondingly
for R, the only way in which two elements can change their ordering relative to each other
is for the greater one to appear in L and the lesser one to appear in R. Thus, there is at
least one merge-inversion involving x and y. To see that there is exactly one such merge-
inversion, observe that after any call of Merge that involves both x and y, they are in the
same sorted sub array and will therefore both appear in L or both appear in R in any given
call thereafter. Thus, we have proven the claim. We have shown that every inversion implies
one merge-inversion. In fact, the correspondence between inversions and merge-inversions is
one-to-one. Suppose we have a merge-inversion involving values x and y, where x originally
was A[i] and y was originally A[j]. Since we have a merge-inversion, x > y. And since x is in
L and y is in R, x must be within a sub array preceding the sub array containing y. Therefore
x started out in a position i preceding y’s original position j, and so (i, j) is an inversion.

Having shown a one-to-one correspondence between inversions and merge inversions, it suffices
for us to count merge-inversions. Consider a merge-inversion involving y in R. Let z be the
smallest value in L that is greater than y. At some point during the merging process, z
and y will be the “exposed” values in L and R, that is, we will have z = L[i] and y =
R[j] in line 13 of Merge. At that time, there will be merge-inversions involving y and
L[i], L[i + 1], L[i + 2], · · · , L[n1], and these n1 − i + 1 merge-inversions will be the only ones
involving y. Therefore, we need to detect the first time that z and y become exposed during
the Merge procedure and add the value of n1 − i + 1 at that time to our total count of
merge-inversions.

3. (a) Compare each nut with each bolt. Since there are n nuts and n bolts, that will take
Θ(n2) comparisons in the worst case.

(b) Assume that the nuts are labeled with numbers 1, 2, · · · , n and so are the bolts. The
numbers are arbitrary and do not correspond to the volumes of the items, but are just
used to refer to the nuts or bolts in the algorithm description. Moreover, the output of
the algorithm will consist of n distinct pairs (i, j), where the nut i and the bolt j have the
same volume. The procedure MATCH-NB takes as input two sets representing nuts and
bolts to be matched: N ⊆ 1, · · · , n, representing nuts, and B ⊆ 1, · · · , n, representing
bolts. We will call the procedure only with inputs that can be matched; one necessary
condition is that |N | = |B|.



3

Algorithm 1 MATCH-NB(N,B)

1: if |N | == 0 then
2: return
3: end if
4: if |N | == 1 then
5: let N = n and B = b output “(n, b)”
6: return
7: end if
8: n = a randomly chosen nut in N
9: compare n to every bolt of B

10: B< = the set of bolts in B that are smaller than n
11: B> = the set of bolts in B that are larger than n
12: b = the one bolt in B with the same size as n
13: compare b to every nut of N − n
14: N< = the set of nuts in N that are smaller than b
15: N> = the set of nuts in N that are larger than b
16: output “(n, b)”.
17: MATCH-NB(N<, B<)
18: MATCH-NB(N>,B>)

4. Below is code that implements the insert operation. It is very much like the code for a binary
max-heap: we insert the key at the next available child spot in the heap (the next element in
the array) and we “bubble” the key upward. We call one of two different bubble up routines
depending on the level in the heap that we perform the initial insert, and depending on the
inserted keys value relative to the keys of its immediate ancestors, that is, its parent and
grandparent.

The supporting BubbleUp code is below. In it, the value moves up by two levels in the heap
with each exchange, rather than just one level.



4

Algorithm 2 InsertMinMax(k,H)

1: size(H) = size(H) + 1
2: i = size(H)
3: H[i] = k
4: if i is on a max level then
5: if Parent(i) > 0 and H[Parent(i)] > H[i] then
6: exchange H[i] with H[Parent(i)]
7: BubbleUpMin(Parent(i),H)
8: else
9: BubbleUpMax(i,H)

10: end if
11: else
12: {i is on a min level}
13: if Parent(i) > 0 and H[Parent(i)] < H[i] then
14: exchange H[i] with H[Parent(i)]
15: BubbleUpMax(Parent(i),H)
16: else
17: BubbleUpMin(i,H)
18: end if
19: end if

Algorithm 3 BubbleUpMin(i,H)

1: if Parent(Parent(i)) > 0 and H[Parent(Parent(i))] > H[i] then
2: exchange H[i] with H[Parent(Parent(i))]
3: BubbleUpMin(Parent(Parent(i)),H)
4: end if

Algorithm 4 BubbleUpMax(i,H)

1: if Parent(Parent(i)) > 0 and H[Parent(Parent(i))] < H[i] then
2: exchange H[i] with H[Parent(Parent(i))]
3: BubbleUpMax(Parent(Parent(i)),H)
4: end if



5

5. (a) The external path length is 3 + 3 + 2 + 2 + 4 + 4 + 3 = 21.

(b) Yes; we saw (in class on September 13) that the binary tree with the least external path
length has all of its leaves on level l or level l + 1, for some l. Thus we can reorganize
the tree (rotating counter clockwise at node Q) to

N

G

D

S

Q T

which has external path length 3 + 3 + 2 + 3 + 3 + 3 + 3 = 20.

(c) No. The root must be black. Then G must be black (if it were red, D would have to be
black and the leaf at the right of G would have black-depth 1, but the leaves below D
would have black depth 2) and D must be red—this gives the leaves in the left subtree
of N black depth 2. For the leaf to the left of Q to have black depth 2, Q must be black.
But at least one of T and S must be black (because we cannot have two red nodes in a
row), meaning that the leaves below S would have black depth 3.


