
Illinois Institute of Technology
Department of Computer Science

Homework 4 Solutions
CS 430 Introduction to Algorithms

Fall Semester, 2010

1. Problem 13.2 on page 332–333.

Solution:

(a) If we augment the tree so that each node has a black height attribute bh, then we can use Theorem
14.1 (page 346). The black height of a non-leaf node x can be determine by

x.bh =

1 if one or both of x’s children is a NIL leaf,

x.left.bh if x.left is red,

x.left.bh+ 1 if x.left is black.

Since the black height of a node x only depends on the color and black height of its children, by
Theorem 14.1, we can maintain the black height of each node in the tree during insertions and
deletions without affecting the O(lg n) runtime of these operations.

(b) Since the largest child of a node is always the right child in a BST, we start at the root of T1 and
travel down the rightmost path (always selecting the right child), until we reach a black node y
with the same black height as T2. In the worst case we may need to travel down to the bottom
rightmost node in T1 which will take O(lg n) time since the a red-black tree is guaranteed to have
height of at most O(lg n).

(c) Since y.key ≤ x.key ≤ T2.root.key and the black heights of y and T2 are the same, we can join
Ty and T2 by making y a left child of x and T2.root the right child of x. Since x.key ≥ y.key we
can replace y in T1 with x by making x the right child of y’s parent. Since we are only modifying
attributes of x, y, y.p, and T2.root, replacing Ty with Ty ∪ {x} ∪ T2 only takes O(1) time.

(d) Since y and T2.root are both black, if we make x red it will not affect the black heights of y and
T2.root and we will satisfy red-black properties 1, 3, and 5. However it is possible that properties
2 and 4 could be violated as x could now be the root (violating property 2) or x could now have
a red parent (violating property 4). If x is the root, which could happen if the black height of T1

is equal to the black height of T2, we can simply color x black. If x has a red parent, we can call
rb-insert-fixup at x which will restore the red-black properties from x to the root in O(lg n)
time.

(e) If T1.bh ≤ T2.bh then we simply find the black node y in T2 with the smallest key among those
whose black height is T1.bh. This is done in a similar manner to that described in part (b) only
now we always follow left child until we reach a node with black height T1.bh. This node is now y
and instead of making it a left child of x as in part (c), we make it the right child of x. The rest
of the algorithm is the same.

(f) rb-join consists of three steps, which are described in parts (b), (c), and (d). Part (b) takes
O(lg n), part (c) takes O(1), and part (d) takes O(lg n). Hence, the total running time for rb-join
is O(lg n) +O(1) +O(lg n) = O(lg n).

CS 430—Fall, 2010 2 Homework 4 Solutions

(g) The algorithm rb-split takes a red-black tree T and a value x and returns two trees T1 and T2

such that every key in T1 is less than or equal to x and every key in T2 is greater than or equal to
x. rb-split starts at the root of T and travels down the tree, removing subtree rooted at nodes
with keys less than x or greater than > x and joining them to T1 or T2.

As k moves along a path from the root to a leaf, the loop at Lines 5-22 executes O(lg n) times in
the worst case. Hence, this algorithm also performs O(lg n) joins in the worst case. However, if as
k descends down T , we simultaneously travel down the rightmost path of T1 and leftmost path of
T2 and locate nodes with the same black height as k, joins can be carried out in constant amortized
time. Thus, the total running time for rb-split is O(lg n).

Algorithm 1 rb-split(T, x)

1: let T1 and T2 be empty trees
2: v1 = NIL
3: v2 = NIL
4: k = T.root
5: while k 6= NIL do
6: if x < k.key then
7: Join the subtree rooted at k.right to T2 using node v2

8: v2 = k
9: k = k.left

10: else
11: if x > k.key then
12: Join the subtree rooted at k.left to T1 using node v1

13: v1 = k
14: k = k.right
15: else {x == k.key}
16: Join the subtree rooted at k.left to T1 using node v1

17: Join the subtree rooted at k.right to T2 using node v2

18: v1 = v2 = NIL
19: Finished splitting, terminate while loop
20: end if
21: end if
22: end while
23: if v1 6=NIL then
24: insert it as the maximum node of T1

25: end if
26: if v2 6=NIL then
27: insert it as the minimum node of T2

28: end if
29: return T1, T2

2. Problem 15-2 on page 405.

Solution: The solution to the longest palindrome subsequence (LPS) problem is similar to the solution
to the longest common subsequence in Section 15.4. First let us characterize the optimal substructure
of an LPS. For a sequence X = 〈x1, x2, . . . , xn〉, we denote the subsequence starting at xi and ending
at xj by Xij = 〈xi, xi+1, . . . , xj〉. Now let X = 〈x1, x2, . . . , xn〉 be an input sequence, and let Z =
〈z1, z2, . . . , zm〉 be any LPS of X .

CS 430—Fall, 2010 3 Homework 4 Solutions

(a) If n = 1, then m = 1 and z1 = x1

(b) If n = 2 and x1 = x2, then m = 2 and z1 = z2 = x1 = x2

(c) If n = 2 and x1 6= x2, then m = 1 and either z1 = x1 or z1 = x2

(d) If n > 2 and x1 = xn, then m > 2, z1 = zm = x1 = xn, and Z2,m−1 is an LPS of X2,n−1

(e) If n > 2 and x1 6= xn, then z1 6= x1 implies that Z1,m is an LPS of X2,n

(f) If n > 2 and x1 6= xn, then zm 6= xn implies that Z1,m is an LPS of X1,n−1

This tells us that we should examine either one or two subproblems when finding an LPS of X , depending
on whether x1 = xn. Using our understanding of the optimal substructure of this problem, we define
p[i, j] to be the length of an LPS of the subsequence of Xij .

p[i, j] =

1 if i = j,

2 if j = i+ 1 and xi = xj ,

1 if j = i+ 1 and xi 6= xj ,

p[i+ 1, j − 1] + 2 if j > i+ 1 and xi = xj ,

max(p[i, j − 1], p[i+ 1, j]) if j > i+ 1 and xi 6= xj .

Just like LCS-Length (page 394), our algorithm for finding a LPS uses two tables p[i, j] and b[i, j]. We
use to p[i, j] to find an LPS and b[i, j] to construct the LPS when we are done. Similar to the table b in
LCS-Length, b[i, j] points to the table entry corresponding optimal subproblem solution chosen when
computing p[i, j]. To fill in the cells in tables p and b, we use the algorithm longest-palindrome

We construct an LPS from table b in a manner similar to print-lcs (page 395). We start with b[1, n]
and trace through the table by following the arrows. Whenever we encounter a “↙” in entry b[i, j], it
implies that xi = xj are the first and last elements of the LPS found by our algorithm.

CS 430—Fall, 2010 4 Homework 4 Solutions

Algorithm 2 longest-palindrome(X)

1: n = X.length
2: let b[1 . . . n, 1 . . . n] and p[0 . . . n, 0 . . . n] be new tables
3: for i = 1 to n− 1 do
4: p[i, i] = 1
5: j = i+ 1
6: if xi == xj then
7: p[i, j] = 2
8: b[i, j] = “↙ ”
9: else

10: p[i, j] = 1
11: b[i, j] = “ ↓ ”
12: end if
13: end for
14: p[n, n] = 1
15: for i = n− 2 downto 1 do
16: for j = i+ 2 to n do
17: if xi == xj then
18: p[i, j] = p[i+ 1, j − 1] + 2
19: b[i, j] = “↙ ”
20: else
21: if p[i+ 1, j] ≥ p[i, j − 1] then
22: p[i, j] = p[i+ 1, j]
23: b[i, j] = “ ↓ ”
24: else
25: p[i, j] = p[i, j − 1]
26: b[i, j] = “← ”
27: end if
28: end if
29: end for
30: end for
31: return p, b

3. Problem 16.1-5 on page 422.

Solution: A greedy approach can not be used for this problem. However, we can construct a dynamic
programming solution. We will use a similar analysis to the one used in Section 16.1. Let Sij be defined
as in Section 16.1. An optimal solution to Sij is a subset of mutually compatible events that together
have maximum value. Let Aij be an optimal slution to Sij . Suppose Aij includes an event ak. Let Aik
and Akj be defined as in Section 16.1. Thus, we have Aij = Aik ∪ {ak} ∪ Akj , and so the value of the
maximum value set is equal to the value of Aik plus the value of Akj plus vk.

We will denote the value of an optimal solution for the set Sij by val[i, j].

val[i, j] =

{
0 if Sij = ∅,
maxak∈Sij{val[i, k] + val[k, j] + vk} if Sij 6= ∅.

We create two fictitious activities, a0 with f0 = 0 and an+1 with sn+1 = ∞. We are interested in a
maximum size set A0,n+1 of mutually compatible activities in S0,n+1. In addition to val we will also

CS 430—Fall, 2010 5 Homework 4 Solutions

use the table act, were act[i, j] is the activity k that we choose to put into Aij .

We use the algorithm max-value-activity-selector to fill in the values in tables val and act.

Algorithm 3 max-value-activity-selector(s, f, v, n)

1: let val[0 . . . n+ 1, 0 . . . n+ 1] and act[0 . . . n+ 1, 0 . . . n+ 1] be new tables
2: for i = 1 to n do
3: val[i, i] = 0
4: val[i, i+ 1] = 0
5: end for
6: val[n+ 1, n+ 1] = 0
7: for l = 2 to n+ 1 do
8: for i = 0 to n− l + 1 do
9: j = i+ l

10: val[i, j] = 0
11: k = j − 1
12: while f [i] < f [k] do
13: if f [i] ≤ s[k] and f [k] ≤ s[j] and val[i, k] + val[k, j] + vk > val[i, j] then
14: val[i, j] = val[i, k] + val[k, j] + vk
15: act[i, j] = k
16: end if
17: k = k − 1
18: end while
19: end for
20: end for
21: return val, act

The value of a maximum value set will be found in val[0, n+ 1]. The activities in this set can be found
using the algorithm print-activities with the function call print-activities(val, act, 0, n+ 1).

Algorithm 4 print-activities(val, act, i, j)

1: if val[i, j] > 0 then
2: k = act[i, j]
3: print k
4: print-activities(val, act, i, k)
5: print-activities(val, act, k, j)
6: end if

4. Problem 17.4-3 on page 471

Solution: For this problem, our potential function is Φ(T) = |2 · T.num− T.size|. First consider the
case in which the ith operation is a delete that does not cause a contraction. In this case, the actual
cost of the operation is ci = 1. Since there is no contraction, sizei = sizei−1. Since this is a delete
operation, numi = numi−1 − 1 and numi−1 = numi + 1. If 2 · numi ≥ sizei (i.e. α ≥ 1/2), then
|2 · numi − sizei| = 2 · numi − sizei and we have an amortized cost for the operation of

CS 430—Fall, 2010 6 Homework 4 Solutions

ĉi = ci + Φi − Φi−1

= 1 + |2 · numi − sizei| − |2 · numi−1 − sizei−1|
= 1 + |2 · numi − sizei| − |2 · (numi + 1)− sizei|
= 1 + (2 · numi − sizei)− (2 · numi + 2− sizei)
= 1 + 2 · numi − sizei − 2 · numi − 2 + sizei

= −1

If the ith operation is a delete that does not cause a contraction, but 2 · numi < sizei (i.e. αi < 1/2),
then |2 · numi− sizei| = −(2 · numi− sizei). Also, 2 · (numi + 1) ≤ sizei and |2 · (numi + 1)− sizei| =
−(2 · (numi + 1)− sizei). So now we have an amortized cost for the operation of

ĉi = ci + Φi − Φi−1

= 1 + |2 · numi − sizei| − |2 · numi−1 − sizei−1|
= 1 + |2 · numi − sizei| − |2 · (numi + 1)− sizei|
= 1 + (−1)(2 · numi − sizei)− (−1)(2 · numi + 2− sizei)
= 1− 2 · numi + sizei + 2 · numi + 2− sizei
= 3

If the ith operation is a delete that results in a contraction of the table, we have ci = numi + 1, since
we must move numi items and delete an item. We also know that sizei−1 = 3 · numi−1 = 3(numi + 1)
and sizei = 2

3sizei−1 = 2
3 (3 · (numi + 1)) = 2 · numi + 2.

ĉi = ci + Φi − Φi−1

= numi + 1 + |2 · numi − sizei| − |2 · numi−1 − sizei−1|
= numi + 1 + |2 · numi − (2 · numi + 2)| − |2 · (numi + 1)− 3 · (numi + 1)|
= numi + 1 + | − 2| − | − (numi + 1)|
= numi + 1 + 2− (numi + 1)

= numi + 1 + 2− numi − 1

= 2

Hence, when the ith operation is a delete, the amortized cost is ĉi ≤ 3.

5. Problem 17-4 on page 474–475

Solution:

(b) All cases except for case 1 of rb-insert-fixup and case 2 of rb-delete-fixup are terminating.

(c) Case 1 of rb-insert-fixup reduces the number of red nodes by one. As Figure 13.5 shows, node
z’s parent and uncle change from red to black (-2 red), and z’s grandparent changes from black to
red (+1 red). Hence Φ(T ′) = Φ(T)− 1.

(d) Lines 1-16 of rb-insert insert a red node which increases the potential by one. The nonterminating
case of rb-insert-fixup (Case 1) makes three color changes and decreases the potential by 1. The
terminating cases of rb-insert-fixup (cases 2 and 3) cause one rotation each which do not affect
the potential. Case 3 makes color changes, but the potential does not change as the number of red
nodes does not change.

CS 430—Fall, 2010 7 Homework 4 Solutions

(e) The number of structural modifications and amount of potential change resulting from lines 1-16 of
rb-insert and from the terminating cases of rb-insert-fixup are O(1), so the amortized number
of structural changes is O(1). The nonterminating case of rb-insert-fixup may repeat O(lg n)
times, but its amortized number of structural modifications is zero, since by our assumption, the
unit decrease in the potential pays for structural modifications needed. Therefore, the amortized
number of structural modifications performed by rb-insert is O(1).

(f) (extra credit) From Figure 13.5, we see that case 1 of rb-insert-fixup makes the following changes
to the tree:

• Changes a black node with two red children (node C) to a red node, resulting in a potential
change of -2.

• Changes a red node (node A in part (a) and node B in part (b)) to a black node with one red
child, resulting in no potential change.

• Changes a red node (node D) to a black node with no red children, resulting in a potential
change of 1.

The total change in potential is -1, which pays for the structural modications performed, and thus
the amortized number of structural modications in case 1 (the nonterminating case) is 0. The
terminating cases of rb-insert-fixup cause O(1) structural changes. Because w(v) is based solely
on node colors and the number of color changes caused by terminating cases is O(1), the change
in potential in terminating cases is O(1). Hence, the amortized number of structural modications
in the terminating cases is O(1). The overall amortized number of structural modications in rb-
insert, therefore, is O(1).

(g) (extra credit) Figure 13.7 shows that case 2 of rb-delete-fixup makes the following changes to
the tree:

• Changes a black node with no red children (node D) to a red node, resulting in a potential
change of -1.

• If B is red, then it loses a black child, with no effect on potential.

• If B is black, then it goes from having no red children to having one red child, resulting in a
potential change of -1.

The total change in potential is either -1 or -2, depending on the color of B. In either case, one
unit of potential pays for the structural modications performed, and thus the amortized number
of structural modications in case 2 (the nonterminating case) is at most 0. The terminating cases
of rb-delete cause O(1) structural changes. Because w(v) is based solely on node colors and the
number of color changes caused by terminating cases is O(1), the change in potential in terminating
cases is O(1). Hence, the amortized number of structural changes in the terminating cases is O(1).
The overall amortized number of structural modications in rb-delete-fixup, therefore, is O(1).

(h) (extra credit) Since the amortized number structural modication in each operation is O(1), the ac-
tual number of structural modications for any sequence of m rb-insert and rb-delete operations
on an initially empty red-black tree is O(m) in the worst case.

