
Illinois Institute of Technology
Department of Computer Science

Lecture 5: September 8, 2010
CS 430 Introduction to Algorithms

Fall Semester, 2010

1 More on quicksort: other efficiency metrics

In the previous lecture we arrived at an expression for the efficiency of quicksort by counting the number of
comparisons. There are a number of other metrics we can use, though.

1.1 Exchanges

For instance, we can count the number of exchanges that take place. If we view the partition algorithm as
a sequence of exchanges,1 we can count the number of exchanges that are performed on the array.

In the worst case,
⌊
n
2

⌋
exchanges take place at each level of the recursion. We have the recurrence

E(n) = E
(⌊n

2

⌋)
+E

(⌈n
2

⌉)
+
⌊n

2

⌋

where E(0) = E(1) = 0. It turns out that this recurrence has a nice solution:

E(n) =

n−1∑

i=0

ν(i)

where ν(i) is the number of 1-bits when i is written in binary, clearly no greater than dlg ie. Dividing by n,

E(n)

n
=

1

n

n−1∑

i=0

ν(i)

which is the average number of 1-bits in i written in binary. This is approximately 1
2 lg n, so we have

E(n)

n
≈ 1

2
lgn

E(n) ≈ 1

2
n lgn

= Θ(n logn)

1.2 Stack depth

The expected depth of the recursion stack is somewhat simpler. Although the algorithm makes two recursive
calls, the two calls are not made at the same time. This yields a recurrence of

S(n) = 1 +
1

n

n−1∑

i=0

S(i)

1The Partition algorithm given in section 7.1 of CLRS uses this approach.



CS 430—Fall, 2010 2 Lecture 5: September 8, 2010

which can be solved as we solved the (more complex) running-time recurrences for quicksort, giving

S(n) = O(log n)

2 Divide and conquer

The divide-and-conquer paradigm is used often in the formulation of algorithms. A divide-and-conquer
algorithm will typically involve splitting a problem into smaller components (divide), solving the problem on
those components (conquer), and combining the results in some meaningful fashion (combine).

2.1 Mergesort

For instance, to sort an array with the mergesort algorithm, we divide it in half, sort each half recursively,
and merge the two halves:

T (n)︷ ︸︸ ︷

1
2

1
2

SPLIT

RECURSIVELY

SORT

MERGE

︸ ︷︷ ︸
T(n2 )

A recurrence for the running time of mergesort is

M(n) = M
(⌊n

2

⌋)
+M

(⌈n
2

⌉)
+ n− 1

where M(0) = M(1) = 0. It turns out that this yields

M(n) =

n∑

k=1

dlg ke

= n dlg ne − 2dlgne + 1

Since it is impossible to sort an array in fewer than lg n! =
∑n

k=1 lg k comparisons, the running time of
mergesort is less than n from optimal. Unfortunately, the complicated data movement involved yields an
algorithm that is not competitive in real life.

2.2 Selection

The selection problem can be stated as follows: Given x1, x2, . . . , xn, find the kth largest element. The lower
bound on the running time of this problem is linear.



CS 430—Fall, 2010 3 Lecture 5: September 8, 2010

2.2.1 A naive approach

We can take a simple approach to this problem. How can we solve the problem if k = 1? That is, how
can we find the maximum element? We can make one pass through the array, keeping track of the largest
element seen so far.2 This requires n− 1 comparisons.

What if k = 2? We can first find the maximum as outlined above, eliminate it from the array, and find the
maximum of the new array. This can be done in (n− 1) + (n− 2) = 2n− 3 comparisons.

We can use selection to find the median: solve the problem for k = n
2 . How does that perform? Not well: it

requires (n− 1) + (n− 2) + · · ·+
(
n− n

2

)
≈ n2

2 comparisons. This is Θ(n2)—we could do better by sorting
in Θ(n logn) time and indexing at n

2 . But can we do better than that?

2.2.2 Selection in n logn time

Yes. Consider a tournament in which we would like to determine the two best players. If we used an approach
like the above algorithm, we would first find the best player and then repeat the entire set of matches, with
the champion eliminated, to determine the next best player. In fact, we need only compare the direct losers
to the champion.

We can use this idea in the selection problem. We proceed as before for k = 1. For k = 2, we then need
examine only lg n additional elements, totalling n+ lg n. For k = 3, we examine lgn more than that, for a
total of n + 2 lgn. For k = n

2 , we must examine n + n
2 lg n. Unfortunately, this is Θ(n logn)—better than

the naive solution, but no better than sorting, and significantly more difficult to understand.

2.2.3 Selection in expected linear time

The approach in (randomized) quicksort is to partition the array based on some random element and to then
recursively run quicksort on each of the two partitions. Here, though, say the partition element is the ith
element of the array and that we are searching for the kth element. If k = i, we have found the solution. If
k < i, we only need to recursively search the smaller partition. If k > i, we only need to recursively search
the larger partition (for the (k − i)th element).

The worst-case running time is Θ(n2): if we are, say, searching for the minimum, but the partition routine
partitions around the maximum each time, we reach this upper bound.

Fortunately, the average-case running time is far better. We arrive at the recurrence

c(n) = n+ 1 +
1

n

n−1∑

i=0

c(i)

As before, multiplying both sides by n yields

nc(n) = n(n+ 1) +

n−1∑

i=0

c(i) (1)

Substituting n− 1 for n gives

(n− 1)c(n− 1) = n(n− 1) +

n−2∑

i=0

c(i) (2)

2This algorithm is treated more thoroughly in section 9.1 of CLRS.



CS 430—Fall, 2010 4 Lecture 5: September 8, 2010

Subtracting (2) from (1),

nc(n)− (n− 1)c(n− 1) = 2n+ c(n− 1)

nc(n)− nc(n− 1) = 2n

c(n)− c(n− 1) = 2

c(n) = c(n− 1) + 2

= 2n

= Θ(n)

2.2.4 Selection in worst-case linear time

If we can somehow guarantee the location of a good partitioning element, we can reduce the running time
to Θ(n) worst-case. The approach is as follows:3

• Arrange the elements of the array in columns of five. (If the number of elements is not a multiple of
five, the last column will have fewer than five elements.) There will be

⌊
n
5

⌋
such columns. This can be

done in linear time.

• Use any sorting technique to sort each column. Sorting five elements takes constant time; since there
are

⌊
n
5

⌋
columns to sort, this step takes linear time.

• Notice that the third element in each column of five is its median. Recursively find the median of those⌊
n
5

⌋
numbers. Call it x.

• Partition on x.

What do we know about the median of medians x? There are clearly n
10 medians of columns that exceed x.

Furthermore, in each of those columns, at least two additional elements must exceed x as well. So at least
3n
10 elements exceed x. Likewise, n

10 medians of columns are less than x, and at least two additional elements
of their columns must also be less than x—so at least 3n

10 are less than x. These observations limit how “off
center” our partition element can be.

If we use this algorithm, then in the worst case we make the recursive call on an array of size 7n
10 . This yields

the recurrence

T (n) ≤ cn+ T
(n

5

)
+ T

(
7n

10

)

We can use induction to prove that this recurrence grows linearly4. This is a reasonable guess, since the
recurrence is of the form T (n) = cn + T (αn) + T (βn), where α + β < 1, so we expect the cn term to
dominate.5 Say that T (n) ≤ Kn. Then we want

cn+
K

5
n+

7K

10
n ≤ Kn

n

(
c+

9

10
K

)
≤ Kn

c+
9

10
K ≤ K

This holds for sufficiently large K.

3This is presented nicely in section 9.3 of CLRS.
4This is the “substitution method” from Section 4.3 of CLRS.
5This holds because of the convexity of the function T (n) = cn. Section 4.5 of CLRS, the proof of the master theorem,

formalizes this intuition.



CS 430—Fall, 2010 5 Lecture 5: September 8, 2010

2.2.5 Quicksort in worst-case n logn time

We can use this approach for the partition routine in the quicksort algorithm to yield a worst-case Θ(n logn)
running time. Unfortunately, the additional labor involved causes a very large constant factor “hidden” in
the Θ notation, yielding an algorithm that is not useful in practice. Nevertheless, this approach to worst-case
linear-time selection is useful and has many applications.


	More on quicksort: other efficiency metrics
	Exchanges
	Stack depth

	Divide and conquer
	Mergesort
	Selection
	A naive approach
	Selection in n logn time
	Selection in expected linear time
	Selection in worst-case linear time
	Quicksort in worst-case n logn time



