
1. CS470 - Computer Architecture
2. 3 Credit Hours (3 lecture hours)
3. Course Manager – Dr. Xian-He Sun, Professor
4. Computer Organization and Design: The Hardware/Software Interface, David A. Patterson, John L. Hennessy, Morgan Kaufmann
5. Introduction to the functional elements and structures of digital computers. Detailed study of specific machines at the register transfer level illustrates arithmetic, memory, I/O and instruction processing.

Prerequisites: CS350 and ECE218

Elective for Computer Science majors

6. Students should be able to:
· Present the milestones of computer architecture history

· Fundamentals of computer design- Explain the difference between various measure of performance: Latency, throughput; MIPS, MPFLOS- Comparing performance - Utilize Amdahl's law to estimate the overall speedup- Explain the difference between a good and a bad benchmark

· Assembly level machine organization- Explain the basic organization of the classical von Neumann machine and its major functional units- Explain how an instruction is executed in a classical von Neumann machine - Summarize how instructions are represented at both the machine level and in the context of a symbolic assembler - Explain different Instruction Set formats (0 (stack), 1 (accumulator), 2, and 3-addresses per instruction; Variable length vs. fixed length formats) - Design the Instruction Set for a general purpose CPU - Explain how the basic addressing modes work: Register, Memory direct, Memory indirect, Base and displacement, Indexed - Explain how base and displacement addressing is used in block-based programming languages - Write small MIPS assembly language programs

· Demonstrate how fundamental high-level programming constructs are implemented at the machine-language level: If-then-else, Loops (for, while, do-until), Procedure call/return - Explain the basic concepts of interrupts and I/O operations

· Datapath and Control - Design a single clock-cycle datapath for a CPU - Explain why a single clock-cycle datapath is inefficient - Re-factor a single clock-cycle datapath into a multi clock-cycle one - Explain the difference between a hardwired and a microprogrammed control unit - Design the control unit for a single clock-cycle datapath- Explain how exceptions impact the design and performance of a datapath

· Pipelining - Derive the formula for the throughput of an ideal pipeline with N stages - Explain the limiting factors in building a pipeline with too many stages - Explain how data and control hazards occur and how their impact can be eliminated or reduced - Re-factor MIPS code to reduce/eliminate data and branch hazards - Explain the significance of a late commit in the pipeline - Explain the changes in the design and implementation of a pipelined datapath to account for exceptions - Explain branch prediction - Solve problems that require finding the real CPI of a program running on a pipelined datapath

· The memory hierarchy - Identify the main types of memory technology and explain the trade-off in using them - Explain the effect of memory latency on running time - Explain the use of memory hierarchy to reduce the effective memory latency - Explain the differences between different cache organizations: Direct mapped, Set associative Fully associative - Utilize a cache simulator and access traces to compare the performance of caches with different sizes and organizations - Explain main memory organization alternatives to improve performance: Wide-memory, Interleaving - Explain the impact of access stride to performance - Explain the virtual memory structure and mapping - Explain why and how virtual memory impacts performance and how performance can be improved. TLB - Analyze the differences between cache organizations in systems with virtual memory: Real address caches, Pipelined real caches, Virtual address cache, Restricted virtual caches, TLB addressing

· I/O - Define the meaning of various I/O performance measures - Types and characteristics of I/O devices - Explain the differences between major buses (IDE, SCSI, USB, PCI): synchronous v. asynchronous, Serial v. parallel, Number of devices, Termination, Transfer rates - Design issues related to I/O system addressing: Memory-mapped I/O, Cache coherency, Snoopy controllers, DMA I/O configurations - Explain the sources of latency in a I/O subsystem
The following Program Outcomes are supported by the above Course Outcomes:

a. An ability to apply knowledge of computing and mathematics appropriate to the program's student outcomes and to the discipline.

c. An ability to design, implement and evaluate a computer-based system, process, component, or program to meet desired needs.

h. Recognition of the need for, and an ability to engage in, continuing professional development.

i. An ability to use current techniques, skills, and tools necessary for computing practices.

j. An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.

7. Major Topics Covered in the Course

Introduction & Overview

3 hours

Fundamentals of Computer Design

3 hours

Instruction Set Design

6 hours

Datapath: MIPS

3 hours

Pipelining: performance & MIPS

6 hours

Midterm

3 hours

The Memory Hierarchy: cache, virtual memory
6 hours

I/O: performance, devices

6 hours

Design Exercise

3 hours

Parallel Processing

3 hours

Class Presentations

3 hours

Final Exam

45 hours

