CS-511 - Homework 0 (0%)

Due by: August 28, 2008

A.
Let: $A = \left[\begin{array}{r} 1\\ 2\\ 3\end{array}\right]$, $B = \left[\begin{array}{r} 4\\ 5\\ 6\end{array}\right]$, $C = \left[\begin{array}{r} -1\\ 1\\ 3\end{array}\right]$, find:
  1. $2A - B$
  2. $\vert\vert A\vert\vert$ and the angle of $A$ relative to the positive $X$ axis
  3. $\hat{A}$, a unit vector in the direction of $A$
  4. the direction cosines of $A$
  5. $A \cdot B$ and $B \cdot A$
  6. the angle between $A$ and $B$
  7. a vector which is perpendicular to $A$
  8. $A \times B$ and $B \times A$
  9. a vector which is perpendicular to both $A$ and $B$
  10. the linear dependency between $A$, $B$, $C$
  11. $A^T B$ and $A B^T$.



B.
Let: $A = \left[\begin{array}{rrr}
1 & 2 & 3\\
4 & -2 & 3\\
0 & 5 & -1
\end{array}\right]$, $B = \left[\begin{array}{rrr}
1 & 2 & 1\\
2 & 1 & -4\\
3 & -2 & 1
\end{array}\right]$, $C = \left[\begin{array}{rrr}
1 & 2 & 3\\
4 & 5 & 6\\
-1 & 1 & 3
\end{array}\right]$, find:
  1. $2A - B$
  2. $AB$ and $BA$
  3. $(AB)^{T}$ and $B^{T}A^{T}$
  4. $\vert A\vert$ and $\vert C\vert$ (note A-10)
  5. the matrix ($A$, $B$, or $C$) in which the row vectors form an orthogonal set
  6. $A^{-1}$ and $B^{-1}$ (note B-5)



C.
Let: $A = \left[\begin{array}{rr}
1 & 2 \\
3 & 2
\end{array}\right]$, $B = \left[\begin{array}{rr}
2 & -2 \\
-2 & 5
\end{array}\right]$, find:
  1. the eigenvalues and corresponding eigenvectors of $A$.
  2. the matrix $V^{-1}AV$ where $V$ is composed of the eigenvectors of $A$.
  3. the dot product between the eigenvectors of $A$.
  4. the dot product between the eigenvectors of $B$.
  5. the property of the eigenvectors of $B$ and its reason (note C-4).



D.
Let: $f(x)=x^2+3$,   $g(x,y)=x^2+y^2$, find:
  1. the first and second derivatives of $f(x)$ with respect to $x$: $f'(x)$, and $f''(x)$.
  2. the partial derivatives: $\frac{\partial g}{\partial x}$, and $\frac{\partial g}{\partial y}$.
  3. the gradient vector $\nabla g(x,y)$.
  4. the probability density function (pdf) of a univariate Gaussian (normal) distribution.



Gady Agam 2008-08-21