
Take Intelligent Risk and Optimize Decision Based on Time, Available
Resources and Risk Tolerance Limits

Yue Yu*, Shangping Ren* ‡ Kevin A. Kwiat

Department of Computer Science Information Directorate
 Illinois Institute of Technology Air Force Research Laboratory, Rome, NY

 { yyu8, ren}@iit.edu kwiatk@rl.af.mil

* Supported in part by NSF under grant CNS 0431832.
‡ Supported in part by Air Force Summer Faculty Fellowship.

Abstract

In real-time environment, data usually has a
lifespan associated with it. The semantics and the
importance of the data depend on the time when data is
utilized. Hence, the process of getting a consensus data
from a group of replicated units must not take longer
time than the lifespan of the data. However, in real
environment, every unit, faulty or non-faulty, may
encounter delays when processing and sending their
data which inevitably increases the time of acquiring a
consensus. The latency for obtaining a valid data
hence depends not only on the time when individual
replicas make their votes, but also on the accuracy and
credibility of the votes. Thus, a new metric, i.e. a
credibility function, needs to be taken into account
when evaluating expected time and deciding upon data
replications. This paper presents analytical solutions
for the expected time when dependable data can be
obtained under different voting schemes. We show that
if not all replicas are truthful, increasing replication
does not reduce the time for obtaining valid results.
When different types of resources are used to ensure
the quality of the data, we show that the allocation of
the resource plays an important role in satisfying both
data availability and consistency constraints. We
further demonstrate that that when point-based
constraints may be intrinsically impossible to satisfy, a
more general interval-based constraint can be used to
obtain statistical solutions.

1. Introduction

In presence of hardware or software failures, which
may be caused by intentional attacks or unintentional
human errors, replicating the functional units and then
getting majority consensus of output data from these
replicated units is a widely used approach to prevent
the propagation of erroneous information to the

ultimate end-users. To distinguish our use of
replication from other methods for achieving fault
tolerance, such as stand-by sparring, we note that our
replicas submit their results that serve as votes for
tabulation of consensus. Therefore, we refer to
individual replicas as voters. Real-time data usually
has a lifespan (∆) associated with it [13]. In other
words, the semantics and the importance of the data
depend on time. Data becomes stale, and using it
beyond its intended lifespan can be catastrophic.
Hence, the process of getting the consensus of the data
from a group of replicated units and delivered it to the
data client must not take longer than the lifespan of the
data.

However, as contended by Dr. Lee [15] that though
ironical, the advances in computer architecture and
software have made it difficult or impossible to
estimate or predict the execution time of software in a
networked and embedded system. Every embedded
unit, faulty or non-faulty, may encounter delays when
processing and sending their voting data which
inevitably increases the time to a consensus. Most
voting schemes use a deadline to mark the end of the
data’s lifespan [13]. If a deadline is reached before the
corresponding consensus is obtained, the data is
discarded and a new round of data solicitation is
initiated. This approach though guarantees data safety,
it does not guarantee data availability.

The precise execution time of software in a
networked and embedded system is difficult to predict;
yet aggravating the difficulty are potential malicious
attacks to the system. Although precise predictions are
unobtainable, the statistical behavior of software and
the network is, nevertheless, generally attainable. The
paper presents our use of statistical data to increase
real-time data availability based on: 1) expected time,
and 2) how resource availability may impact the time a
decision is made. In addition, we apply more
generalized timing constraints - interval-based timing
constraints [14, 26, 27] - that refine the timing

constraints (where feasible resource allocations exist),
whereas the point-based timing constraints are
intrinsically infeasible.

The rest of the paper is organized as follows:
Section 2 presents the background in voting
mechanisms. Section 3 first gives formal definitions
and terms that our analysis is based on. Then the
analytical results on the expected time for obtaining
valid votes in different voting protocols are given.
Assuming all voters are truthful, we show how the
number of replicas as well as their voting probability
and credibility affect the data safety and availability in
real-time environment. Moreover, in the situation
where not all voters are truthful, we show that adding
homogeneous resources does not improve much on the
time of getting valid voting results. Section 4 presents
how to adjust resource allocation to satisfy data
consistency constraints while maintaining
dependability and data availability in heterogonous
environments. We show that point-based timing
constraints are sometimes insufficient and therefore
generally unsuitable for describing constraints in a
networked and embedded system. We then identify the
need for the more natural and general interval-based
timing constraints. Section 5 gives an introduction to
the interval-based timing constraints. Section 6 shows
how to use interval-based timing constraint to describe
constraints where feasible resource allocations exist.
Related work is discussed in Section 7. Section 8
summarizes our conclusions and future work.

2. Background

In embedded systems, data sensed from the
environment may have a timeliness parameter (∆). The
timeliness pertains to how soon a data should be
delivered at the user since the occurrence of reference
datum it represents. It depicts that the data has a life
time after the expiry of which it is of no use [12].

Consider an example presented in [13], the
detection of an enemy plane flying at azimuthal
location 35.0°. A radar unit may report detection at a
reasonable close azimuth 35.1°. This report should be
delivered to the Command and Control center (C2)
within a few seconds of the presence of enemy plane at
the reported azimuth. With such tolerances in
reporting, a missile fired at the enemy plane by C2 can
still be within intended hit range. However, a faulty
radar unit may report the plane to be at, say, 55.0°
azimuth to prevent the plane from being hit or send an
accurate azimuth but so late that the plane has left the
hit range. To avoid single point of failure, multiple
radar systems are deployed and we use voting protocol
to decide the correct data.

The boolean expression (T(d) < ∆(d)) tests if the
time T(d) for the data d to reach its client meets the
timing constraint of ∆(d). A voting protocol should
validate d for reasonable accuracy and for timely
delivery with respect to ∆(d), in the presence of
possible failures. For data safety reasons, if the
decision unit cannot decide on d with reasonable
assurance within the data delivery deadline ∆(d), it
discards the data d and initializes a new round of data
collection. This approach guarantees the data safety
with close to 100% assurance (at least from the
decision unit perspective), but the data availability is
not unrivaled especially when unexpected delays occur
at sensing, processing or transporting units.

As argued by Dr. Lee in his invited talk [15] that
precise timing estimation of software execution time in
embedded networked systems is impossible. Instead,
what we may know is a statistic time within a range.
For instance, upon an enemy plane has emerged in the
region at time 0, it usually takes a non-faulty radar t1 to
t2 seconds to detect it and transmit the information to
the control center. In other words, normally, the
command and control center should receive the plane
information within the [t1, t2] time interval. However,
the exact time may only be known statistically even for
non-faulty units. Thus, knowing expected time when
valid data will arrive prepares the data end user for
appropriate actions if the expectation is not realized. A
further observation is that under non-faulty
circumstance, if data are only statistically certain,
increasing the number of replicas (sensors in our
example) will increase probabilistic guarantees.

3. Expected Time for Obtaining a Valid
Vote in Different Voting Protocols

In this section, our discussion is based on the
assumption that all the n sensor units provide datum Di
to the decision unit(s) and the inherently correct data
value is D. The information credibility may not be at
the fixed 100% level, that is, Di may not always be the
same as D. Instead, it may be time dependent. We use
a credibility function Ci(t) to describe the probability
that Di is the same as D at time t.

The following voting schemes are discussed here:
 1-out-of-n scheme. Under truthful assumption,

we have that Di = D, that is, every sensor unit
provides correct data and Ci(t) = 1. In this case,
once the decision unit gets a datum Di from any
sensor, it can deliver Di to the user without
waiting for data from other sensors.

 k-out-of-n scheme. In the presence of faulty
voters, a datum Di given by a faulty voter may not

be in agreement with the data of non-faulty
voters. However, a datum Di given by a non-
faulty voter will be in close agreement with (or
simply the same as) the data D of all the other
non-faulty voters. We assume that the inherently
correct data D is in the majority so that D can be
determined by majority voting protocols. The
credibility function Ci(t) is given to be monotonic
with bound of [0, 1]. The monotonicity indicates
that with more time, we would get more
trustworthy data.

We further assume that the probability distribution
function for the time a sensor i takes to obtain and
transmit data is given as Vi(t). In other words, the
probability that the decision unit get a datum from a
sensor i by time t is given by Vi(t).

To formulate the problem, let Xi be the random
variable representing if the decision unit get a vote
from the ith sensor

1,
0,

 the vote of the i'th sensor is given
i

if
X

otherwise


= 


 (1)

Thus, P{Xi = 1} = Vi(t), P{Xi = 0} = 1−Vi(t)
Moreover, we interpret data credibility as the

probability that a given data Di agrees with the
inherently correct data D. Let Yi be the random variable
representing whether the data Di agrees with D, that is

1,
0,

 the vote given by the i'th sensor is
i

if D
Y

otherwise


= 


(2)
Thus, P{Yi = 1| Xi = 1} = Ci(t), P{Yi = 0| Xi = 1} =

1−Ci(t). Therefore, the probability that the decision
unit get a correct vote from the ith sensor is
 { 1 1}

{ 1| 1} { 1} () ()
i i i

i i i i i

p P Y X
P Y X P X C t V t

= = ∩ =
= = = × = =

 (3)

and the probability that the decision unit cannot get a
correct vote (either the vote is not given, or the given
vote is incorrect) from the ith voter is

{ 0 0}

{ 1 1} 1 1 () ()
i i i

i i i i i

q P Y X

P Y X p C t V t

= = ∪ =

= = ∩ = = − = −
 (4)

When all sensors are homogeneous, i.e., their Ci(t)
and Vi(t) are identical, the probability that at least k
similar (or the same as D) votes are collected is the
summation of binomial distributions

1

1

() (1)

() ()

n n
i n i

i i
i i k

n

n
P X Y k p p

i
where
p p p C t V t

−

= =

  ∧ ≥ = −   
   

= = = =

∑ ∑
 (5)

Note that p is a function of t, it follows that (5) is
the probability that at least k similar votes are collected

before time t. Let random variable T represent the time
at which enough similar votes (at least k) are collected,
i.e., the decision time, we have

{ }

{ }
1

0

(1)

1 (1) (1)

n
i n i

i k

n k
i n i i n i

i k i

n
P T t p p

i
and

n n
P T t p p p p

i i

−

=

−
− −

= =

 
≤ = − 

 

   > = − − = −   
   

∑

∑ ∑

 (6)

Therefore, the expected time that at least k
same/similar votes are collected by the decision unit is

() ()

0

1

00

[] { }

() () 1 () ()
k

i n i

i

E T P T t dt

n
C t V t C t V t dt

i

∞

∞ −
−

=

= >

 
= − 

 

∫

∑∫

 (7)

Note that in (7), different k’s are used in distinct
voting schemes. In 1-out-of-n scheme where all sensors
are truthful, we have that k = 1. Whereas in k-out-of-n
scheme, we have k = (n+1)/2 in majority voting
protocols and k = 2n/3 in the more stringent
Byzantine voting protocols. In the following
subsections, we discuss these schemes separately,
assuming C(t) and V(t) are given.

3.1. Truthful Voters

Under this scheme, we have k = 1 and C(t) = 1 in
(7). We further assume that V(t) is uniformly
distributed over the interval [0, T1], i.e.,

 1
1

, (0,)
()

1,

t if t T
TV t

otherwise

 ∈= 


 (8)

Substitute k, C(t), and V(t) in (7), we have

()
1

1

1
10

1[] 1 1 1
1

nT
n

T

tE T dt dt T
T n

∞ 
= − + − =  + 
∫ ∫ (9)

Equation (9) indicates that as n increases, E[T]
decreases. In other words, under truthful assumption,
resource availability positively impact data availability
and system dependability. More careful observation
reveals that the voting subsystem under truthful
assumption is in fact a parallel system where the
probability that the decision unit get at least one
correct data from n sensors is

1 1

1 1

{ () 1} 1 { () 0}

1 1 (1 () ())

n n

i i i i
i i

n n

i i i
i i

P X Y P X Y

q C t V t

= =

= =

∧ ≥ = − ∧ =

= − = − −

∑ ∑

∏ ∏
(10)

in which ∏qi characterizes a parallel system. In such a

system, sensor units work in a “co-operative” way.
Therefore, adding resources (more homogenous sensor
units) to the subsystem improves its performance and
thus reduces the expected decision time.

Similarly, consider a situation in which the data
coming from the sensors are at constant rate (λ) for any
unit interval, i.e., the number of data within a unit time
is constant over time. Based on probability theory, we
know that such event probability distribution can be
modeled as exponential distribution, with probability
distribution function given below

 () 1 , 0tV t e tλ−= − ≥ (11)

Substitute k, C(t), and V(t) in (7), we have

0

1 1[] n tE T e dt
n

λ

λ

∞
−= = ⋅∫ (12)

Therefore, though the probability distribution
functions for voting time are different, if all the sensors
are truthful, increasing n, i.e., the number of resources,
reduces the expected time to obtain assured votes.

3.2. Untruthful Voters

Under untruthful voter scenario, k is determined by
the specific majority voting protocol (we use k =
(n+1)/2 in the following discussions). We further
assume that C(t) is uniformly distributed over the
interval [0, T2] and V(t) = 11. From (5), we can derive
the probability of getting a valid data before time t:

()2
(1) / 2 2 2

() 1 [0,]
i n in

i n

n t tP t t T
i T T

−

= +  

    
= − ∈    

     
∑ (13)

Figure 1 shows the relationships between P(t) and n
under different t. As can be seen, when t = 0.4T2,
which means that the probability of getting a valid vote
from an individual voter by time t is less than 50%,
adding more homogeneously untruthful resources only
makes it harder to get a consensus within given time.
Intuitively, if over 50% chance a voter is to lie, adding
more such voters only reduce the probability of getting
valid votes within a given time. However, when t =
0.6T2, which means that the probability of getting a
valid vote from an individual voter by time t is greater
than 50%, adding more homogeneous resources
facilitates the decision process, thus resulting in an
increasing probability of obtaining a valid vote. The
question now is: how does the resource availability
influence the average decision time and thus the data

1 Although it is unreasonable to assume V(t) = 1, i.e., a sensor is
constantly giving out vote to the decision unit, we do this to simplify
calculations and because not V(t) alone but C(t)×V(t) characterizes

availability?

 (a) t = 0.4 T2

 (b) t = 0.6 T2

Figure 1. The relationship between P(t) and n

Substitute C(t), and V(t) in (7), we have

() ()
2

2

2

1 1

0 02 20

1

0 2 20

[] 1 1 1 1

1

i n iT k k
i n i

i iT

i n iTk

i

n nt tE T dt dt
i iT T

n t t dt
i T T

− ∞− −
−

= =

−−

=

      
= − + −      

      

    
= −    

     

∑ ∑∫ ∫

∑ ∫

(14)
Make the substitution x = t/T2 ⇒ dx = (1/T2)dt in

(14), we have

()
11

2
0 0

[] 1
k

n ii

i

n
E T x x T dx

i

−
−

=

 
= − 

 
∑ ∫ (15)

Integrate by parts, we have

() () ()

()

1 11
1 1

0
0 0

1
11

0

11 1 1
1

1
1

n i n i n ii i i

x

n ii

x x dx x x x d x
i

n i x x dx
i

− − −+ +

=

− −+

 
− = − − − +  

−= −
+

∫ ∫

∫
 (16)

the possibility that the decision unit gets a vote valued D, which is
the inherently correct data.

Use mathematical induction on (16), we can prove
that

()
1

0

!()!1
(1)!

n ii i n ix x dx
n

− −− =
+∫ (17)

Therefore, from (15) and (17), we have that
1 1

2 2 2
0 0

!()! 1[]
(1)! 1 1

k k

i i

n i n i kE T T T T
i n n n

− −

= =

  −= = =  + + + 
∑ ∑ (18)

Given that k = (n+1)/2 and n is large, we have
2[] 2E T T= (19)

Therefore, in an open hostile environment where not
all voters are truthful, adding homogeneous resource
does not impact the expected time of getting a valid
vote. The intuitive explanation for this result is that the
integrated effects of Figure 1(a) and (b) are neutralized.

Similarly, when the credibility function C(t) is
exponentially distributed over the interval [0,∞) with
average rate λ, that is,
 () 1 , [0,)tC t e tλ−= − ∈ ∞ (20)

Using (7), we have
 () ()

1

0 0

[] 1
k i n it t

i

n
E T e e dt

i
λ λ

∞− −− −

=

 
= − 

 
∑ ∫ (21)

Make the substitution where x = e−λt ⇒ dx =
−λe−λtdt =−λxdt, we have

()

()

01

0 1
11

1

0 0

1[] 1

1 1

k
i n i

i

k
i n i

i

n
E T x x dx

i x

n
x x dx

i

λ

λ

−
−

=

−
− −

=

 = −  − 
 

= − 
 

∑ ∫

∑ ∫

 (22)

Integrate by parts and use mathematical induction,
we can prove that

 ()
1

1

0

!(1)!1
!

i n i i n ix x dx
n

− − − −− =∫ (23)

Therefore, from (22) and (23), we have that,
1

0

1 1

0 0

1 !(1)![]
!

1 ! !(1)! 1 1
!()! !

k

i

k k

i i

n i n iE T
i n

n i n i
i n i n n i

λ

λ λ

−

=

− −

= =

  − −=  
 

− −= =
− −

∑

∑ ∑

 (24)

where k = (n+1)/2. The relationship between E[T]
and n in case of exponential distribution is illustrated
in Figure 2. As can be seen, when the number of
working sensors are small, increasing the number of
sensors generally decreases expected decision time.
However, since

(1) /2 1

0

1lim ln ln ln 2 0.6931
2

n

n i

nn
n i

+ −  

→∞ =

= − = ≈
−∑ (25)

The expected decision time converges at ln2/λ and no
further decrease can be achieved by adding more
resources. For example, with 11 sensors, the expected
decision time is 0.7365/λ, while with 23 sensors, the
expected decision time is 0.7144/λ  a 3.0% time gain
is at the cost of more than twice the resources.

Figure 2. Expected Decision Time with λ=1

4. Data Availability and Its Consistency
Constraints

In heterogonous environments, data come from
different sources. However, they need to be
semantically coherent if such data are to be delivered
to the end users. Consider a setting in which two types
of sensors are deployed in a region to monitor potential
targets. One type is infrared (IR) sensors used for
producing thermo graphic images. Another type is
radio wave (RW) sensors used for measuring speed of
targets. The IR sensors produce clear and reliable data.
However, due to electromagnetic interferences, RW
sensors produce less reliable data and hence it is
necessary to get a consensus from other RW sensors
deployed in the region. Furthermore, in order for a
soldier or Command and Control Center to take critical
actions, the data from two different sources (IR and
RW) must be coherent  not only they provide the
correlated information, but also the information from
two different sources must arrive at the requester
within a limited time frame ∆, or these two sets of
information may not be related.

Now, assume that the external requests come at
time t0, and a valid datum (already checked for
majority) from group IR becomes available at t1 and a
valid datum from group RW becomes available at t2.
Given the assumptions and results in Section 3,
together with the relative span requirement ∆, we have
the following timing constraints

()
()

1 0 1 1

2 0 2 2

1 2

1

ln 2

t t IR

t t

t t

λ

λ

 − = ≤ ∆
 − = ≤ ∆
 − ≤ ∆

 (26)

The first two equations come from (12) and (24)
where |IR| and |RW| (|RW| is not reflected in the
equation because of (25)) are the number of sensors
under group IR and RW 2 . ∆1, ∆2 are the individual
deadline requirements for the two data, respectively,
and ∆ is the required maximum time span of the two
replies. We further convert the constraints into the
form x1−x2 ≤ d and instantiate a timing constraint graph
as shown in Figure 3.

Figure 3. Timing Constraint Graph

With such a constraint graph, the Bellman-Ford

algorithm is used to detect if the graph has negative-
weight cycles. The existence of negative-weight cycle
in the constraint graph indicates that the constraints are
unsatisfiable. The cycle 0 1 1(1 (| |)),t t IRλ 1 2 (),t t ∆

2 0 2(ln 2)t t λ− is negative if

1 2

1 ln 2 0
| |IRλ λ

+ ∆ − < (27)

which indicates that the time-consistency constraint
between the two data is infeasible. This means that
group IR is so fast that group RW cannot match with it.
In this case, the system designers must reconsider the
specification or declare exception handling to relocate
resources (e.g., cut down the number of sensors in
group IR). However, such resource reduction must not
be at the cost of reduced individual data availability
level, that is, if 1/(λ1|IR|) becomes too large because of
decrease of |IR|, there will be another negative cycle

0 1 1 1 0 1(), (1 (| |))t t t t IRλ∆ − if

1
1

1 0
| |IRλ

− + ∆ < (28)

2 Although the actual decision times may deviate from the expected
decision times, we use expectation here to simplify the discussion.
However, the same discussion follows if deviations, e.g., standard
deviations, are added. Also note that since we use expected values,
the constraint specification is in fact soft. A hard real-time
specification which requires that data be delivered with probability 1
will not be appropriate here since it would take arbitrarily long time
to make the probability reasonably close to 1 under exponential
distribution.

which means that group IR cannot meet the individual
deadline requirement and thus dependability
requirement is violated.

Therefore, to adjust the cardinality of group IR to
satisfy the time-consistency constraint of data and
retain data availability, both (27) and (28) need to be
taken into account:

1 2 2

1 1 1 2
1

1

1 ln 2 0
| | 1 1,

1 ln 20
| |

IR
IR

IR

λ λ λ
λ λ λ

λ

 + ∆ − ≥   ⇒ ∈  ∆ − ∆ − + ∆ ≥


 (29)

However, (29) may be intrinsically infeasible when
2

1
1 1 1 2 2

1 1 ln 2
ln 2

λ
λ λ λ λ

> ⇒ > ∆ + ∆
∆ − ∆

 (30)

Equation (30) implies another negative cycle in the
constraint graph. This intrinsic infeasibility comes
from the fact that when not all voters are truthful, any
attempt to shorten the expected time of getting a valid
vote by adding homogeneous resource will be futile.

Under soft-deadline settings, with the probability
distribution function in (5), it is possible to relax the
timing constraints as in (26) by adopting the interval-
based timing constraints [14, 26, 27]. In the next two
sections, we show that when timing constraints are
relaxed from point-based to interval-based, we are able
to obtain a feasible solution to the problem of deciding
necessary number of voters.

5. Interval-based Constraint Model

Generally speaking, real-time constraints can be
categorized into two classes, namely, deadline
constraints or delay constraints. More specifically, a
deadline constraint between two events with
timestamps σ and γ is modeled as σ + d ≥ γ, while a
delay constraint is modeled as σ + d < γ, where d ≥ 0
is a constant representing a deadline or a delay.

For self-completeness, we quote the related
definitions (Definition 1 through 3) from [14] in the
following.

Definition 1 (Timestamp) A timestamp I consists of
a pair of time points: [min_time, max_time] where
min_time and max_time are the earliest and latest time
point at which an event may occur, respectively.
Moreover, given a timestamp I, we assume the
probability density function of X representing the time
point at which the event may occur is f(x).

Definition 2 (Function min, max, and len) Given a
timestamp I = (min_time, max_time), the min, max and
len functions of a timestamp I are defined as follows:

)()()(
)(
)(

IminImaxIlen
max_timeImax
min_timeImin

−=
=
=

For the sake of brevity, we use mink, maxk, and lenk
to denote min(Ik), max(Ik), and len(Ik), respectively,
where Ik is a timestamp.

Definition 3 (Interval-based timing constraint)
An interval-based deadline constraint with a
confidence threshold is given by:

2 1:c I I d with P+ − ≤ (31)

where I1 and I2 are timestamps, d ≥ 0 is a constant
representing a deadline, and P is a confidence
threshold ranging from 0% to 100%.

Given the definitions above, we present Theorem 1
[27] that calculates the satisfaction probability of a
deadline constraint and under arbitrary probability
density functions. If the calculated satisfaction
probability is less than the confidence threshold, we
know at compile time that the specified constraint is
not satisfiable.

Theorem 1 Given a deadline constraint c+: I1 + d ≥
I2, where d ≥ 0, and f(x), g(y) are the probability
density functions of independent event occurrences on
interval I1 and I2 , respectively, the satisfaction
probability of c+, +c

SP is given by the expression:
1 2

1 2 2

1 2

1 2

max (,max)

(min ,min) min
max max

min min

() ()

() ()

MIN x d

x MAX d y
c

f x g y dydx
SP

f x dx g y dy
+

+

= − ==
⋅

∫ ∫
∫ ∫

 (32)

Proof:
Let X∈ I1, Y∈ I2 be two continuous random

variables with density functions f(x) and g(y). Since the
two random variables are mutually independent, the
joint density function z(x, y) is simply the product of
their individual density functions, as shown in Figure 4.

Figure 4. Joint density function of

independent events on two intervals.

Furthermore, the joint cumulative distribution over
I1 = [min1, max1] and I2 = [min2, max2], denoted as V, is:

∫∫∫ ∫ ⋅==
= =

2

2

1

1

1

1

2

2

max

min

max

min

max

min

max

min
)()(),(dyygdxxfdydxyxzV

x y

The satisfiable region, denoted as V′, is the
intersection between the region y ≤ x+d and V, as
shown in Figure 4. The bold line represents the
intersection between the joint density function and the
plane y = x+d.

The satisfaction probability is thus the ratio between
the satisfiable region V′ and the joint cumulative
distribution V.

To calculate V′, we project the plane y = x+d and
the surface z(x, y) onto the X-Y plane and consider the
relationship between the line y = x+d and the four
points (min1, min2), (min1, max2), (max1, min2), and
(max1, max2). There are only six possible relationships
which correspond to the six permissible configurations
in [14]. Two of the six cases are trivial:

 (min1, max2) is below the line y = x + d, that is,
max2 ≤ min1+d, which implies a 100%
satisfaction probability;

 (max1, min2) is above the line y = x + d, that is,
min2 > max1+d, which implies a 0%
satisfaction probability.

The four non-trivial configurations are:
 αβ configuration, where

min1+d≤ min2 ∧ min2< max1+d≤ max2
 αγ configuration, where

min1+d≤ min2 ∧ max2< max1+d
 ββ configuration, where

min2< min1+d≤ max2 ∧ min2< max1+d≤ max2
 βγ configuration, where

min2< min1+d≤ max2 ∧ max2< max1+d
Figure 5 gives graphical view for the four

configurations. For simplicity and consistency, we
adopt the same naming scheme for the configurations
as in [14] and name the four configurations as αβ, αγ,
ββ, and βγ, respectively.

The satisfiable region V′ in each of them is as
following:

 αβ configuration

∫ ∫−=

+

=
= 1

2 2

max

min min
)()('

dx

dx

y
dxdyygxfV

 αγ configuration

 ∫ ∫∫ ∫
−

−=

+

=−= =
+=

d

dx

dx

ydx y
dxdyygxfdxdyygxfV 2

2 2

1

2

2

2

max

min min

max

max

max

min
)()()()('

 ββ configuration

∫ ∫=

+

=
= 1

1 2

max

min min
)()('

x

dx

y
dxdyygxfV

 βγ configuration

∫ ∫∫ ∫
−

=

+

=−= =
+=

d

x

dx

ydx y
dxdyygxfdxdyygxfV 2

1 2

1

2

2

2

max

min min

max

max

max

min
)()()()('

Equation (32) then follows.
□

Figure 5. Four non-trivial configurations.

6. Interval-Based Timing Constraints in
Distributed Voting Problem

Now, we modify our problem in Section 4 by
relaxing point-based timing constraints to interval-
based timing constraints. Assume that the external
requests come at time t0 = 0, the individual deadline
requirements for the two data are ∆1 and ∆2,
respectively. The required maximum time span of the
two replies is ∆. We further assume that the individual
deadline (data availability) is more important than the
relative span requirement (data consistency). In the
interval-based timing constraint framework, we can
assign the confidence thresholds of individual
deadlines to be 65% and the confidence threshold of
relative span to be 30%  the more important the
constraint, the higher the confidence threshold. The
confidence level, 65%, 30% are chosen for illustration
purpose. They are application dependent. According to
the data availability and consistency constraints shown
in Section 4, we may have the following timing
constraints:

0 0 1 0 1

0 0 2 0 2

0 1 0 2

[,] [,] 65%
[,] [,] 65%
[,] [,] 30%

t t t t with
t t t t with
t t t t with

 + ∆ ≥


+ ∆ ≥
 − ≤ ∆

 (33)

where [t0,t0] is the timestamp of the request, [t0, t1] and
[t0, t2] are the timestamps of the replies from group IR
and group RW, respectively. From (5), we know that

the cumulative distribution functions of getting valid
data under IR and RW are:

1| |
1() 1 IR xP x e λ−= − (34)

and
2 2

| |
(| |)

2
(| | 1) / 2

| |
() (1)

RW
y RW i yi

i RW

RW
P y e e

i
λ λ− − −

= +  

 
= − 

 
∑ (35)

respectively. Thus, the probability density functions
over the two intervals are:

1 2d () d ()() ()
d d
P x P yf x and g y

x y
= = (36)

respectively. The curves of f(x) and g(y) are shown in
Figure 6(a) and (b).

Since we use exponential distributions in this
example, we let t1 and t2 to be arbitrarily large to
guarantee that valid votes can be obtained within the
interval of the timestamp. To facilitate discussion, we
further assume the following parameters: λ1 = 1, λ2 = 1,
∆1 = 0.35, ∆2 = 0.85, and ∆ = 0.3. Under this set of
parameters, (29) fails to hold (because ln2/λ2 > ∆+∆1),
which means that the set of point-based timing
constraints is not feasible. However, as can be seen, the
set of interval-based timing constraints in (33) is
feasible under certain resource allocations.

6.1. Data Availability (Individual Deadline)
Constraints

From (34) and (35), we know that the probabilities
of getting valid data before ∆1 under IR and ∆2 under
RW are P1(∆1) and P2(∆2), respectively. Under the
parameter settings, making |IR| = 3 and |RW| = 7 will
satisfy the first two constraints in (33), with
satisfaction probability P1(∆1) = 65.01% and P2(∆2) =
65.55%, respectively.

6.2. Data Consistency (Relative Time Span)
Constraint

Convert the constraint |[t0, t1]−[t0, t2]| ≤ ∆ with 30%
in (33)into the form of (31):

0 2 0 1[,] [,] 30%t t t t with−∆ ≤ − ≤ ∆ (37)

We now consider the joint density function of f(x)
and g(y), as shown in Figure 6(c) and (d). The
satisfiable region, which is shaded in Figure 6(c), is the
region between y ≤ x+∆ and y ≥ x−∆. Let ()

c
SP x+ + ∆

and ()
c

SP x+ − ∆ denote the satisfaction probabilities

of the constraints [t0, t2] − [t0, t1] ≤ ∆ and [t0, t2] − [t0,
t1] ≤ −∆, respectively. Thus, we have that the
satisfaction probability of the constraint in (37) is

() ()
c c c

SP SP x SP x+ + += + ∆ − − ∆ (38)

Substitute f(x) and g(y) in (32) with dP1(x)/dx and
dP2(y)/dy, respectively, and substitute corresponding
bounds, we have that

1 2

1

(,)
1 2

(0,) 0

1 1 2 2

2 2 1(0,)

1 1 2 2

() ()

()
() ()

((,)) ()

() ()

t MIN x t

x MAX y

c

t

x MAX

dP x dP y dydx
dx dySP x

P t P t

P MIN x t dP x

P t P t

+

+∆

= −∆ =

= −∆

+ ∆ =
⋅

+ ∆
=

⋅

∫ ∫

∫

 (39)
Since t1 and t2 are large enough to guarantee valid

data deliveries (with probabilities P1(t1) → 1, P2(t2) →
1), the satisfaction probability of can be simplified to

2 10
() () ()

c x
SP x P x dP x+

∞

=
+ ∆ = + ∆∫ (40)

Similarly, we have

2 1() () ()
c x

SP x P x dP x+

∞

=∆
− ∆ = − ∆∫ (41)

Therefore, the satisfaction probability of (37) is

2 1 2 10
() () () ()

c x x
SP P x dP x P x dP x+

∞ ∞

= =∆
= + ∆ − − ∆∫ ∫ (42)

From (34), (35), and (42), we can calculate the
value of the satisfaction probability of the data
consistency (relative time span) constraint (37). Using
numerical integration, under the parameter settings, we
have ()

c
SP x+ + ∆ = 38.85%, ()

c
SP x+ − ∆ = 6.78%,

and
c

SP + = 32.07%, which satisfy the specified
confidence threshold.

From the comparison between the examples
presented in this section and Section 4, we can
conclude that:

 Interval-based timing constraints are more
realistic than point-based timing constraints as
the precise time estimation of software
execution time in embedded networked system
is impossible [15]. Instead, what we may know
is a statistical time within a range.

 When a confidence threshold is associated to a
corresponding constraint, the priority of the
constraint is also explicitly specified by the
threshold.

 While certain point-based timing constraints
may be intrinsically infeasible to satisfy,
relaxing timing constraints from point-based to
interval-based, we are able to find feasible
solutions with appropriate resource allocations.

(a) IR group with probability

density function f(x)
(b) RW group with

probability density function
g(y)

(c) Joint density function of f(x) and g(y). The bold lines
represent the intersections between the joint density function
and the planes y = x+∆ and y = x−∆, respectively. The shaded
region which lies between the two planes represents the
satisfiable region.

(d) Contour map of f(x) g(y). The bold lines are projections of
the planes y = x+∆ and y = x−∆ on to the X-Y plane. The
satisfiable region lies between the two lines.

Figure 6. Individual and joint probability

density functions of the two groups.

7. Related Work

It is important for a fault-tolerant distributed
computing system to reach agreement on data values
from non-faulty processes in the presence of faulty
ones. Therefore, voting is widely used in consistency
and agreement algorithms in distributed systems [23].
Many voting protocols have been studied elsewhere by
the research community under various application

settings and environments [6, 10, 25]. [20] gives a very
good summary of various issues in voting. The four
main components of a voting algorithm, namely input
data, output data, input votes, and output votes, can be
used to impose a binary 4-cube classification scheme,
leading to 16 classes [19]. Although we only consider
the expected decision time of the exact consensus
threshold voting, our methodology can be applied to
other voting classes.

One of the most important performance parameters
in evaluating voting schemes is latency. Latency is
defined as the length of the time interval between the
availability of the last input and the production of the
voter output. In most cases, the dominant factor of the
latency of a voting algorithm is not the computational
part of the algorithm but rather the multiple rounds of
communication [5, 11]. [22] discusses the possibility to
strike a balance between the overhead of tight
synchronization and the algorithmic complexity of
fully asynchronous operation via an intermediate
approach.

The idea that diagnostic decisions in dynamic
environments often require trade-offs between decision
accuracy and timeliness comes from [7]. Thus, the time
required to obtain a correct vote in a distributed system
not only depends on the communication latencies but
also the time-dependent accuracy. The vote accuracy is
actually reflected in this paper by the credibility
function monotonically increasing with time. That is,
with more time, we would get more trustworthy and
accurate data.

As for the timing constraints parts, Chodrow et al.
[2] presents a constraint-graph-based algorithm for
detecting violations of timing constraints. To check the
satisfiability for a set of constraints, a constraint graph
is instantiated from the current event histories with an
all-pair shortest path algorithm run on the instantiated
graph. A negative cycle indicates unsatisfiability of the
constraint set.

In [21] and [9], the authors extend the timing
constraint specification and violation detection
algorithm to distributed real-time systems. They
indicate that the derivation of implicit constraints is
essential for catching timing violations at an earlier
time since it is possible that an implicit constraint is
violated before an explicit delay or deadline becomes
unsatisfiable at run-time. They also prove that for
constraint violation detection, the problem of
minimizing the amount of information to be exchanged
between processors is NP-hard.

In [17], Mok and Liu provide a more expressive
specification language based on Real Time Logic to

define timing constraints. To reduce time complexity
of the event monitoring algorithm at run-time, they
resolve most of the shortest path information of the
instantiated constraint graph from the uninstantiated
constraint graph at compilation time. Thus, only small
modifications of the graph are needed during run-time.

Two new timing constraints based on time intervals:
certain and possible are proposed in [18] to specify the
desired degree of certainty whether a timing violation
has occurred. The authors indicate that this interval-
based timing constraint: I1 + d ≥ I2U, where I1 and I2
denote the time intervals in which the corresponding
events may occur, is satisfied either possibly (P) or
certainly (C). The authors further extend the
monitoring algorithm in [17] to monitor interval-based
timing constraints with probabilities.

Lee et al. [14] propose interval-based timing
constraints with a confidence threshold model. The
concept of Earliest Expiration Time (EET) is also
introduced. The knowledge of EET enables the event
monitor to announce the violation of timing constraints
even before the actual deadlines.

Yu et al. [27] extend Lee’s work by considering
more general cases of the interval-based timing
constraint model where events are exponentially or
normally distributed. They use the results from [27] to
study the timing constraints between a pair of faults in
a distributed embedded system in [26].

Examples of other stochastic approaches in real-
time applications can be found in [1, 3, 4, 8, 16, 24].

8. Conclusion

In this paper, we have studied the expected decision
times under two different voting schemes. We assume
that the latency for obtaining valid data depends not
only on the time that a sensor gives a vote, but also on
the time-dependent accuracy of the vote. Assuming all
voters are truthful, we show that increasing the number
of resources reduces the expected time of obtaining
assured votes. Our analytic study has also shown that
in an environment where not all voters are truthful,
adding homogeneous resources may increase the
trustworthiness of the voting, but it offers little
improvement on the expected delivery time of the
voting.

In addition, we have demonstrated that the timing
information of groups of homogenous sensors can be
used to balance the trade-off between data consistency
constraints and data availability requirements in a
heterogonous environment.

There are situations where point-based timing
constraints are not only difficult to accurately specified,

but also not satisfiable. In contrast, interval-based
timing constraint not only provides a more general
format for timing constraints and is more realistic, but
also it allows us to obtain statistical solutions when
guaranteed solutions are not available.

9. References

[1] L. Abeni and G. Buttazzo, “Qos guarantee using

probabilistic deadlines,” in Proc. of the 11th Euromicro
Conference on Real-Time Systems, 1999, pp. 242–249.

[2] S. Chodrow, F. Jahanian, and M. Donner, “Run-time
monitoring of real time systems,” in Proc. of the 12th
IEEE Real-Time Systems Symposium, 1991, pp. 74–83.

[3] L. David and I. Puaut, “Static determination of
probabilistic execution times,” in Proc. of the 16th
Euromicro Conference on Real-Time Systems, 2004,
pp. 223–230.

[4] J. L. D ı́az, D. F. Garc ı́a, K. Kim, C.-G. Lee, L. L.
Bello, J. M. L´opez, S. L. Min, and O. Mirabella,
“Stochastic analysis of periodic real-time systems,” in
Proc. of the 23rd IEEE Real-Time Systems Symposium,
2002, pp. 289–300.

[5] D. Dolev, N. A. Lynch, S. S. Pinter, and E. W. Stark,
“Reaching approximate agreement in the presence of
faults,” In ACM Journal, vol. 33, no. 3, pp. 499-516,
July 1986.

[6] S. Hariri, A. Choudhary, and B. Sarikaya,
“Architectural support for designing fault-tolerant open
distributed systems,” In IEEE Computer, pp. 50-62,
June 1992.

[7] M. Hildebrandt and J. Meyer, “When to act? Managing
time-accuracy trade-offs in a dynamic belief updating
task,” In Proc. the 49th Annual Meeting of the Human
Factors and Ergonomics Society, 2005.

[8] X. S. Hu, T. Zhou, and E. H.-M. Sha, “Estimating
probabilistic timing performance for real-time
embedded systems,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, pp. 833–853, 2001.

[9] F. Jahanian, R. Rajkumar, and S. Raju, “Run-time
monitoring of timing constraints in distributed real-
time systems,” University of Michigan, Technical
Report CSE-TR 212–94, 1994.

[10] P. Jalote and et al, “Atomic actions on decentralized
data,” Chap. 6, Fault-tolerant Systems, John-Wiley
Publ. Co., 1995.

[11] R. M. Kieckhafer and M. H. Azadmanesh, “Reaching
approximate agreement with mixed-mode faults,” In
IEEE Trans. Parallel and Distributed Systems, vol. 5,
no. 1, pp. 53-63, January 1994.

[12] H. Kopetz and P. Verissmo, “Real time dependability
concepts,” Chap. 16, Distributed Systems, S. Mullender,
Addison-Wesl. Co., 1993.

[13] K. A. Kwiat, K. Ravindran, and P. Hurley, “Energy-
efficient replica voting mechanisms for secure real-
time embedded systems,” In Proc. of the 6th IEEE

International Symposium on a World of Wireless
Mobile and Multimedia Networks, 2005.

[14] C.-G. Lee, A. Mok, and P. Konana, “Monitoring of
timing constraints with confidence threshold
requirements,” in Proc. of the 24th IEEE Real Time
Systems Symposium, 2003, pp. 178–187.

[15] E. A. Lee, “Building unreliable systems out of reliable
components: the real time story,” Abstract of Invited
Plenary Talk, Monterey Workshop, Laguna Beach,
California, September 22, 2005.

[16] S. Manolache, P. Eles, and Z. Peng, “Optimization of
soft real-time systems with deadline miss ratio
constraints,” in Proc. of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium,
2004, pp. 562–570.

[17] A. K. Mok and G. Liu, “Efficient run-time monitoring
of timing constraint,” in Proc. of the 3rd IEEE Real
Time Technology and Applications Symposium, 1997,
pp. 252–262.

[18] A. K. Mok, C.-G. Lee, H. Woo, and P. Konana, “The
monitoring of timing constraints on time intervals,” in
Proc. of the 23rd IEEE Real Time Systems Symposium,
2002, pp. 191–200.

[19] B. Parhami, “A taxonomy of voting schemes for data
fusion and dependable computation,” In Reliability
Engineering and System Safety, vol. 52, no. 2, pp. 139-
151, May 1996.

[20] B. Parhami, “Voting: a paradigm for adjudication and
data fusion in dependable systems,” Chap. 4,
Dependable Computing Systems, edited by H. B. Diab
and A. Y. Zomaya, John-Wiley Publ. Co., 2005.

[21] S. Raju and R. Rajkumar, “Monitoring timing
constraints in distributed real time systems,” in Proc. of
the 13th IEEE Real-Time Systems Symposium, 1992,
pp. 57–67.

[22] K. G. Shin and J. W. Dolter, “Alternative majority-
voting methods for real-time computing systems,” In
IEEE Trans. Reliability, vol. 38, no. 1, pp. 58-64, April
1989.

[23] M. Spasojevic and P. Berman, “Voting as the optimal
static pessimistic scheme for managing replicated
data,” In IEEE Trans. Computers, vol. 24, no. 5, pp.
525-533, May 1975.

[24] S. Wang, J. R. Merrick, and K. G. Shin, “Component
allocation with multiple resource constraints for large
embedded real-time software design,” in Proc. of the
10th IEEE Real-Time and Embedded Technology and
Applications Symposium, 2004, pp. 219–226.

[25] H. Y. Youn, J. Y. Lee, and A. D. Singh, “Adaptive
unanimous voting scheme for distributed self-
diagnosis,” In IEEE Trans. Computers, pp. 730-735,
1995.

[26] Y. Yu, S. Ren, and O. Frieder, “Prediction of timing
constraint violation for real-time embedded systems
with known hardware failure model,” In Proc. of the
27th IEEE Real-Time Systems Symposium, 2006.

[27] Y. Yu, W. Guan, S. Ren, O. Frieder, “Satisfaction
Probabilities of Interval-based Timing Constraints”
(Submitted to IEEE Transactions on Computers)

