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Abstract 
 

In real-time environment, data usually has a 
lifespan associated with it. The semantics and the 
importance of the data depend on the time when data is 
utilized. Hence, the process of getting a consensus data 
from a group of replicated units must not take longer 
time than the lifespan of the data. However, in real 
environment, every unit, faulty or non-faulty, may 
encounter delays when processing and sending their 
data which inevitably increases the time of acquiring a 
consensus. The latency for obtaining a valid data 
hence depends not only on the time when individual 
replicas make their votes, but also on the accuracy and 
credibility of the votes. Thus, a new metric, i.e. a 
credibility function, needs to be taken into account 
when evaluating expected time and deciding upon data 
replications. This paper presents analytical solutions 
for the expected time when dependable data can be 
obtained under different voting schemes. We show that 
if not all replicas are truthful, increasing replication 
does not reduce the time for obtaining valid results. 
When different types of resources are used to ensure 
the quality of the data, we show that the allocation of 
the resource plays an important role in satisfying both 
data availability and consistency constraints. We 
further demonstrate that that when point-based 
constraints may be intrinsically impossible to satisfy, a 
more general interval-based constraint can be used to 
obtain statistical solutions. 
 
1. Introduction 
 

In presence of hardware or software failures, which 
may be caused by intentional attacks or unintentional 
human errors, replicating the functional units and then 
getting majority consensus of output data from these 
replicated units is a widely used approach to prevent 
the propagation of erroneous information to the 

ultimate end-users. To distinguish our use of 
replication from other methods for achieving fault 
tolerance, such as stand-by sparring, we note that our 
replicas submit their results that serve as votes for 
tabulation of consensus. Therefore, we refer to 
individual replicas as voters. Real-time data usually 
has a lifespan (∆) associated with it [13]. In other 
words, the semantics and the importance of the data 
depend on time. Data becomes stale, and using it 
beyond its intended lifespan can be catastrophic. 
Hence, the process of getting the consensus of the data 
from a group of replicated units and delivered it to the 
data client must not take longer than the lifespan of the 
data. 

However, as contended by Dr. Lee [15] that though 
ironical, the advances in computer architecture and 
software have made it difficult or impossible to 
estimate or predict the execution time of software in a 
networked and embedded system. Every embedded 
unit, faulty or non-faulty, may encounter delays when 
processing and sending their voting data which 
inevitably increases the time to a consensus. Most 
voting schemes use a deadline to mark the end of the 
data’s lifespan [13]. If a deadline is reached before the 
corresponding consensus is obtained, the data is 
discarded and a new round of data solicitation is 
initiated. This approach though guarantees data safety, 
it does not guarantee data availability. 

The precise execution time of software in a 
networked and embedded system is difficult to predict; 
yet aggravating the difficulty are potential malicious 
attacks to the system. Although precise predictions are 
unobtainable, the statistical behavior of software and 
the network is, nevertheless, generally attainable. The 
paper presents our use of statistical data to increase 
real-time data availability based on: 1) expected time, 
and 2) how resource availability may impact the time a 
decision is made. In addition, we apply more 
generalized timing constraints - interval-based timing 
constraints [14, 26, 27] - that refine the timing 



constraints (where feasible resource allocations exist), 
whereas the point-based timing constraints are 
intrinsically infeasible. 

The rest of the paper is organized as follows: 
Section 2 presents the background in voting 
mechanisms. Section 3 first gives formal definitions 
and terms that our analysis is based on. Then the 
analytical results on the expected time for obtaining 
valid votes in different voting protocols are given. 
Assuming all voters are truthful, we show how the 
number of replicas as well as their voting probability 
and credibility affect the data safety and availability in 
real-time environment. Moreover, in the situation 
where not all voters are truthful, we show that adding 
homogeneous resources does not improve much on the 
time of getting valid voting results. Section 4 presents 
how to adjust resource allocation to satisfy data 
consistency constraints while maintaining 
dependability and data availability in heterogonous 
environments. We show that point-based timing 
constraints are sometimes insufficient and therefore 
generally unsuitable for describing constraints in a 
networked and embedded system. We then identify the 
need for the more natural and general interval-based 
timing constraints. Section 5 gives an introduction to 
the interval-based timing constraints. Section 6 shows 
how to use interval-based timing constraint to describe 
constraints where feasible resource allocations exist. 
Related work is discussed in Section 7. Section 8 
summarizes our conclusions and future work. 
 
2. Background 
 

In embedded systems, data sensed from the 
environment may have a timeliness parameter (∆). The 
timeliness pertains to how soon a data should be 
delivered at the user since the occurrence of reference 
datum it represents. It depicts that the data has a life 
time after the expiry of which it is of no use [12]. 

Consider an example presented in [13], the 
detection of an enemy plane flying at azimuthal 
location 35.0°. A radar unit may report detection at a 
reasonable close azimuth 35.1°. This report should be 
delivered to the Command and Control center (C2) 
within a few seconds of the presence of enemy plane at 
the reported azimuth. With such tolerances in 
reporting, a missile fired at the enemy plane by C2 can 
still be within intended hit range. However, a faulty 
radar unit may report the plane to be at, say, 55.0° 
azimuth to prevent the plane from being hit or send an 
accurate azimuth but so late that the plane has left the 
hit range. To avoid single point of failure, multiple 
radar systems are deployed and we use voting protocol 
to decide the correct data.  

The boolean expression (T(d) < ∆(d)) tests if the 
time T(d) for the data d to reach its client meets the 
timing constraint of ∆(d). A voting protocol should 
validate d for reasonable accuracy and for timely 
delivery with respect to ∆(d), in the presence of 
possible failures. For data safety reasons, if the 
decision unit cannot decide on d with reasonable 
assurance within the data delivery deadline ∆(d), it 
discards the data d and initializes a new round of data 
collection. This approach guarantees the data safety 
with close to 100% assurance (at least from the 
decision unit perspective), but the data availability is 
not unrivaled especially when unexpected delays occur 
at sensing, processing or transporting units. 

As argued by Dr. Lee in his invited talk [15] that 
precise timing estimation of software execution time in 
embedded networked systems is impossible. Instead, 
what we may know is a statistic time within a range. 
For instance, upon an enemy plane has emerged in the 
region at time 0, it usually takes a non-faulty radar t1 to 
t2 seconds to detect it and transmit the information to 
the control center. In other words, normally, the 
command and control center should receive the plane 
information within the [t1, t2] time interval. However, 
the exact time may only be known statistically even for 
non-faulty units. Thus, knowing expected time when 
valid data will arrive prepares the data end user for 
appropriate actions if the expectation is not realized. A 
further observation is that under non-faulty 
circumstance, if data are only statistically certain, 
increasing the number of replicas (sensors in our 
example) will increase probabilistic guarantees. 

 
3. Expected Time for Obtaining a Valid 
Vote in Different Voting Protocols 
 

In this section, our discussion is based on the 
assumption that all the n sensor units provide datum Di 
to the decision unit(s) and the inherently correct data 
value is D. The information credibility may not be at 
the fixed 100% level, that is, Di may not always be the 
same as D. Instead, it may be time dependent. We use 
a credibility function Ci(t) to describe the probability 
that Di is the same as D at time t.  

The following voting schemes are discussed here: 
 1-out-of-n scheme. Under truthful assumption, 

we have that Di = D, that is, every sensor unit 
provides correct data and Ci(t) = 1. In this case, 
once the decision unit gets a datum Di from any 
sensor, it can deliver Di to the user without 
waiting for data from other sensors.  

 k-out-of-n scheme. In the presence of faulty 
voters, a datum Di given by a faulty voter may not 



be in agreement with the data of non-faulty 
voters. However, a datum Di given by a non-
faulty voter will be in close agreement with (or 
simply the same as) the data D of all the other 
non-faulty voters. We assume that the inherently 
correct data D is in the majority so that D can be 
determined by majority voting protocols. The 
credibility function Ci(t) is given to be monotonic 
with bound of [0, 1]. The monotonicity indicates 
that with more time, we would get more 
trustworthy data. 

We further assume that the probability distribution 
function for the time a sensor i takes to obtain and 
transmit data is given as Vi(t). In other words, the 
probability that the decision unit get a datum from a 
sensor i by time t is given by Vi(t). 

To formulate the problem, let Xi be the random 
variable representing if the decision unit get a vote 
from the ith sensor 

1,
0,

 the vote of the i'th sensor is given
i

if
X

otherwise


= 


       (1) 

Thus, P{Xi = 1} = Vi(t), P{Xi = 0} = 1−Vi(t) 
Moreover, we interpret data credibility as the 

probability that a given data Di agrees with the 
inherently correct data D. Let Yi be the random variable 
representing whether the data Di agrees with D, that is 

1,
0,

 the vote given by the i'th sensor is 
i

if D
Y

otherwise


= 


      

(2) 
Thus, P{Yi = 1| Xi = 1} = Ci(t), P{Yi = 0| Xi = 1} = 

1−Ci(t). Therefore, the probability that the decision 
unit get a correct vote from the ith sensor is 
 { 1 1}
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i i i
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P Y X P X C t V t

= = ∩ =
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          (3) 

and the probability that the decision unit cannot get a 
correct vote (either the vote is not given, or the given 
vote is incorrect) from the ith voter is 

{ 0 0}

{ 1 1} 1 1 ( ) ( )
i i i

i i i i i

q P Y X

P Y X p C t V t

= = ∪ =

= = ∩ = = − = −
 (4) 

When all sensors are homogeneous, i.e., their Ci(t) 
and Vi(t) are identical, the probability that at least k 
similar (or the same as D) votes are collected is the 
summation of binomial distributions 

1

1
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Note that p is a function of t, it follows that (5) is 
the probability that at least k similar votes are collected 

before time t. Let random variable T represent the time 
at which enough similar votes (at least k) are collected, 
i.e., the decision time, we have 
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Therefore, the expected time that at least k 
same/similar votes are collected by the decision unit is 
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 (7) 

Note that in (7), different k’s are used in distinct 
voting schemes. In 1-out-of-n scheme where all sensors 
are truthful, we have that k = 1. Whereas in k-out-of-n 
scheme, we have k = (n+1)/2 in majority voting 
protocols and k = 2n/3 in the more stringent 
Byzantine voting protocols. In the following 
subsections, we discuss these schemes separately, 
assuming C(t) and V(t) are given. 
 
3.1. Truthful Voters 
 

Under this scheme, we have k = 1 and C(t) = 1 in 
(7). We further assume that V(t) is uniformly 
distributed over the interval [0, T1], i.e., 

 1
1

, (0, )
( )

1,

t if t T
TV t

otherwise

 ∈= 
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 (8) 

Substitute k, C(t), and V(t) in (7), we have 

( )
1

1

1
10

1[ ] 1 1 1
1

nT
n

T

tE T dt dt T
T n

∞ 
= − + − =  + 
∫ ∫            (9) 

Equation (9) indicates that as n increases, E[T] 
decreases. In other words, under truthful assumption, 
resource availability positively impact data availability 
and system dependability. More careful observation 
reveals that the voting subsystem under truthful 
assumption is in fact a parallel system where the 
probability that the decision unit get at least one 
correct data from n sensors is 

1 1

1 1

{ ( ) 1} 1 { ( ) 0}

1 1 (1 ( ) ( ))

n n
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i i

n n
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i i
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q C t V t
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in which ∏qi characterizes a parallel system. In such a 



system, sensor units work in a “co-operative” way. 
Therefore, adding resources (more homogenous sensor 
units) to the subsystem improves its performance and 
thus reduces the expected decision time. 

Similarly, consider a situation in which the data 
coming from the sensors are at constant rate (λ) for any 
unit interval, i.e., the number of data within a unit time 
is constant over time. Based on probability theory, we 
know that such event probability distribution can be 
modeled as exponential distribution, with probability 
distribution function given below 

 ( ) 1 , 0tV t e tλ−= − ≥                       (11) 

Substitute k, C(t), and V(t) in (7), we have 

0

1 1[ ] n tE T e dt
n

λ

λ

∞
−= = ⋅∫                       (12) 

Therefore, though the probability distribution 
functions for voting time are different, if all the sensors 
are truthful, increasing n, i.e., the number of resources, 
reduces the expected time to obtain assured votes. 
 
3.2. Untruthful Voters 
 

Under untruthful voter scenario, k is determined by 
the specific majority voting protocol (we use k = 
(n+1)/2 in the following discussions). We further 
assume that C(t) is uniformly distributed over the 
interval [0, T2] and V(t) = 11. From (5), we can derive 
the probability of getting a valid data before time t: 

( )2
( 1) / 2 2 2

( ) 1 [0, ]
i n in

i n

n t tP t t T
i T T

−

= +  

    
= − ∈    

     
∑  (13) 

Figure 1 shows the relationships between P(t) and n 
under different t. As can be seen, when t = 0.4T2, 
which means that the probability of getting a valid vote 
from an individual voter by time t is less than 50%, 
adding more homogeneously untruthful resources only 
makes it harder to get a consensus within given time. 
Intuitively, if over 50% chance a voter is to lie, adding 
more such voters only reduce the probability of getting 
valid votes within a given time. However, when t = 
0.6T2, which means that the probability of getting a 
valid vote from an individual voter by time t is greater 
than 50%, adding more homogeneous resources 
facilitates the decision process, thus resulting in an 
increasing probability of obtaining a valid vote. The 
question now is: how does the resource availability 
influence the average decision time and thus the data 
                                                        

1 Although it is unreasonable to assume V(t) = 1, i.e., a sensor is 
constantly giving out vote to the decision unit, we do this to simplify 
calculations and because not V(t) alone but C(t)×V(t) characterizes 

availability? 

 
              (a)   t = 0.4 T2 

 
              (b)   t = 0.6 T2 

 
Figure 1. The relationship between P(t) and n 

 
 
Substitute C(t), and V(t) in (7), we have 
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(14) 
Make the substitution x = t/T2 ⇒ dx = (1/T2)dt in 

(14), we have 
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Integrate by parts, we have 
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the possibility that the decision unit gets a vote valued D, which is 
the inherently correct data. 



Use mathematical induction on (16), we can prove 
that 

( )
1

0
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Therefore, from (15) and (17), we have that 
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Given that k = (n+1)/2 and n is large, we have 
2[ ] 2E T T=  (19) 

Therefore, in an open hostile environment where not 
all voters are truthful, adding homogeneous resource 
does not impact the expected time of getting a valid 
vote. The intuitive explanation for this result is that the 
integrated effects of Figure 1(a) and (b) are neutralized. 

Similarly, when the credibility function C(t) is 
exponentially distributed over the interval [0,∞) with 
average rate λ, that is, 
           ( ) 1 , [0, )tC t e tλ−= − ∈ ∞                  (20) 

Using (7), we have 
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Make the substitution where x = e−λt ⇒ dx = 
−λe−λtdt =−λxdt, we have 
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             (22) 

Integrate by parts and use mathematical induction, 
we can prove that 
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Therefore, from (22) and (23), we have that, 
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where k = (n+1)/2. The relationship between E[T] 
and n in case of exponential distribution is illustrated 
in Figure 2. As can be seen, when the number of 
working sensors are small, increasing the number of 
sensors generally decreases expected decision time. 
However, since 

( 1) /2 1

0

1lim ln ln ln 2 0.6931
2

n

n i

nn
n i

+ −  

→∞ =

= − = ≈
−∑     (25) 

The expected decision time converges at ln2/λ and no 
further decrease can be achieved by adding more 
resources. For example, with 11 sensors, the expected 
decision time is 0.7365/λ, while with 23 sensors, the 
expected decision time is 0.7144/λ  a 3.0% time gain 
is at the cost of more than twice the resources. 
 

 
Figure 2. Expected Decision Time with λ=1 

 
4. Data Availability and Its Consistency 
Constraints  
 

In heterogonous environments, data come from 
different sources. However, they need to be 
semantically coherent if such data are to be delivered 
to the end users. Consider a setting in which two types 
of sensors are deployed in a region to monitor potential 
targets. One type is infrared (IR) sensors used for 
producing thermo graphic images. Another type is 
radio wave (RW) sensors used for measuring speed of 
targets. The IR sensors produce clear and reliable data. 
However, due to electromagnetic interferences, RW 
sensors produce less reliable data and hence it is 
necessary to get a consensus from other RW sensors 
deployed in the region. Furthermore, in order for a 
soldier or Command and Control Center to take critical 
actions, the data from two different sources (IR and 
RW) must be coherent  not only they provide the 
correlated information, but also the information from 
two different sources must arrive at the requester 
within a limited time frame ∆, or these two sets of 
information may not be related.  

Now, assume that the external requests come at 
time t0, and a valid datum (already checked for 
majority) from group IR becomes available at t1 and a 
valid datum from group RW becomes available at t2. 
Given the assumptions and results in Section 3, 
together with the relative span requirement ∆, we have 
the following timing constraints 

( )
( )

1 0 1 1

2 0 2 2

1 2

1

ln 2

t t IR

t t

t t

λ

λ

 − = ≤ ∆
 − = ≤ ∆
 − ≤ ∆

 (26) 



The first two equations come from (12) and (24) 
where |IR| and |RW| (|RW| is not reflected in the 
equation because of (25)) are the number of sensors 
under group IR and RW 2 . ∆1, ∆2 are the individual 
deadline requirements for the two data, respectively, 
and ∆ is the required maximum time span of the two 
replies. We further convert the constraints into the 
form x1−x2 ≤ d and instantiate a timing constraint graph 
as shown in Figure 3. 
 

 
Figure 3. Timing Constraint Graph 

 
With such a constraint graph, the Bellman-Ford 

algorithm is used to detect if the graph has negative-
weight cycles.  The existence of negative-weight cycle 
in the constraint graph indicates that the constraints are 
unsatisfiable. The cycle 0 1 1(1 ( | |)),t t IRλ  1 2 ( ),t t ∆  

2 0 2( ln 2 )t t λ−  is negative if 

1 2

1 ln 2 0
| |IRλ λ

+ ∆ − <  (27) 

which indicates that the time-consistency constraint 
between the two data is infeasible. This means that 
group IR is so fast that group RW cannot match with it. 
In this case, the system designers must reconsider the 
specification or declare exception handling to relocate 
resources (e.g., cut down the number of sensors in 
group IR). However, such resource reduction must not 
be at the cost of reduced individual data availability 
level, that is, if 1/(λ1|IR|) becomes too large because of 
decrease of |IR|, there will be another negative cycle 

0 1 1 1 0 1( ), ( 1 ( | |))t t t t IRλ∆ −  if 

1
1

1 0
| |IRλ

− + ∆ <  (28) 

                                                        
2 Although the actual decision times may deviate from the expected 
decision times, we use expectation here to simplify the discussion. 
However, the same discussion follows if deviations, e.g., standard 
deviations, are added. Also note that since we use expected values, 
the constraint specification is in fact soft. A hard real-time 
specification which requires that data be delivered with probability 1 
will not be appropriate here since it would take arbitrarily long time 
to make the probability reasonably close to 1 under exponential 
distribution. 

which means that group IR cannot meet the individual 
deadline requirement and thus dependability 
requirement is violated.  

Therefore, to adjust the cardinality of group IR to 
satisfy the time-consistency constraint of data and 
retain data availability, both (27) and (28) need to be 
taken into account: 

1 2 2

1 1 1 2
1
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| | 1 1,

1 ln 20
| |

IR
IR

IR

λ λ λ
λ λ λ

λ
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 (29) 

However, (29) may be intrinsically infeasible when 
2

1
1 1 1 2 2

1 1 ln 2
ln 2

λ
λ λ λ λ

> ⇒ > ∆ + ∆
∆ − ∆

 (30) 

Equation (30) implies another negative cycle in the 
constraint graph. This intrinsic infeasibility comes 
from the fact that when not all voters are truthful, any 
attempt to shorten the expected time of getting a valid 
vote by adding homogeneous resource will be futile. 

Under soft-deadline settings, with the probability 
distribution function in (5), it is possible to relax the 
timing constraints as in (26) by adopting the interval-
based timing constraints [14, 26, 27]. In the next two 
sections, we show that when timing constraints are 
relaxed from point-based to interval-based, we are able 
to obtain a feasible solution to the problem of deciding 
necessary number of voters. 
 
5. Interval-based Constraint Model 
 

Generally speaking, real-time constraints can be 
categorized into two classes, namely, deadline 
constraints or delay constraints. More specifically, a 
deadline constraint between two events with 
timestamps σ and γ is modeled as σ + d ≥ γ, while a 
delay constraint is modeled as σ + d < γ, where d ≥ 0 
is a constant representing a deadline or a delay. 

For self-completeness, we quote the related 
definitions (Definition 1 through 3) from [14] in the 
following. 

Definition 1 (Timestamp) A timestamp I consists of 
a pair of time points: [min_time, max_time] where 
min_time and max_time are the earliest and latest time 
point at which an event may occur, respectively. 
Moreover, given a timestamp I, we assume the 
probability density function of X representing the time 
point at which the event may occur is f(x). 

Definition 2 (Function min, max, and len) Given a 
timestamp I = (min_time, max_time), the min, max and 
len functions of a timestamp I are defined as follows: 
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For the sake of brevity, we use mink, maxk, and lenk 
to denote min(Ik), max(Ik), and len(Ik), respectively, 
where Ik is a timestamp. 

Definition 3 (Interval-based timing constraint) 
An interval-based deadline constraint with a 
confidence threshold is given by: 

2 1:c I I d with P+ − ≤                   (31) 

where I1 and I2 are timestamps, d ≥ 0 is a constant 
representing a deadline, and P is a confidence 
threshold ranging from 0% to 100%. 

Given the definitions above, we present Theorem 1 
[27] that calculates the satisfaction probability of a 
deadline constraint and under arbitrary probability 
density functions. If the calculated satisfaction 
probability is less than the confidence threshold, we 
know at compile time that the specified constraint is 
not satisfiable. 

Theorem 1 Given a deadline constraint c+: I1 + d ≥ 
I2, where d ≥ 0, and f(x), g(y) are the probability 
density functions of independent event occurrences on 
interval I1 and I2 , respectively, the satisfaction 
probability of c+, +c

SP is given by the expression: 
1 2
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Proof:  
Let X∈ I1, Y∈ I2 be two continuous random 

variables with density functions f(x) and g(y). Since the 
two random variables are mutually independent, the 
joint density function z(x, y) is simply the product of 
their individual density functions, as shown in Figure 4.  

 
Figure 4. Joint density function of 

independent events on two intervals.  
 

Furthermore, the joint cumulative distribution over 
I1 = [min1, max1] and I2 = [min2, max2], denoted as V, is: 
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The satisfiable region, denoted as V′, is the 
intersection between the region y ≤ x+d and V, as 
shown in Figure 4. The bold line represents the 
intersection between the joint density function and the 
plane y = x+d. 

The satisfaction probability is thus the ratio between 
the satisfiable region V′ and the joint cumulative 
distribution V. 

To calculate V′, we project the plane y = x+d and 
the surface z(x, y) onto the X-Y plane and consider the 
relationship between the line y = x+d and the four 
points (min1, min2), (min1, max2), (max1, min2), and 
(max1, max2). There are only six possible relationships 
which correspond to the six permissible configurations 
in [14]. Two of the six cases are trivial:  

 (min1, max2) is below the line y = x + d, that is, 
max2 ≤ min1+d, which implies a 100% 
satisfaction probability;  

 (max1, min2) is above the line y = x + d, that is, 
min2 > max1+d, which implies a 0% 
satisfaction probability. 

The four non-trivial configurations are: 
 αβ configuration, where  

min1+d≤ min2 ∧ min2< max1+d≤ max2 
 αγ configuration, where  

min1+d≤ min2 ∧ max2< max1+d 
 ββ configuration, where 

min2< min1+d≤ max2 ∧ min2< max1+d≤ max2 
 βγ configuration, where 

min2< min1+d≤ max2 ∧ max2< max1+d 
Figure 5 gives graphical view for the four 

configurations. For simplicity and consistency, we 
adopt the same naming scheme for the configurations 
as in [14] and name the four configurations as αβ, αγ, 
ββ, and βγ, respectively. 

The satisfiable region V′ in each of them is as 
following:  

 αβ configuration 
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Equation (32) then follows. 
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Figure 5. Four non-trivial configurations. 
 
6. Interval-Based Timing Constraints in 
Distributed Voting Problem 
 

Now, we modify our problem in Section 4 by 
relaxing point-based timing constraints to interval-
based timing constraints. Assume that the external 
requests come at time t0 = 0, the individual deadline 
requirements for the two data are ∆1 and ∆2, 
respectively. The required maximum time span of the 
two replies is ∆. We further assume that the individual 
deadline (data availability) is more important than the 
relative span requirement (data consistency). In the 
interval-based timing constraint framework, we can 
assign the confidence thresholds of individual 
deadlines to be 65% and the confidence threshold of 
relative span to be 30%  the more important the 
constraint, the higher the confidence threshold. The 
confidence level, 65%, 30% are chosen for illustration 
purpose.  They are application dependent. According to 
the data availability and consistency constraints shown 
in Section 4, we may have the following timing 
constraints: 

0 0 1 0 1

0 0 2 0 2

0 1 0 2

[ , ] [ , ] 65%
[ , ] [ , ] 65%
[ , ] [ , ] 30%

t t t t with
t t t t with
t t t t with

 + ∆ ≥


+ ∆ ≥
 − ≤ ∆

 (33) 

where [t0,t0] is the timestamp of the request, [t0, t1] and 
[t0, t2] are the timestamps of the replies from group IR 
and group RW, respectively. From (5), we know that 

the cumulative distribution functions of getting valid 
data under IR and RW are: 

1| |
1( ) 1 IR xP x e λ−= −  (34) 

and 
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respectively. Thus, the probability density functions 
over the two intervals are: 

1 2d ( ) d ( )( ) ( )
d d
P x P yf x and g y

x y
= =  (36) 

respectively. The curves of f(x) and g(y) are shown in 
Figure 6(a) and (b). 

Since we use exponential distributions in this 
example, we let t1 and t2 to be arbitrarily large to 
guarantee that valid votes can be obtained within the 
interval of the timestamp. To facilitate discussion, we 
further assume the following parameters: λ1 = 1, λ2 = 1, 
∆1 = 0.35, ∆2 = 0.85, and ∆ = 0.3. Under this set of 
parameters, (29) fails to hold (because ln2/λ2 > ∆+∆1), 
which means that the set of point-based timing 
constraints is not feasible. However, as can be seen, the 
set of interval-based timing constraints in (33) is 
feasible under certain resource allocations. 

 
6.1. Data Availability (Individual Deadline) 
Constraints 
 

From (34) and (35), we know that the probabilities 
of getting valid data before ∆1 under IR and ∆2 under 
RW are P1(∆1) and P2(∆2), respectively. Under the 
parameter settings, making |IR| = 3 and |RW| = 7 will 
satisfy the first two constraints in (33), with 
satisfaction probability P1(∆1) = 65.01% and P2(∆2) = 
65.55%, respectively. 

 
6.2. Data Consistency (Relative Time Span) 
Constraint 
 

Convert the constraint |[ t0, t1]−[ t0, t2]| ≤ ∆ with 30% 
in (33)into the form of (31): 

0 2 0 1[ , ] [ , ] 30%t t t t with−∆ ≤ − ≤ ∆  (37) 

We now consider the joint density function of f(x) 
and g(y), as shown in Figure 6(c) and (d). The 
satisfiable region, which is shaded in Figure 6(c), is the 
region between y ≤ x+∆ and y ≥ x−∆. Let ( )

c
SP x+ + ∆  

and ( )
c

SP x+ − ∆ denote the satisfaction probabilities 

of the constraints [ t0, t2] − [ t0, t1] ≤ ∆ and [ t0, t2] − [ t0, 
t1] ≤ −∆, respectively. Thus, we have that the 
satisfaction probability of the constraint in (37) is 
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Substitute f(x) and g(y) in (32) with dP1(x)/dx and 
dP2(y)/dy, respectively, and substitute corresponding 
bounds, we have that 
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 (39) 
Since t1 and t2 are large enough to guarantee valid 

data deliveries (with probabilities P1(t1) → 1, P2(t2) → 
1), the satisfaction probability of can be simplified to 

2 10
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c x
SP x P x dP x+

∞
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Similarly, we have 
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Therefore, the satisfaction probability of (37) is 

2 1 2 10
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From (34), (35), and (42), we can calculate the 
value of the satisfaction probability of the data 
consistency (relative time span) constraint (37). Using 
numerical integration, under the parameter settings, we 
have ( )

c
SP x+ + ∆ = 38.85%, ( )

c
SP x+ − ∆  = 6.78%, 

and 
c

SP +  = 32.07%, which satisfy the specified 
confidence threshold. 

From the comparison between the examples 
presented in this section and Section 4, we can 
conclude that: 

 Interval-based timing constraints are more 
realistic than point-based timing constraints as 
the precise time estimation of software 
execution time in embedded networked system 
is impossible [15]. Instead, what we may know 
is a statistical time within a range. 

 When a confidence threshold is associated to a 
corresponding constraint, the priority of the 
constraint is also explicitly specified by the 
threshold. 

 While certain point-based timing constraints 
may be intrinsically infeasible to satisfy, 
relaxing timing constraints from point-based to 
interval-based, we are able to find feasible 
solutions with appropriate resource allocations. 

 

  
(a) IR group with probability 

density function f(x)  
(b) RW group with 

probability density function 
g(y) 

 
(c) Joint density function of f(x) and g(y). The bold lines 
represent the intersections between the joint density function 
and the planes y = x+∆ and y = x−∆, respectively. The shaded 
region which lies between the two planes represents the 
satisfiable region. 

 
(d) Contour map of f(x) g(y). The bold lines are projections of 
the planes y = x+∆ and y = x−∆ on to the X-Y plane. The 
satisfiable region lies between the two lines. 

 
Figure 6. Individual and joint probability 

density functions of the two groups. 
 
7. Related Work 
 

It is important for a fault-tolerant distributed 
computing system to reach agreement on data values 
from non-faulty processes in the presence of faulty 
ones. Therefore, voting is widely used in consistency 
and agreement algorithms in distributed systems [23]. 
Many voting protocols have been studied elsewhere by 
the research community under various application 



settings and environments [6, 10, 25]. [20] gives a very 
good summary of various issues in voting. The four 
main components of a voting algorithm, namely input 
data, output data, input votes, and output votes, can be 
used to impose a binary 4-cube classification scheme, 
leading to 16 classes [19]. Although we only consider 
the expected decision time of the exact consensus 
threshold voting, our methodology can be applied to 
other voting classes. 

One of the most important performance parameters 
in evaluating voting schemes is latency. Latency is 
defined as the length of the time interval between the 
availability of the last input and the production of the 
voter output. In most cases, the dominant factor of the 
latency of a voting algorithm is not the computational 
part of the algorithm but rather the multiple rounds of 
communication [5, 11]. [22] discusses the possibility to 
strike a balance between the overhead of tight 
synchronization and the algorithmic complexity of 
fully asynchronous operation via an intermediate 
approach. 

The idea that diagnostic decisions in dynamic 
environments often require trade-offs between decision 
accuracy and timeliness comes from [7]. Thus, the time 
required to obtain a correct vote in a distributed system 
not only depends on the communication latencies but 
also the time-dependent accuracy. The vote accuracy is 
actually reflected in this paper by the credibility 
function monotonically increasing with time. That is, 
with more time, we would get more trustworthy and 
accurate data. 

As for the timing constraints parts, Chodrow et al. 
[2] presents a constraint-graph-based algorithm for 
detecting violations of timing constraints. To check the 
satisfiability for a set of constraints, a constraint graph 
is instantiated from the current event histories with an 
all-pair shortest path algorithm run on the instantiated 
graph. A negative cycle indicates unsatisfiability of the 
constraint set. 

In [21] and [9], the authors extend the timing 
constraint specification and violation detection 
algorithm to distributed real-time systems. They 
indicate that the derivation of implicit constraints is 
essential for catching timing violations at an earlier 
time since it is possible that an implicit constraint is 
violated before an explicit delay or deadline becomes 
unsatisfiable at run-time. They also prove that for 
constraint violation detection, the problem of 
minimizing the amount of information to be exchanged 
between processors is NP-hard. 

In [17], Mok and Liu provide a more expressive 
specification language based on Real Time Logic to 

define timing constraints. To reduce time complexity 
of the event monitoring algorithm at run-time, they 
resolve most of the shortest path information of the 
instantiated constraint graph from the uninstantiated 
constraint graph at compilation time. Thus, only small 
modifications of the graph are needed during run-time. 

Two new timing constraints based on time intervals: 
certain and possible are proposed in [18] to specify the 
desired degree of certainty whether a timing violation 
has occurred. The authors indicate that this interval-
based timing constraint: I1 + d ≥ I2U, where I1 and I2 
denote the time intervals in which the corresponding 
events may occur, is satisfied either possibly (P) or 
certainly (C). The authors further extend the 
monitoring algorithm in [17] to monitor interval-based 
timing constraints with probabilities.  

Lee et al. [14] propose interval-based timing 
constraints with a confidence threshold model. The 
concept of Earliest Expiration Time (EET) is also 
introduced. The knowledge of EET enables the event 
monitor to announce the violation of timing constraints 
even before the actual deadlines. 

Yu et al. [27] extend Lee’s work by considering 
more general cases of the interval-based timing 
constraint model where events are exponentially or 
normally distributed. They use the results from [27] to 
study the timing constraints between a pair of faults in 
a distributed embedded system in [26]. 

Examples of other stochastic approaches in real-
time applications can be found in [1, 3, 4, 8, 16, 24]. 
 
8. Conclusion 
 

In this paper, we have studied the expected decision 
times under two different voting schemes. We assume 
that the latency for obtaining valid data depends not 
only on the time that a sensor gives a vote, but also on 
the time-dependent accuracy of the vote. Assuming all 
voters are truthful, we show that increasing the number 
of resources reduces the expected time of obtaining 
assured votes. Our analytic study has also shown that 
in an environment where not all voters are truthful, 
adding homogeneous resources may increase the 
trustworthiness of the voting, but it offers little 
improvement on the expected delivery time of the 
voting.  

In addition, we have demonstrated that the timing 
information of groups of homogenous sensors can be 
used to balance the trade-off between data consistency 
constraints and data availability requirements in a 
heterogonous environment.  

There are situations where point-based timing 
constraints are not only difficult to accurately specified, 



but also not satisfiable. In contrast, interval-based 
timing constraint not only provides a more general 
format for timing constraints and is more realistic, but 
also it allows us to obtain statistical solutions when 
guaranteed solutions are not available. 
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