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Abstract

We give better approximation ratios for two Steiner Tree variants by
combining known algorithms: the optimum 3-decomposition and itera-
tive randomized rounding.

The first problem is Steiner Tree with minimum number of Steiner points
and bounded edge length problem (SMT −MSP ). The input consists
of a set of terminals R in the Euclidean space R2. A feasible solution is a
Steiner tree τ spanningR with Steiner points S such that every edge in τ

has length at most 1. The objective is to minimize S. Previously, the best
approximation ratio for SMT −MSP was 1+ln(4) + ǫ ≈ 2.386. We
present a polynomial time algorithm with ratio 2.277. The second prob-
lem is Steiner Tree in quasi-bipartite graphs. It is a Steiner Tree problem
on graph G = (V, E, c) with terminal set R when the edge set E does
not include any edge between two vertices in V \ R. The best-known
approximation ratio for this problem is 73

60
, We improve this ratio to 298

245
.
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1 Introduction

The Steiner Tree problem is a classic optimization problem defined by Gauss
in a letter he wrote to Schumacher: given a weighted undirected graph and
a subset of terminal nodes, find a minimum-cost tree spanning the terminals.
Note that this tree can include non-terminal nodes of the graph; these are
called Steiner points. Later in 1934, this problem was first formally formulated
in a paper by Vojtěch Jarńık and Miloš Kössler [1]. Steiner Tree was among
the first problems proven NP-hard [2]. Since then, a series of papers pro-
vided approximation algorithms for the Steiner Tree problem [3–12] and other
related problems [13–18]. In this paper, we combine some previously developed
methods to achieve better approximation ratios in two Steiner Tree variants.

The Steiner Tree problem and many of its variants can be reduced (some-
times with an ǫ loss in the approximation ratio) to a more general problem
that we call MCSH (Minimum Connected Spanning Sub-hypergraph). It is
described as follows: given a complete hypergraph H = (R, E), E = {A | A ⊆
R} with hyperedge cost {c(A) : A ∈ E}, find a minimum-cost connected span-
ning sub-hypergraph of H. Usually, the reduction is, the terminal set becomes
the vertex set R(H) in MCSH , and the collection of terminal subsets becomes
the hyperedge set E(H). The cost c(A) for a hyperedge A ∈ E(H) comes from
the cost of a solution to a smaller Steiner Tree problem instance on terminal
set A. Most Steiner Tree variants including the ones we study allow solving
optimally in polynomial time any instance with A of bounded size.

The first method used in this paper is the 3-decomposition method (short
for 3-restricted decomposition) [6, 9]. Consider a special class of hypergraphs:

Definition 1 A k-hypergraph Hk = (R,Ek) is a (complete) hypergraph with hyper-
edge set Ek = {A ⊆ R : 2 ≤ |A| ≤ k}. The k-restricted hypergraph of the complete
hypergraph H is the k-hypergraph Hk obtained from H by keeping only the edges
of size at most k, with the same cost as in H.

Definition 2 A k-decomposition of H = (R,E) is a collection of hyperedges Ak =
{A | A ∈ Ek}, such that (R,Ak) is connected. The cost of a k-decomposition is the
total cost of all hyperedges in the k-decomposition.

We can see that a k-decomposition of H = (R, E) is a connected span-
ning sub-hypergraph in Hk = (R, Ek). Recall that the problem of finding a
minimum-cost connected spanning sub-hypergraph in H is MCSH ; denote
the same problem in Hk as MCSHk.

The 3-decomposition method reduces a Steiner Tree problem, with some
loss in the approximation ratio, to MCSH3. The reason we consider 3-
restricted hypergraphs is that an instance of MCSH3 can be solved optimally
in polynomial time from the recent work of Iwata and Kobayashi [19] (an
(1+ ǫ)-approximation is known since [20], see also [9]). As an aside, for k > 3,
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MCSHk becomes NP-hard and (1+ 1/2+ ...+1/(k− 1))-approximations are
known [21, 22].

Minimum cost 2-decompositions also play a major role in the Steiner Tree
problem, as they approximate the minimum Steiner tree within a ratio of 2,
they can be computed optimally (it is the Minimum Spanning Tree problem),
and the tree has a matroid structure that is used by further algorithms.

The second method is Relative Greedy [23]. This method starts with a
spanning tree on the terminal set, or as previously defined, a 2-decomposition
of the hypergraphH = (R, E). In each iteration, it tries to replace a set of span-
ning tree edges by a hyperedge in Ek with smaller cost while the connectivity
of the decomposition is kept. Precisely, it chooses the hyperedge that mini-
mizes its cost divided by the best (highest cost) set of spanning tree edges that
can be removed once this hyperedge is used for connectivity. It iterates until
no more replacement of edges can reduce the total cost of the decomposition.

The third and last method used in this paper is iterative randomized round-
ing (IRR) [12, 24]. This method starts with an LP relaxation of the problem
based on directed hyperedges. It samples one hyperedge with probability pro-
portional to the value of the associated variable in a fractional solution, then
the hyperedge becomes contracted and the LP is updated consequently. It
iterates this process until all terminals are connected. The analyses of IRR
and Relative Greedy have similarities and, in all the problems we have seen,
IRR can be used instead of Relative Greedy to get the approximation ratio
one normally gets when analyzing Relative Greedy, while for some problems,
notably Steiner Tree, IRR appears to be more powerful and its analysis gives
a better approximation ratio at the moment of this writing.

In this paper, we consider the following two Steiner Tree variants. The first
problem is Steiner Tree with minimum number of Steiner points and bounded
edge length problem (SMT − MSP ). SMT − MSP is described as follows.
The input consists of a set of terminals R in the Euclidean space R2. A feasible
solution is a Steiner tree τ spanning R with Steiner points S such that every
edge in τ has length at most 1. The objective is to minimize |S|. As an aside, it
has been observed that, as in the Steiner Tree problem, the challenge consists
of selecting the Steiner points of degrees at least three, after which a Minimum
Spanning Tree algorithm can be used for optimally connecting the terminals
and those Steiner points.

This problem was first formally formulated in a paper by Lin and Xue [25]
in the year 1999, where they showed that the SMT −MSP problem is NP-
complete. They also showed that an algorithm based on Minimum Spanning
Tree is a 5-approximation of SMT −MSP . The approximation ratio of this
algorithm was improved to 4 in [26] and [27] separately at the same time, but
[27] also gave a 3-approximation algorithm. Later, Cheng et al. [28] gave a
2.5 + ǫ-approximation algorithm on SMT −MSP using the 3-decomposition
method ([19] removes the ǫ in the approximation ratio). Cohen and Nutov
[29] improved the approximation ratio to 1+ln(4)+ǫ ≈ 2.386 using Relative
Greedy.
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Researchers are also working on the SMT −MSP problem in other metric
spaces. Let ∆ be the maximum number of points in a unit ball such that the
distance between any two of them is larger than 1. A series of papers ([26],
[30], [29]) gave approximation algorithms on the SMT −MSP problem in any
metric space with approximation ratio ∆ − 1, ⌊(∆ + 1)/2⌋ + 1 + ǫ (this ǫ is
also removed by [19]) and 1+ln (∆ − 1) + ǫ, respectively. Here, we only look
at the SMT −MSP problem in the Euclidean space R

2, where ∆ = 5. In R
3

or higher dimensions, the ratio ⌊(∆ + 1)/2⌋, even another hopeful ratio using
3-decomposition ⌈(∆ − 1)/2⌉, can never beat the ratio 1+ln (∆− 1) + ǫ that
comes from IRR or Relative Greedy. Here, ⌈(∆ − 1)/2⌉ is the best possible
approximation ratio using the 3-decomposition method on an instance with ∆
non-adjacent terminals and exactly one Steiner point in its optimal solution.

For SMT − MSP , we combine the Relative Greedy and the 3-
decomposition methods and get a polynomial time algorithm with approxima-
tion ratio 2.277.

The other problem we consider is Steiner Tree in quasi-bipartite graphs. It
is a Steiner Tree problem on graph G = (V,E, c) with terminal set R, where
the edge set does not include any edge between two vertices in V \ R. This
problem was first considered by Rajagopalan and Vazirani [31] who obtain a
3/2+ǫ-approximation using primal dual methods. Then Robins and Zelikovsky
[11] improved the approximation ratio to 1.28.

Byrka et al.[12] invented IRR and showed a
(

73
60 + ǫ

)

≤ 1.2167-
approximation for this problem. Later, Goemans et al. [24] showed that the ǫ
in the approximation ratio can be removed, also based on IRR.

For Steiner Tree problem in quasi-bipartite graphs, we combine the IRR
and the 3-decomposition methods and get an approximation algorithm with
ratio 298

245 < 73
60 . The difference is only 1/2940, but our contribution is in

breaching the “natural” approximation ratio 73
60 of IRR.

2 The Combination Algorithm for SMT-MSP

Denote an optimum Steiner point set as Sopt, denote opt = |Sopt|. We call
a spanning tree over Sopt ∪ R with minimum total length a shortest opti-
mum Steiner tree, and we denote it by τopt. Here, length means the Euclidean
distance between two points.

Lemma 1 (Lemma 1 in [27]) There exists a shortest optimum Steiner tree τopt for
SMT −MSP such that every vertex in τopt has degree at most five.

A Steiner tree is called full if every terminal is a leaf. Given τopt such
that every vertex in τopt has degree at most five, by breaking at terminals
with degree more than 1, we can break τopt into several full Steiner trees. We
call each full Steiner tree obtained this way a full component, and we call a
full component trivial if it contains two terminals and no Steiner points. We
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use d(a, b) to denote the Euclidean distance between points a and b in the
Euclidean plane.

Lemma 2 For every full component C, there is a Steiner tree C∗ over the same
terminal set and a Steiner point set included in the Steiner point set of C, with the
following properties:

• Every Steiner point has degree at most five.
• Every pair of terminals in the same non-trivial full component in tree C∗

have mutual Euclidean distance greater than 1.

Proof: First replace C by a shortest (Euclidean) tree on the same vertex set
(remind that, every vertex in C has degree at most 5). Then remove un-needed
Steiner points, and break the tree into full components. Given a non-trivial
full component C′ of the resulting tree, we can get a C∗ as follows. For each
terminal t in C′, let s be the Steiner point t is adjacent to; if there exists
another terminal t′ in C′ such that d(t, t′) ≤ 1, then the replacement of edge
(t, s) by edge (t, t′) does not disconnect the terminals. Do this replacement;
note that no Steiner vertex has its degree increased. If s becomes a leaf of this
Steiner tree, remove it, and continue removing un-needed Steiner points.

As a result, the full component C′ is broken into two: the trivial full compo-
nent with terminals t and t′, and what is left of C′ without terminal t. Repeat
if needed. �

We call each full component obtained this way a cheerful component. Thus,
a trivial component is cheerful and a non-trivial cheerful component has the
following properties:

• Every terminal is leaf.
• Every Steiner point has degree at most five.
• Every pair of terminals have mutual Euclidean distance greater than 1.

Based on the discussion above (also implicit in [27]), there exists an optimum
solution such that each of its non-trivial full component is cheerful. We assume
from now on that every full component of the optimum solution is a cheerful
component.

For an SMT −MSP instance, a bead solution is a solution obtained from a
spanning tree over R by inserting ⌈d(a, b)⌉− 1 Steiner points (called beads) to
break each edge (a, b) into multiple pieces of length at most 1. The following
lemma is implicit in the proof of Theorem 1 in [27].

Lemma 3 Let R′ be the set of terminals in a cheerful component with m ≥ 1 Steiner
points. Then R′ has a bead solution with at most 3m+ 1 beads.

As an aside, note that this lemma implies a 4-approximation for the algo-
rithm based on computing a minimum (Euclidean length) spanning tree over
the set of terminals, and subdividing every edge as in a bead solution. This is
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so because the tree spanning R with minimum number of beads is the same
as the tree spanning R of minimum length (Kruskal’s algorithm returns the
same solution), and a tree spanning R with 4opt total number of beads can
be obtained by replacing every non-trivial cheerful component with m Steiner
points by a bead solution with 4m beads.

Denote the number of non-trivial cheerful components in τopt as c, and
denote the number of cheerful components with m Steiner points as cm. Then,
c =

∑

m≥1 cm, and opt =
∑

m≥1(m · cm). Following Lemma 3,

Lemma 4 For an SMT−MSP instance with an optimum solution with c non-trivial
cheerful components, there is a bead solution with at most 3opt+ c beads.

Recall that for hypergraph H = (R, E), E = {A | A ⊆ R} with hyper-
edge cost {c(A) : A ∈ E}, we use Hk = (R, Ek) to denote the k-restricted
hypergraph of H. Also recall that MCSHk is the problem of finding a
minimum-cost connected spanning sub-hypergraph in Hk. Let αk be the ratio
between the optimum cost of MCSHk and the optimum cost of MCSH for a
given instance. It is more common to define αk as being the supremum, over
instances, of this ratio; we however allow αk to depend on the instance.

Lemma 5 (implicit in [23], and in Corollary 3 in [29]) For any constant k, there
is algorithm for MCSH with running time polynomial in the number of vertices
of the MCSH instance that returns for every instance a solution of cost at most
αk(1 + lnα2)opt.

This ratio comes from an algorithm using the Relative Greedy method. As
an aside, we could use IRR instead of Relative Greedy here and get the same
ratio; we chose Relative Greedy since it is faster and we can directly cite [29].

Given an SMT−MSP instance on terminal set R, consider the hypergraph
H = (R, E), where E = {A | A ⊆ R}. For each A ∈ E , let c(A) equal to the
size of the optimum Steiner set for SMT −MSP on A. [27] showed that for
any constant k, the cost c(A) for A ∈ Ek can be calculated in polynomial time.
Note that for any SMT −MSP instance, the MCSH instance we create has
the same optimum value, and that for H2, the cost of an edge A that consists
of two terminals a, b ∈ R is the number of beads needed to connect a and b,
i.e. ⌈d(a, b)⌉ − 1.

Lemma 6 (as a corollary of Theorem 5 in [29]) For SMT − MSP , αk converges
to 1 as k gets larger, with a bound on the rate of convergence that does not depend
on the instance.

As an aside, the equivalent of Lemma 6 for the Steiner Tree problem is

known from the pioneering work [32] and [33]. Let χ = (1/2)c1+c2+(1/2)c3
opt , then
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Lemma 7 For every positive ǫ, there exists a polynomial time algorithm that

computes a solution to SMT −MSP of cost at most
(

1+ln(3.25+(3/2) ·χ)+ ǫ
)

opt.

Proof: Lemma 6 showed that as k gets larger, αk converges to 1. From
Lemma 4 we can deduce that α2 ≤ (3opt+ c)/opt.

Since c =
∑

m≥1 cm ≤ c1 + c2 + c3 + opt−c1−2c2−3c3
4 (recall that opt =

∑

m≥1(m · cm)), with Lemma 5, we have a solution to SMT −MSP of cost
at most

αk

(

1 + ln(
3opt+ c

opt
)
)

· opt =
(

1 + ln(3 + c/opt) + ǫ
)

· opt.

We show that 3 + c/opt ≤ 3.25+ (3/2)χ, and we finish the proof of Lemma 7.

3 + c/opt ≤ 3 +
c1 + c2 + c3 +

opt−c1−2c2−3c3
4

opt

= 3.25 +
(3/4)c1 + (1/2)c2 + (1/4)c3

opt

≤ 3.25 + (3/2)χ

�

The second method we use to approximate SMT − MSP is 3-
decomposition. Theorem 3.6 in [28] can be rephrased as, “there is a 3-
decomposition with cost 2.5 times the optimum”. If an SMT −MSP instance
consists of only the terminals of exactly one cheerful component, we get:

Lemma 8 For each cheerful component with m Steiner points, there exists a
connected 3-decomposition spanning the same terminals with cost at most 2.5m.

We prove later the stronger statement:

Lemma 9 The 3-decomposition method computes a solution to SMT −MSP of cost
(2.5− χ) · opt in polynomial time.

Note that, after proving Lemma 9, we have two polynomial time approxi-
mation algorithms for SMT−MSP . The Relative Greedy algorithm computes
a solution of cost at most

(

1 + ln(3.25 + (3/2)χ) + ǫ
)

· opt. The algorithm
that computes an optimum solution to MCSH3 [19] obtains a solution of cost
(2.5−χ) ·opt. When χ ≤ 0.223, we look at the solution given by the first algo-
rithm, it has cost smaller than (2.277) · opt. When χ > 0.223, we look at the
solution given by the second algorithm, its cost is at most (2.277) · opt. Thus,
by returning the better solution between two algorithms,
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Theorem 1 There is a polynomial time algorithm that is a (2.277)-approximation
of SMT −MSP .

Proof of Lemma 9: Recall that, χ = (1/2)c1+c2+(1/2)c3
opt . When a cheerful

component has 1 Steiner point (3 Steiner points), Lemma 8 shows that a 3-
decomposition with cost at most 2 (7) exists, since the number of Steiner points
is an integer. For the case of 2 Steiner points, we will show in Lemma 10 below
that its cost is at most 4. Thus, there exists a 3-decomposition of cost at most:

2c1 + 4c2 + 7c3 +
∑

m>3

2.5m · cm

= 2c1 + 4c2 + 7c3 + 2.5(opt− c1 − 2c2 − 3c3)

= 2.5 · opt− (1/2)c1 − c2 − (1/2)c3

= 2.5 · opt− χ · opt

= (2.5− χ) · opt

Since the 3-decomposition method can find the optimum 3-decomposition of
all terminals in polynomial time, it computes a solution to an SMT −MSP
instance of cost at most (2.5− χ) · opt. �

Lemma 10 If a cheerful component has exactly 2 Steiner points, there is a 3-
decomposition of cost at most 4 for the terminals of this component. Here, as before,
the cost of a hyperedge A (A is a set of terminals) is the size of the optimum Steiner
set for SMT −MSP on A.

Proof: Since each Steiner point has degree at most 5, there are at most 8
terminals in this cheerful component. When there are at most 7 terminals, at
most one Steiner point has 4 terminals adjacent to it. So one can decompose
this cheerful component by grouping 3 (or fewer) terminals adjacent to the
same Steiner point with cost 1 for each Steiner point, and grouping the possible
left alone terminal with one terminal in each of the first two groups with cost
2; thus, this decomposition has cost at most 4. When there are 8 terminals, if
one of the terminals (say t, which is adjacent to the Steiner point s1 in this
cheerful component) is within Euclidean distance 1 to both Steiner points (s1
and s2), then one can decompose this component as follows:

• Group 3 arbitrary terminals adjacent to the Steiner point s2 with cost 1.
• Group terminal t, an arbitrary terminal in the above group, and the left
alone terminal adjacent to the Steiner point s2 with cost 1.

• Group 3 terminals other than t that are adjacent to the Steiner point s1
with cost 1.

• Group terminal t with an another arbitrary terminal adjacent to s1 with
cost 1.
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One can easily verify the above decomposition is connected and with cost 4.
Thus here, we claim:

Lemma 11 If a cheerful component in τopt has exactly 2 Steiner points and 8
terminals, then at least 1 terminal is within Euclidean distance 1 to both Steiner
points.

We will prove Lemma 11 in Appendix A, and with the proof of the lemma
we finish the proof of Lemma 10.

3 The Combination Algorithm for Steiner Tree
in quasi-bipartite graphs

The first method we use to approximate this problem is iterative randomized
rounding (IRR). Let undirected graph G(V,E, c) and terminal set R ⊆ V be
the input of a Steiner Tree problem.

Recall that a Steiner tree is full if every terminal is a leaf. Also, as before,
a full component C is a set of terminals R′ ⊆ R together with a full Steiner
tree on R′ using edges in E(G). In this section, the cost of a full component
C is given by c(C) =

∑

e∈E(C) c(e). Since G does not have an edge between

two non-terminal vertices, a non-trivial full component is a star (tree of height
1) with the root a Steiner vertex and the leafs terminals. To avoid special
cases, we also consider trivial components as stars with two leafs (duplicating
a terminal into a Steiner point at distance 0 to the terminal).

Take a full component Q that is a star from OPT , which is the optimum
solution. Its q edges are sorted in non-increasing order by cost: c(e1) ≥ c(e2) ≥
· · · ≥ c(eq). Note that c(Q) = c(e1)+ c(e2)+ . . .+ c(eq). [24] used the following
potential Φ(Q) to achieve the 73

60 approximation ratio in their paper:

Φ(Q) = c(e1) + c(e2) + c(e3) · · ·+ c(eq−1) +Hq−1c(eq)

Here, Hq−1 is the (q − 1)th Harmonic number. [24] showed that IRR has
expected output cost at most

∑

Q∈X Φ(Q), where X is the set of full
components in the optimum solution OPT .

A second method we use for Steiner Tree in quasi-bipartite graphs is 3-
decomposition. Following [19] one can obtain in polynomial time the optimum
3-decomposition. Take full component Q from OPT , which now is a star with
q ≥ 3 terminals and edges: e1, e2, ..., eq. As defined above, eq is the edge with
minimum cost. 3-decomposition for Q gives a solution of cost at most:

Ψ(Q) = c(e1) + c(e2) + . . .+ c(eq−1) + ⌊
q

2
⌋c(eq),

because one can 3-decompose Q as follows:
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• duplicate the least-costing edge eq ⌊ q−2
2 ⌋ times (so we have ⌊ q

2⌋ copies in
total),

• arbitrarily pair the rest q − 1 edges up with possibly one edge left alone,
• add a copy of eq into each size 2 or 1 group.

Based on this, the [19] algorithm has an output of cost at most
∑

Q∈X Ψ(Q),
where as above X is the set of full components in the optimum solution OPT .

While the algorithm consists of producing the best output from the algo-
rithms of [24] and [19] as adapted to MCSH3, for the purpose of analysis,
we take a convex combination of the two methods: the iterative randomized
rounding algorithm with probability θ = 48/49 and the 3-decomposition algo-
rithm with probability 1− θ = 1/49. We have seen this idea previously in [34].
As an aside, the value of θ is obtained by solving the following two-dimensional
linear program LP1:

minimize γ

subject to
q − 1 + θ ·Hq−1 + (1− θ) · ⌊ q

2⌋

q
≤ γ, ∀q ∈ {2, . . . , 10}

0 ≤ θ ≤ 1.

(LP1)

For a full component Q, let h(Q) = θ·Φ(Q)+(1−θ)·Ψ(Q)
c(Q) . LP1 is obtained

from the definition of h(Q): we consider only full components with at most
10 edges and we consider each edge has a uniform weight. LP1 has optimal
solution θ = 48

49 , γ = 298
245 . We show that,

Lemma 12 h(Q) ≤ 298
245 < 73

60 .

Proof: Let q be the number of terminals in Q, and let rj =
j−1+θ·Hj−1+(1−θ)·⌊ j

2
⌋

j . We have

h(Q) =

∑

i∈{1,...,q−1} c(ei) + θ ·Hq−1c(eq) + (1− θ) · ⌊ q
2⌋c(eq)

∑

i∈{1,...,q} c(ei)

≤
q − 1 + θ ·Hq−1 + (1− θ) · ⌊ q

2⌋

q
= rq.

The inequality above can be easily checked using c(eq) ≤
∑

i∈{1,...,q−1} c(ei)

q−1 and

θ ·Hq−1 + (1− θ) · ⌊ q
2⌋ ≥ 1. Remind that θ = 48

49 .
We will show next that rj ≤

298
245 , ∀j ≥ 2. The proof proceeds by induction

on j. First, let us consider the cases of j = 2, 3, 4, 5, 6.

• When j = 2, Hj−1 = ⌊j/2⌋ = 1, we have rj = 1 < 298
245 .

• When j = 3, Hj−1 = 3
2 , ⌊j/2⌋ = 1, we have rj =

2+72/49+1/49
3 = 57

49 < 298
245 .
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• When j = 4, Hj−1 = 11
6 , ⌊j/2⌋ = 2, we have rj = 3+88/49+2/49

4 = 237
196 <

298
245 .

• When j = 5, Hj−1 = 25
12 , ⌊j/2⌋ = 2, we have rj =

4+100/49+2/49
5 = 298

245 .

• When j = 6, Hj−1 = 137
60 , ⌊j/2⌋ = 3, we have rj =

5+548/245+3/49
6 = 298

245 .
• For j > 6, we use induction on j.

rj =
j − 1 + θ ·Hj−1 + (1− θ) · ⌊ j

2⌋

j

=
j − 3 + 2 + θ · (Hj−3 +

1
j−2 + 1

j−1 ) + (1− θ)(⌊ j−2
2 ⌋+ 1)

j − 2
·
j − 2

j

≤
(298

245
+

2 + θ( 1
j−2 + 1

j−1 ) + (1− θ)

j − 2

)

·
j − 2

j

=
298

245
·
j − 2

j
+

2 + θ( 1
j−2 + 1

j−1 ) + (1− θ)

j

≤
298

245
+

− 298
245 · 2 + 2 + 48

49 (
1
5 + 1

6 ) +
1
49

j

=
298

245
−

13

245 · j
.

The first inequality follows from the induction hypothesis and the second
inequality follows from j > 6. This finishes the proof of Lemma 12. �

Using linearity of expectation and the lemma above, we have:

Theorem 2 There is a randomized polynomial-time algorithm with expected approx-
imation ratio 298

245 < 73
60 for Steiner Tree in quasi-bipartite graphs.

4 Conclusion

We improved the approximation ratio of SMT−MSP in the Euclidean metric
space from 2.386 to 2.277 by taking the best output of two previously proposed
approximation algorithms: [28] and [29]. None of these algorithm is known
to be tight, but maybe improving the ratio of one would still lead to the
combination algorithm being even better. In particular, our hope comes from
the fact that we cannot find any instance with an approximation ratio strictly
greater than 2 using 3-decomposition.

While IRR is a powerful method, it fails to find the optimum for Min-
imum Weight Edge Cover. One can find this optimum employing matching
methods, using the algorithm of Lawler [35], (see also Gabows thesis [36] and
Edmonds and Johnson [37]). 3-decomposition is an extension of Matching
[19, 38] and this explains why it sometimes works when IRR fails. Our results
take advantage of this situation.
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There are limits on our combination method. For SMT − MSP in
R

3 or higher dimensions, as mentioned in detail in the introduction, the
3-decomposition method can never beat IRR or Relative Greedy.

For the Steiner Tree problem, we have examples where the (5/3) ratio given
by the 3-decomposition [6] is tight and the (ln 4 + ǫ)-approximation analysis
of IRR as given by [24] is also tight.

For Minimum Power Spanning Tree in graphs with edge weights in {0, 1}
where both IRR as used by Grandoni [39] and the 3-decomposition as used
by Nutov and Yaroshevitch [30] give ratios of 3/2+ ǫ and 3/2 respectively, we
have examples where both analyses get the same 3/2 ratio.

Acknowledgments. Gruia would like to thank Neil Olver for discussions
on the IRR method.

5 Compliance with Ethical Standards

No funding was received for conducting this study. The authors declare that
they have no financial interests.

References
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mation via iterative randomized rounding. J. ACM 60(1), 6–1633 (2013).
https://doi.org/10.1145/2432622.2432628

[13] Zelikovsky, A.: A series of approximation algorithms for the acyclic
directed Steiner tree problem. Algorithmica 18(1) (1997)

[14] Charikar, M., Chekuri, C., Cheung, T.-Y., Dai, Z., Goel, A., Guha, S., Li,
M.: Approximation algorithms for directed Steiner problems. Journal of
Algorithms 33(1), 73–91 (1999)

[15] Klein, P., R.Ravi: A nearly best-possible approximation algorithm for
node-weighted Steiner trees. Journal of Algorithms 19, 104–115 (1995)

[16] Guha, S., Khuller, S.: Improved Methods for Approximating Node
Weighted Steiner Trees and Connected Dominating Sets. Information and
Computation 150, 57–74 (1999)

[17] Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algo-
rithm for the group Steiner tree problem. J. Algorithms 37(1), 66–84
(2000)

[18] Chekuri, C., Even, G., Kortsarz, G.: A greedy approximation algorithm
for the group Steiner problem. Discrete Applied Mathematics 154(1),
15–34 (2006)

[19] Iwata, S., Kobayashi, Y.: A weighted linear matroid parity algorithm.
SIAM Journal on Computing (0), 17–238 (2021)

[20] Camerini, P.M., Galbiati, G., Maffioli, F.: Random pseudo-polynomial
algorithms for exact matroid problems. JALG 13, 258–273 (1992)

[21] Wolsey, L.A.: Analysis of the greedy algorithm for the submodular set
covering problem. Combinatorica 2, 385–392 (1982)

[22] Baudis, G., Gropl, C., Hougardy, S., Nierhoff, T., Prömel, H.J.: Approx-
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Appendix A Proof of Lemma 11

We prove Lemma 11 by contradiction, and we want to show that there is
always at least one terminal within Euclidean distance 1 to both Steiner points
or within Euclidean distance 1 to another terminal (which makes this full
component not cheerful anymore). For intuition, look at the following extreme
case with 8 terminals and 2 Steiner points in Figure A1. Each terminal is
at distance exactly 1 to the Steiner point it is connected to, and at distance
exactly 1 to two other terminals (so it is not cheerful). Our proof modifies any
given cheerful component with 8 terminals and 2 Steiner points towards this
extreme case while keeping the component being cheerful.

Fig. A1 An extreme case with 8 terminals and 2 Steiner points. Each terminal is at distance
exactly 1 to the Steiner point it is connected to, and at distance exactly 1 to two other
terminals.

Assume that we have a cheerful component as in Figure A2,
it has 8 terminals (t1 to t8) and 2 Steiner points (s1 and s2).
More precisely, if we traverse counterclockwise the embedding of
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this cheerful component we will have the following closed trail:
t1, s1, t2, s1, s2, t3, s2, t4, s2, t5, s2, t6, s2, s1, t7, s1, t8, s1, t1.

An edge between points a and b in Figure A2 represents that distance
d(a, b) ≤ 1; and distance d(a, b) > 1 if there is no edge between points a and
b. For each pair of terminals ti, tj adjacent to the same Steiner point s, by
applying law of cosines to triangle △tistj with d(s, ti) ≤ 1, d(s, tj) ≤ 1 and
d(t1, tj) > 1, we have ∠tistj > 60◦. Note that, any angle ∠abc mentioned
in this paper is referred to the one that formed by line segment b, a rotating
around b to meet line segment b, c. An angle is positive if the rotation of line
segment b, a to b, c is clockwise, and is negative if this rotation is counter
clockwise; and |∠abc| ≤ 180◦. We say a point c is on the right (left) side of
oriented line segment b, a if and only if ∠abc > 0 (∠abc < 0).

For Steiner point s1, if at least 3 terminals adjacent to it are on the same
side of straight line s1s2 and let t be the one closest to s2 among these ter-
minals, then ∠s2s1t < 60◦; and by law of cosines applied to triangle △ts2s1
with d(s1, s2) ≤ 1,d(s1, t) ≤ 1 and ∠s2s1t < 60◦, we have d(s2, t) ≤ 1, then
we finish the proof. So from here on, we only consider the situation that there
are exactly 2 terminals adjacent to each Steiner point on each side of straight
line s1s2.

Fig. A2 Example of cheerful component with 2 Steiner points and 8 terminals.

We can modify the locations of some points by modifying some of the edges
as follows, while the Euclidean distance between any pair of points without an
edge is still greater than 1.

• Extend edge (s1, s2) so that d(s1, s2) = 1 while the location of s1 is fixed
and the embedding of subgraph induced by s2 and all terminals adjacent to
s2 is fixed.

• Extend edges (s1, t1), (s1, t8), (s2, t4), and (s2, t5) so that the length of each
of these edges is exactly 1.

We get a graph as in Figure A3 after the modification. Denote two points
on straight line s1s2 as a and b such that line segment s1, s2 ⊂ a, b. Since
∠t1s1t8 and ∠t5s2t4 are both greater than 60◦, at least one of the following
two values is greater than 60◦: ∠t1s1a+∠bs2t4 and ∠as1t8+∠t5s2b. Without
loss of generality, we assume that ∠t1s1a+∠bs2t4 > 60◦. A special case is that
∠t1s1a ≥ 60◦ or ∠bs2t4 ≥ 60◦. If ∠t1s1a ≥ 60◦, then ∠s2s1t1 ≤ 120◦. Since
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Fig. A3 Modified cheerful component with 2 Steiner points and 8 terminals. We have
d(s1, s2) = d(s1, t1) = d(s1, t8) = d(s2, t4) = d(s2, t5) = 1.

point t2 is in the angle ∠s2s1t1, and ∠t2s1t1 > 60◦, we have that ∠s2s1t2 <
60◦. Applying law of cosines to triangle △s2s1t2 with d(s1, s2) = 1, d(s1, t2) ≤
1, we have d(t2, s2) ≤ 1, and then we finish the proof. Similarly, if ∠bs2t4 ≥ 60◦,
we can also finish the proof. So from here on, we only consider that case that
∠t1s1a < 60◦ and ∠bs2t4 < 60◦. Remind that, ∠t2s1t1 > 60◦ and ∠t4s2t3 >
60◦. Thus, in this case, we have that ∠s2s1t2 + ∠t3s2s1 = (180◦ − ∠t1s1a −
∠t2s1t1) + (180◦ −∠bs2t4 −∠t4s2t3) = 360◦ −∠t2s1t1 −∠t4s2t3 − (∠t1s1a+
∠bs2t4) < 360◦ − 60◦ − 60◦ − 60◦ = 180◦.

We further modify the graph by extending the length of one of the edges
(s1, t2) and (s2, t3) to exactly 1. To make sure that we will not shorten the
distance between t2 and t3 by this modification, we look at the relation between
these two terminals. Note that, ∠s2s1t2 > 60◦ and ∠t3s2s1 > 60◦. Otherwise,
applying law of cosines to triangles △s2s1t2 and △t3s2s1 respectively, we have
that d(s2, t2) ≤ 1 or d(s1, t3) ≤ 1, then we finish the proof. With d(s1, t2) ≤ 1
and d(s2, t3) ≤ 1, we do not have a case that line segments s1, t2 and s2, t3
intersect.

Let p2 be the projection of t2 on straight line s2t3, and let p3 be the
projection of t3 on straight line s1t2. If either p2 and t2 are on different sides of
straight line s1s2 or p3 and t3 are on different sides of straight line s1s2, then
we show that either d(s1, t3) < 1 or d(s2, t2) < 1, and we can finish the proof.
Without loss of generality, let t3 and p3 be on different sides of straight line
s1s2 (as shown in Figure A4), then we show that d(s1, t3) < 1. In this case,
we have ∠t3s1t2 ≥ 90◦ or else p3 and t3 will be on the same side of straight
line s1s2. Since ∠s2s1t2 + ∠t3s2s1 < 180◦, we have that ∠t3s2s1 + ∠s2s1t3 <
180◦−90◦ = 90◦ and ∠s1t3s2 > 90◦. Applying law of sines to triangle △s2s1t3
with ∠s1t3s2 > ∠t3s2s1, we have d(s1, t3) < d(s1, s2) = 1. From here on, we
only consider the case that both p2, p3 are on the same side of straight line
s1s2 as t2 and t3.

If s1, t2 are on the same side of p3 on straight line s1t2, and s2, t3 are on
the same side of p2 on straight line s2t3 (as shown in Figure A5), then we show
that d(t2, t3) ≤ 1, and we can finish the proof. Through each of point s1 and
point s2 draw straight lines parallel to straight line t2t3. At least one of these
two straight lines intersects both line segments s1, t2 and s2, t3. Without loss of
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Fig. A4 The case that p3 and t3 are on the same side of p3 on straight line s1s2.

generality, we assume that straight line ss2 intersects s1, t2 at s and intersects
s2, t3 at s2. Since ∠s2s1t2 + ∠t3s2s1 < 180◦ and line segments s1, t2, s2, t3
do not intersect, we have d(s, s2) ≥ d(t2, t3). Let p be the projection of s2 on
straight line s1t2. Since line segments s2, p, t3, p3 are parallel, and line segments
s2, s, t3, t2 are parallel, it is easy to see that s1 and s are on the same side of
p on straight line s1t2, and d(p, s) ≤ d(p, s1). Therefore d(s, s2) ≤ d(s1, s2).
Thus, we have 1 = d(s1, s2) ≥ d(s, s2) ≥ d(t2, t3). From here on, we only
consider the case that either s1 and t2 are on different sides of p3 on straight
line s1t2 or s2 and t3 are on different sides of p2 on straight line s2t3.

Fig. A5 The case that s1, t2 are on the same side of p3 on straight line s1t2, and s2, t3
are on the same side of p2 on straight line s2t3. Line segments s2, p and t3, p3 are parallel.
Line segments s2, s and t3, t2 are parallel.

Without loss of generality, we assume that s2 and t3 are on different sides
of p2 on straight line s2t3 (as shown in Figure A6). We extend edge (s2, t3)
so that d(s2, t3) = 1. Since we move t3 farther from p2 along line s2t3, the
distance between t2 and t3 does not get smaller. Remind that, ∠t4s2t3 >
60◦ and ∠t3s2s1 > 60◦. Applying law of cosines to triangle △t4s2t3 with
d(s2, t3) = d(s2, t4) = 1 and ∠t4s2t3 > 60◦, and applying law of cosines to
triangle △t3s2s1 with d(s2, t3) = d(s1, t2) = 1 and ∠t3s2s1 > 60◦, we still have
that d(t3, t4) > 1 and d(s1, t3) > 1.

In the rest of this proof, we will show that at least one of the three fol-
lowing distances is within 1: d(t2, s2), d(t1, t2), and d(t2, t3). Here we list some
information of the graph that we already proved in the current case. We can
use this information in the rest of the proof.

• d(s1, s2) = d(s1, t1) = d(s2, t3) = d(s2, t4) = 1.
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• d(s1, t2) ≤ 1.
• ∠t2s1t1 > 60◦ and ∠t4s2t3 > 60◦.
• ∠s2s1t2 > 60◦ and ∠t3s2s1 > 60◦.
• ∠t1s1a+ ∠bs2t4 > 60◦.
• ∠t1s1a < 60◦ and ∠bs2t4 < 60◦.
• ∠s2s1t2 + ∠t3s2s1 < 180◦.

Fig. A6 The case that s2 and t3 are on different sides of p2 on straight line s2t3. In this
case, if we extend edge (s2, t3) so that d(s2, t3) = 1, we still have that d(t3, t4) > 1, and we
will not shorten the distance between t2 and t3.

Denote the circle centered at point d with radius 1 as C(d). Let C(s2) and
C(t3) intersect on the left of line segment t3, s2 at point z, then triangle△zt3s2
is an equilateral triangle. Let point x be on the right side of line segment s1, s2
with s1, x parallel with s2, t3 and d(s1, x) = 1. The locations of points z and
x are illustrated in Figure A7. Since d(s1, x) = d(s1, s2) = d(s2, t3) and line
segments s1, x and s2, t3 are parallel, the quadrilateral s1xt3s2 is a rhombus.
Remind that ∠s2s1t2 + ∠t3s2s1 < 180◦. Since ∠s2s1x + ∠t3s2s1 = 180◦, we
have that t2 is in the angle ∠s2s1x. Since t2 is outside of circles C(t3) and
C(s2), we have that t2 is inside of triangle △xzs1.

Fig. A7 Locations of points z and x. Each solid line segment in the figure has length
exactly 1.

In the rest of this proof, we will show that d(t1, x) ≤ 1 and d(t1, z) ≤ 1.
Since t2 is a convex combination of s1, x and z, after this proof, together with
the fact that d(t1, s1) = 1, we have that d(t1, t2) ≤ 1, and then we can finish
the proof of Lemma 11.

Firstly, in this paragraph we show that d(t1, x) ≤ 1. Remind that,
∠t4s2t3 > 60◦, ∠t1s1a+∠bs2t4 > 60◦ and ∠s2s1x+∠t3s2s1 = 180◦. We have
that, ∠xs1t1 = 180◦−∠t1s1a−∠s2s1x = 360◦−(∠t1s1a+∠bs2t4)−(∠s2s1x+
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∠t3s2s1)− ∠t4s2t3 < 360◦ − 60◦ − 180◦ − 60◦ = 60◦. Applying law of cosines
to triangle △s1t1x with d(s1, t1) = d(s1, x) = 1 and ∠xs1t1 < 60◦, we have
that d(t1, x) ≤ 1.

Last, in this paragraph we show that d(t1, z) ≤ 1. Let y be a point such
that d(s1, y) = 1 and ∠xs1y = 60◦. The location of point y is illustrated in
Figure A8. Since d(s1, x) = d(s1, y) = 1 and ∠xs1y = 60◦, the triangle △s1yx
is an equilateral triangle. Remind that line segments s1, x and s2, t3 are par-
allel, and triangle △zt3s2 is an equilateral triangle, so line segments s1, y and
s2, z are parallel. Since d(s1, y) = d(s1, s2) = d(s2, z) = 1 and line segments
s1, y, s2, z are parallel, the quadrilateral s1yzs2 is a rhombus and d(y, z) = 1.
Remind that ∠xs1t1 < 60◦, we have ∠zs1t1 < ∠zs1y. Since f(x) = cosx, x ∈
[0, π] is monotone decreasing, by law of cosines applied to triangles △s1yz
and △s1t1z, we have that d(t1, z) =

√

d(s1, z)2 + 1− 2d(s1, z) cos∠zs1t1 <
√

d(s1, z)2 + 1− 2d(s1, z) cos∠zs1y = d(y, z) = 1. Till here, we finish the
proof that d(t1, t2) ≤ 1.

Fig. A8 Location of point y. Each solid line segment in the figure has length exactly 1.
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