
RECONFIGURATIONS IN GRAPHS AND GRIDS ∗

GRUIA CĂLINESCU†, ADRIAN DUMITRESCU‡, AND JÁNOS PACH§

Abstract. Let G be a connected graph, and letV andV ′ two n-element subsets of its vertex setV (G). Imagine
that we place a chip at each element ofV and we want to move them into the positions ofV ′ (V andV ′ may have
common elements). A move is defined as shifting a chip fromv1 to v2 (v1, v2 ∈ V (G)) on a path formed by
edges ofG so that no intermediate vertices are occupied. We give upperand lower bounds on the number of moves
that are necessary, and analyze the computational complexity of this problem under various assumptions: labeled
versus unlabeled chips, arbitrary graphs versus the case when the graph is the rectangular (infinite) planar grid,
etc. We prove hardness and inapproximability results for several variants of the problem. We also give a linear-
time algorithm which performs an optimal (minimum) number of moves for the unlabeled version in a tree, and
a constant-ratio approximation algorithm for the unlabeled version in a graph. The graph algorithm uses the tree
algorithm as a subroutine.

Key words. Reconfiguration algorithms, approximation algorithms, local ratio method, proper function, NP-
hardness.

AMS subject classifications.05C85, 68R05, 68R10, 68W25, 68W40

1. Introduction . Consider a set system (set) ofn pairwise disjoint objects in the Eu-
clidean space that need to be brought from a givenstart (initial) configurationS into a desired
target (goal) configurationT . In many cases, the problem admits the following abstraction:
we have an underlying finite or infinite graph, the start configuration is represented by a set
of n chips atn distinct start vertices and the target configuration by another set ofn distinct
target vertices. A vertex can be both a start and target position. The case when the chips
are labeled or unlabeled give two different variants of the problem. In one move a chip can
follow an arbitrary path in the graph and end up at another vertex, provided the path (includ-
ing the end vertex) is free of other chips. Themotion planningproblem for such a system is
that of computing a sequence of object motions (schedule) that achieves this task. If such a
sequence of motions exists, we say that the problem isfeasibleand we say that it isinfeasible
otherwise. To avoid trivial questions, we always assume thegraph is connected.

In certain applications, objects are indistinguishable, therefore the chips are unlabeled;
for instance, a modular robotic system consists of a number of identical modules (robots),
each of which having identical capabilities [10, 11]. In another application, the chips are
indivisible packets (copies) of the same data that need to bemoved from one site to another
of a wide-area communication network without ever exceeding the capacities of the commu-
nication buffers at each site [5, 16].

In this variant with unlabeled chips, the problem is easier and always feasible; therefore
one is interested in minimizing the number of moves. For the variant with labeled chips the
problem may be infeasible: it is known for instance, that the15-puzzle on a4 × 4 grid —
introduced by Sam Loyd in 1878 — has a solution if and only if the start permutation is an
even permutation [15, 20] (see [3] for a recent approach).

∗A preliminary version inProceedings of Latin American Theoretical Informatics Conference(LATIN ’06),
vol. 3887 of LNCS, Springer, 2006, pp. 262–273.

†Dept. of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA;
calinesc@iit.edu. Research partially supported by NSF grant CCF-0515088.

‡Dept. of Computer Science, University of Wisconsin–Milwaukee, WI 53201-0784, USA;ad@cs.uwm.edu.
Research partially supported by NSF CAREER grant CCF-0444188.

§Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012-1185, USA;
pach@cims.nyu.edu. Research partially supported by grants from NSF, NSA, OTKA,and from the US-Israeli
Binational Research Foundation.

1

Other reconfiguration rules (models) for systems of disks inthe plane have been exam-
ined recently [1, 7, 8]; see also [9]. These models do not fallin the graph reconfiguration
framework in this paper, because a disk may partially overlap several target positions. A
model that fits in the graph reconfiguration framework has been analyzed in [10]: it deals
with reconfiguration of modular systems acting in a grid-like environment, where moves
must maintain connectivity of the whole system, and the motion rules are very local: a chip
can only move to an adjacent position in one move. Denoting the configuration of the mod-
ules at timet by Vt, the system remains connected if for eacht = 0, 1, 2, . . ., the graph
Gt = (Vt, Et) is connected, whereEt is the set of edges connecting pairs of cells inVt that
are side-adjacent.

The general form of the reconfiguration problem we consider is to find a reconfiguration
sequence with a minimum number of moves. Depending on whether we refer to the graph
or grid version, or to the labeled or unlabeled version, we call the problem U-GRAPH-RP,
L-GRAPH-RP, U-GRID-RP or L-GRID-RP. In the grid version, the underlying graph is
the infinite planar integer grid.

Consider for example the reconfiguration problem in the infinite grid with unlabeled (or
labeled) chips (objects). The following simple algorithm does2n moves for reconfiguration
of n chips. In the first step (n moves), move in a suitable order all the chips away in the
free grid space. In the second step (n moves), bring the chips ”back” to target positions. We
will show that minimizing the number of moves is intractablein both (labeled and unlabeled)
variants in the grid.

A move is a calledtarget moveif it moves a chip to a final target position. Otherwise it
is callednon-targetmove. Our lower bounds use the following argument: if no target chip
coincides with a start chip (so each chip must move), a schedule with x non-target moves
consists of at leastn + x moves.

It is worth noting that, in contrast with the variant with moves along free paths studied
here, the variant of the reconfiguration problem (with unlabeled chips) in which we count
as one move each edge traversed by a chip, can be solved exactly (optimally). This will be
explained at the end of Section 2.

Previous related work:. Most of the work done so far concerns labeled versions of the
reconfiguration problem, and we give here only a very brief survey.

For the generalization of the15-puzzle on an arbitrary graph (withk = v−1 labeled chips
in a connected graph onv vertices), Wilson [21] gave an efficiently checkable characterization
of the solvable instances of the problem. Kornhauseret al. have extended his result to any
k ≤ v − 1 and provided bounds on the number of moves for solving any solvable instance
[16].

Ratner and Warmuth have shown that finding a solution with minimum number of moves
for the(N×N)-extension of the15-puzzle is intractable [19], so the reconfiguration problem
in graphs with labeled chips is NP-hard.

Auletta et al. gave a linear time algorithm for thepebble motion on a tree[5]. This
problem is the labeled variant of the same reconfiguration problem we study here, however
each move is along one edge only.

Papadimitriouet al. studied a problem ofmotion planning on a graphin which there is
a mobile robot at one of the verticess, that has to reach to a designated vertext using the
smallest number of moves, in the presence of obstacles (pebbles) at some of the other vertices
[17]. Robot and obstacle moves are done along edges, and obstacles have no destination
assigned and may end up in any vertex of the graph. The problemhas been shown to be
NP-complete even for planar graphs, and a ratioO(

√
n) polynomial time approximation

algorithm was given in [17].

2

Dumitrescuet al. have addressed several basic questions in the analysis of modular meta-
morphic systems [11]. In particular the next two questions have been shown to be decidable:
(i) whether a given set of motion rules maintains connectivity; (ii) whether a goal configura-
tion is reachable from a given initial configuration (at specified locations) using a given set of
motion rules. Other seemingly similar questions have been shown to be undecidable.

Our results are:.
(1) The reconfiguration problem in graphs with unlabeled chips U-GRAPH-RP is NP-hard,

and even APX-hard.
(2) The reconfiguration problem in graphs with labeled chips L-GRAPH-RP is APX-hard.
(3) For the infinite planar rectangular grid, both the labeled and unlabeled variants L-GRID-

RP and U-GRID-RP are NP-hard.
(4) There exists a ratio3 approximation algorithm for the unlabeled version in graphs U-

GRAPH-RP. Thereby we also get a ratio3 approximation algorithm for the unla-
beled version U-GRID-RP in the (infinite) rectangular grid.

(5) We show thatn moves are always enough (and sometimes necessary) for the reconfigu-
ration ofn unlabeled chips in graphs. For the case of trees, we present alinear time
algorithm which performs an optimal (minimum) number of moves.

(6) We show that7n/4 moves are always enough, and3n/2 are sometimes necessary, for the
reconfiguration ofn labeled chips in the infinite planar rectangular grid (L-GRID-
RP).

2. Chips in graphs. Let G be a connected graph, and letV and V ′ two n-element
subsets of its vertex setV (G). Imagine that we place a chip at each element ofV and we
want to move them into the positions ofV ′ (V andV ′ may have common elements). A move
is defined as shifting a chip fromv1 to v2 (v1, v2 ∈ V (G)) along a path inG so that no
intermediate vertices are occupied.

THEOREM 2.1. In G one can get from anyn-element initial configurationV to anyn-
element final configurationV ′ using at mostn moves, so that no chip moves twice. Moreover,
for the case of a treeT with r vertices, there is aO(r)-time algorithm which performs the
optimal (minimum) number of moves.

Proof. It is sufficient to prove the theorem for trees. We argue by induction on the number
of chips. Take the smallest treeT containingV andV ′, and consider an arbitrary leafl of T .
Assume first that the leafl belongs toV : sayl = v. If v also belongs toV ′, the result trivially
follows by induction, so assume that this is not the case. Choose a pathπ in T , connecting
v to an elementv′ of V ′ such that no internal point ofπ belongs toV ′. Apply the induction
hypothesis toV \ {v} andV ′ \ {v′} to obtain a sequence of at mostn − 1 moves, and add a
final (unobstructed) move fromv to v′.

The remaining case when the leafl belongs toV ′ is symmetric: sayl = v′; choose a
pathπ in T , connectingv′ to an elementv of V such that no internal point ofπ belongs to
V . Move firstv to v′ and append the sequence of at mostn − 1 moves obtained from the
induction hypothesis applied toV \ {v} andV ′ \ {v′}.

We further refine this algorithm so as to minimize the number of moves. We call a vertex
that is both a start and a target position anobstacle. We have four types of vertices: free
vertices, chip-only vertices, target-only vertices, and obstacles. Denote byc (resp. t) the
number of chip-only (resp. target-only) vertices, and byo the number of obstacles. We have
c + o = o + t = n. We call a treebalancedif it contains an equal number of chip-only
and target-only vertices. Clearly, the initial treeT is balanced. If there exists an obstacle
whose removal fromT breaksT into balanced subtrees, we keep this obstacle fixed and
proceed recursively (by induction) on the subtrees. If no obstacle removal breaksT into
balanced subtrees, then all obstacles must move (each at least once), hence the number of

3

moves necessary is at leasto + c = n, and the algorithm in the first part of our proof can be
used to obtain an optimal schedule.

We continue with the description of the linear time algorithm. We traverse the tree in
postorder and compute for every vertexv four doubly-linked listsMv, Qv, Av, andCv.
Let Tv denote the subtree rooted atv. We say that a sequence of movessolvesTv if, after
executing the moves in this sequence, all the chips inTv cover exactly every target ofTv

(including obstacles). Note that by itself the definition ofsolving does not imply solving with
a minimum number of moves.

We now discuss the four lists and give intuition on their use;a formal proof follows the
description of the algorithm.Av andCv are lists of vertices insideTv which require moves
involving nodes outsideTv: for Av those moves mean bringing a chip from outsideTv to
a vertex ofAv, and forCv those moves mean taking a chip from a vertex ofCv to a node
outsideTv. EitherAv or Cv (possibly both) will be empty after nodev is processed. A move
is described by a pair of vertices: the place where we take hold of the chip and the place
where we release it.Mv andQv are lists of moves insideTv. Moves involving elements of
Av or Cv will use the edge fromv to its parent. Moves not involving elements ofAv ∪ Cv

will be done insideTv and are all inMv andQv. The goal is to obtain a sequence of moves
solvingTv such that this sequence starts with the moves inMv, followed by some moves on
the edge fromv to its parent (all these moves involve vertices fromCv or Av), followed by
the moves inQv. If v has no parent (i.e.,v is the root ofT), the list of moves on the edge
from v to its parent is empty. The final reconfiguration sequence (output by the algorithm) is
the sequence of moves in the listMv followed by the moves in the listQv at the root of the
tree.

We now describe howAv, Cv, Mv, Qv are initialized and computed. Two examples of
the execution of the algorithm are shown in Figure 2.1. Ifv is a leaf,Mv andQv are empty,
Av =< v > if v is a target-only vertex and empty otherwise, andCv =< v > if v is a
chip-only vertex, and empty otherwise. We now show how the four listsMv, Qv, Av, andCv

are obtained from the lists of the children ofv. There are four cases, depending on whetherv
is free, target-only, chip-only, or an obstacle.

In all four cases, we first computeMv, Qv, Av andCv by concatenating the correspond-
ing lists of the children ofv. We also make use of a procedureCancel, which works as
follows: Iterate the following step until eitherAv or Cv is empty: remove the first element
from each list and add the corresponding pair at the end ofMv.

In thefirst case,v is a free vertex. After applyingCancel, we are done.
In thesecondcase,v is a target-only vertex. We applyCancel. Now, if Cv is empty, we

putv at the end ofAv and we are done. IfCv is nonempty, we remove from it the last element
q. Insert the move(q, v) at the beginning ofQv, and we are done.

In thethird case,v is a chip-only vertex. IfAv is empty, we putv at the beginning ofCv

and we are done. IfAv is nonempty, we remove from it the first elementq. We add the move
(v, q) at the end ofMv. Then we applyCanceland we are done.

In thefourthand last case,v is an obstacle. (i) IfAv andCv are both empty, we are done.
(ii) If Av is empty andCv is nonempty, letq be the last chip fromCv. Removeq from Cv,
insert the move(q, v) at the beginning ofQv, addv at the beginning ofCv, and we are done.
(iii) If Av is nonempty, letp be the first target inAv. Removep from Av and add the move
(v, p) at the end ofMv. Apply Cancel. Now, if Cv is empty, addv at the end ofAv and we
are done. IfCv is nonempty (note,Av must be empty afterCancel), let q be the last chip
from Cv. Removeq from Cv, insert the move(q, v) at the beginning ofQv, and we are done.

We need to prove this algorithm returns an optimum solution and then analyze its running
time. First, we prove it returns a correct solution, and thenwe justify separately its optimality.

4

A : 6, 7 ⇒ 7
C : ∅
Q : ∅
M : ∅ ⇒ (5, 6)

Q : ∅

A : 7
C : ∅
M : ∅

Q : ∅
M : (5, 6) ⇒ (5, 6)(2, 3)(4, 7)

A : 3, 7 ⇒ 7 ⇒ ∅ ⇒ 2
C : 4 ⇒ ∅

Q : ∅

A : ∅
C : 5
M : ∅

A : ∅
C : 4, 5 ⇒ 4 ⇒ 2, 4
M : ∅
Q : ∅ ⇒ (5, 2)

A : ∅
C : 4
M : ∅
Q : ∅

A : 3

Q : ∅
C : ∅
M : ∅3

5

1

A : 3 ⇒ ∅
C : 2, 4 ⇒ 4 ⇒ ∅
M : ∅ ⇒ (2, 3)
Q : (5, 2) ⇒ (4, 1)(5, 2)

4

2

3

1

2

5

6 7

A : 6
C : ∅
M : ∅
Q : ∅

A : ∅
C : 4
M : ∅
Q : ∅

A : 2 ⇒ ∅
C : ∅
M : (5, 6)(2, 3)(4, 7) ⇒ (5, 6)(2, 3)(4, 7)(1, 2)
Q : ∅

4

A : 3
C : ∅
M : ∅
Q : ∅

FIG. 2.1. Two examples of execution of the linear time algorithm for reconfiguration in a tree.
Chips are drawn as empty circles, obstacles as black circles, and targets as gray circles.

For the correctness, we prove by induction on the size ofTv that the following three conditions
hold:

• If Tv contains an equal number of start and target vertices, thenAv = Cv = ∅. The
sequence of moves obtained by concatenatingMv andQv solvesTv.

• If Tv containsq more start vertices than target vertices, then|Cv| = q andAv = ∅.
A sequence of moves obtained by concatenatingMv, anyq moves taking chips from
vertices ofCv in the order they appear inCv and placing them on vertices outside
Tv, andQv, solvesTv.

• If Tv containsq more target vertices than start vertices, then|Av| = q andCv = ∅.
A sequence of moves obtained by concatenatingMv, anyq moves taking chips from
vertices outsideTv and placing them on vertices ofAv in the order they appear in
Av, andQv, solvesTv.

The base case is obvious, and the inductive step follows directly from the description of
the algorithm, thereby proving that the algorithm returns acorrect solution. Regarding the
optimality of the number of moves, notice that an obstaclev whose removal breaksT into
balanced subtrees is not moved by the algorithm, and any other chip is moved only once:
hence the algorithm returns an optimum solution.

The time spent at vertexv is proportional to one plus the number of children ofv plus the
number of moves added toMv andQv. Summing over the vertices, we obtain that the time
is proportional to the number of vertices in the tree plus thetotal number of moves, hence it
is O(n + r) = O(r), sincen ≤ r.

Remark. Theorem 2.1 implies that in the infinite rectangular grid, we can get from any starting
position to any ending position of the same sizen in at mostn moves. It is perhaps interesting
to compare this to the problem of sliding congruent unlabeled disks in the plane: here one
can come up with “cage-like” constructions that require about 16n

15
moves [7].

2.1. Hardness results.THEOREM 2.2. The unlabeled version in graphsU-GRAPH-
RP is NP-complete. Moreover, assuming P6= NP, there is an absolute constantǫ1 > 0 such
that no polynomial-time algorithm has approximation guarantee at most1 + ǫ1. That is,
U-GRAPH-RPis APX-hard.

Proof. The decision version of U-GRAPH-RP is clearly in NP, so we only have to
prove its NP-hardness. We reduce theset coverproblem SC to U-GRAPH-RP. An instance

5

of the set cover problem consists of a familyF of subsets of a finite setU . The problem is
to decide whether there is a set cover of sizek for F , i.e., a subsetF ′ ⊆ F , with |F ′| ≤ k,
such that every element inU belongs to at least one member ofF ′. SC is known to be
NP-complete [12]. Consider an instance of SC represented bya bipartite graph(B ∪ C, E),

A B C
FIG. 2.2.The “broom” graphG corresponding to a set cover instance with|U | = 12, and|F| = 6.

The vertices occupied only by chips are white, those occupied by both chips and targets are black, and
those occupied only by targets are shaded. An optimal reconfiguration takes15 moves (an optimal set
cover has size3: the third, fourth and fifth sets counting from the top).

whereU = C,F = B, and edges describe the membership relation. Construct theundirected
graphG shown in Fig. 2.2, with|A| = |C|. The chips areS = A ∪ B and the targets are
T = B ∪ C. Clearly,G can be constructed in polynomial time. The reduction is complete
once we establish the following claim.

Claim. There is a set cover consisting of at mostq sets if and only if reconfiguration inG can
be done using at most|A| + q moves.

Proof of Claim: Let q be the size of an optimal set cover. The direct implication isclear:
move one chip from each element ofB in the optimal cover to a target inC; then move the
elements ofA to targets inC and to the emptied targets inB using the required number of
moves. For the converse implication, assume that there is a reconfiguration sequence with
fewer than|A| + q moves. Since all elements ofA must move, fewer thanq elements ofB
move away from their original positions. By the definition ofset cover, it means that some
target inC will not be filled, a contradiction.

To prove the approximation hardness we use the same reduction, and the fact that3-SC,
the set cover problem in which the size of each set inF is bounded from above by3 is APX-
hard [2, 18]. Thusq, as in the paragraph above, is between|A|/3 and|A|. Approximating
|A| + q within 1 + ǫ will approximateq within 1 + 4ǫ.

A similar reduction can be made for the labeled version. The chips inA have targets in
C, labeled as in Fig. 2.3 (here|A| = |C| = m). The obstacle chips inB coincide with
their targets. Each vertex inB is adjacent to a “twin” free vertex. The reduction follows
from the next claim. Its proof is similar to that for previousclaim, using the fact that a chip
representing a selected set must move twice - once to to make way for the chips whose targets
are on the vertices representing elements, and once to come back.

Claim. There is a set cover consisting of at mostq sets if and only if reconfiguration inG can
be done using at most|A| + 2q moves.

We thus obtain:

6

A1 2
10

m
20

m0B C
FIG. 2.3. The graph constructed in the reduction for labeled chips. Free vertices are drawn as

squares. An optimal reconfiguration takes18 moves (an optimal set cover has size3: the third, fourth
and fifth sets counting from the top).

THEOREM 2.3. The labeled version in graphsL-GRAPH-RPis APX-hard.

2.2. Approximation algorithms. THEOREM 2.4. There exists a3-approximation al-
gorithm forU-GRAPH-RP.

Proof. The algorithm is obtained by applying the local ratio method of Bar-Yehuda [6]
to a graphH whose construction we describe below.

The vertex set of the input graphG is partitioned into four sets:
• C = V \ V ′, the chip-only vertices
• A = V ′ \ V , the target-only vertices
• B = V ∩ V ′, the obstacles
• F = V (G) \ (V ∪ V ′), the free vertices

ThenV (H) = A∪B ∪C. Observe that|A| = |C|. For every pair of verticesu andv of
H , we put inE(H) the edgeuv if uv ∈ E(G) or there is a path inG from u to v having all
the internal vertices fromF .

A set of vertices (inV (H)) is calledbalancedif it contains an equal number of chip-
only and target-only vertices. InH , we use the local ratio method to find a small set of
edgesQ such that every connected componentD of (V (H), Q) is balanced. We call this
the U-STEINER problem. U-STEINER is a network design problem given by a0-1 proper
function[13, 14], problem for which both the primal-dual schema and the local ratio method
were known to give a 2-approximation. The local-ratio 2-approximation algorithm is also
implicit later in this section. We briefly recall here that for a ground setV , a 0-1 function
f : 2V → {0, 1} is proper (cf. [13, 14]) if it satisfies the following three conditions: (i)
f(V) = 0, (ii) if A andB are disjoint, thenf(A ∪ B) ≤ max(f(A), f(B)), and (iii) f is
symmetric, i.e.f(S) = f(V − S) for all S ⊆ V .

In our case, the function, defined over all subsets of vertices, is one if the set is unbal-
anced and zero otherwise. It can be shown that this is a properfunction, however this fact is
not needed in the ratio3 approximation algorithm, whose proof is self-contained. From the
next claim, one can easily obtain a4-approximation for U-GRAPH-RP, as shown after the
proof of claim.

One more piece of notation: given a solutionR for U-GRAPH-RP inG, consider the
edges ofG traversed by the moving chips during the reconfiguration process. These edges,
together with their endpoints (including the free verticesthrough which chips pass through)
form a numberk ≥ 1 of connected components. We then say thatR hask connected compo-

7

nents. Writec = |C| = |A|.
CLAIM 1. Given a feasible solutionR for U-GRAPH-RP in G with m moves and

k connected components, there is a feasible solutionQ for U-STEINER in H with at most
m + c− k edges. Conversely, given a feasible solutionQ for U-STEINER in H with e edges,
there is a feasible solutionR for U-GRAPH-RPin G with at moste − c + k moves, where
k is the number of connected components ofQ which intersectA (andC).

Proof. For the first part, letS be the set of vertices ofG involved in the moves ofR,
and letSi, for i = 1, 2, . . . , k, be the connected components ofR. Then the number of
moves insideSi is at least|Si ∩ C| + |Si ∩ B|. Let S′

i = Si ∩ V (H) and note thatS′

i

is also connected inH . In eachS′

i pick a spanning treeTi; the union of the treesTi is
the feasible solutionQ for U-STEINER. In eachTi, the number of edges is|V (Ti)| − 1 =
|V (Ti) ∩C|+ |V (Ti) ∩B|+ |V (Ti) ∩A| − 1. Summing overi gives the needed inequality.

For the second part, letTi, for i = 1, . . . , k, be one such connected component (w.l.o.g.
a tree) withei edges. Then|A∩ V (Ti)| = |C ∩V (Ti)| and using Theorem 2.1 one can move
all the chips ofV (Ti), including those sitting on obstacles, to all the targets ofV (Ti) using
|V (Ti)| − |C ∩ V (Ti)| moves: the chips from(C ∪B) ∩ V (Ti) move along the edges ofTi,
passing if necessary through vertices ofF (in G). Since|V (Ti)| = |E(Ti)| + 1, this second
part of the claim follows by adding up over the components, since no move puts a chip on a
vertex inF . (As a side remark, ifQ is an optimal solution inH , eachTi is a tree intersecting
A andC).

Here is a short account for the ratio4 approximation algorithm: By the first part of
Claim 1 applied to an optimal solution for U-GRAPH-RP inG with mOPT moves and
kOPT components, the number of edgeseOPT in an optimal solution for U-STEINER in H
satisfies

eOPT ≤ mOPT + c − kOPT ≤ mOPT + c ≤ 2mOPT .

Therefore, by the second part of Claim 1, the number of movesm in the solution for U-
GRAPH-RP inG returned by the algorithm satisfies (sincek1 ≤ c, wherek1 is the number
of components in the solution for U-STEINER in H which intersectA andC)

m ≤ e − c + k1 ≤ e ≤ 2eOPT ≤ 4mOPT .

We now present the ratio3 approximation algorithm. To this end, we have to enter the
details of the local ratio method. The local ratio algorithmapproximately solves U-STEINER

instances with non-negative weightδ on the edges. The algorithm below, given in [6], is
recursive. Each recursive call is given a setS of already selected edges and a non-negative
edge weight function, and it returns a set of edges (in step 8). Given a set of edgesF ⊆ E(H),
call a connected componentX of (V (H), F) balancedif |V (X) ∩ A| = |V (X) ∩ C| and
unbalancedotherwise. For the first call of the algorithm,S = ∅, andδ = 1 on all edges. By
feasible solution we mean feasible solution for the original U-STEINER instance.

1. The input parameters are the set of edgesS ⊆ E(H) and non-negative weightδ on
E(H).

2. If all the connected components of(V (H), S) are balanced, return∅.
3. Define weight functionδ1 on edges ofE(H) as follows: edges going between two

unbalanced components of(V (H), S) get weight1, edges going between one un-
balanced component of(V (H), S) and one balanced component of(V (H), S) get
weight1/2, and all the other edges get weight0.

4. Compute a positive real numberα such that the weight functionδ2 on edges of
H given byδ2 = δ − α · δ1 is non-negative and for at least one edgee, we have
δ2(e) = 0 < δ(e).

8

5. LetM = {e | δ2(e) = 0}.
6. Recursively solve the instance with parametersS ∪ M and weightδ2 on E(H),

producing a set of edgesL such thatS ∪ M ∪ L is a feasible solution.
7. Obtain minimalM ′ ⊆ M such thatS ∪ M ′ ∪ L is a feasible solution.
8. ReturnL ∪ M ′ .

We are guaranteed thatM 6= ∅ and thus the algorithm terminates. For the approximation
ratio, we need the following claim.

CLAIM 2. During the execution of a recursive call of the algorithm, let k be the number
of unbalanced components of(V (H), S). Thenδ1(P) ≥ k/2 for any feasible solutionP .
The set of edgesQ returned by the recursive call of the algorithm satisfiesδ1(Q) ≤ k − q,
whereq is the number of connected components of(V (H), Q ∪ S).

Proof. Consider a feasible solutionP . If an edge ofP goes between two unbalanced
components of(V (H), S) we assign1/2 to each such component, and if it goes from one
unbalanced component of(V (H), S) to one balanced component of(V (H), S), we assign
1/2 to the unbalanced component. Each unbalanced component of(V (H), S) must have
at least one edge ofP going to some other component, and thus it is assigned at least 1/2.
Thereforeδ1(P) ≥ k/2.

Consider now the edgesQ selected (returned) by one recursive call of the algorithm and
let Qi, for i = 1, . . . , q be the connected components of(V (H), Q ∪ S). Fix one component
Qi. InsideQi, contract to a single vertex the vertices from the same component of(V (H), S),
obtainingQ̄i. The minimal property ofQ as ensured by Step 7 of the algorithm ensures that
Q̄i is acyclic (and thus it is a tree) and every leaf ofQ̄i is an unbalanced component ofS.
Note that all the edges ofQi with positiveδ1-weight are inQ̄i. RootQ̄i at an arbitrary vertex
v given by an unbalanced component ofS.

For everyu ∈ (V (Q̄i)\{v}) given by an unbalanced component ofS, charge tou either
one or two edges, of totalδ1-weight 1, as follows: consider the path fromu to v in Q̄i and
let u′ be the next vertex on this path given by an unbalanced component of S. If the path has
only one edge, charge this edge tou. If this path has more than one edge, charge tou the first
and last edge of the path. It is easy to check that every edge ofpositiveδ1-weight of Q̄i is
charged at least once. Thusδ1(Qi) = δ1(Q̄i) ≤ si−1, wheresi is the number of unbalanced
component ofS included inQi; here we used thatv is not being charged.

Summing overi yields the second part of the claim.

We continue with the proof of Theorem 2.4. First we note that,by using Claim 2 and in-
duction, the local ratio algorithm ensures that its outputLR satisfies, for any feasible solution
P , the following:

δ(LR) = αδ1(LR) + δ2(LR) ≤ α2δ1(P) + 2δ2(P) = 2δ(P). (2.1)

Let OPT be a solution with a minimum number of moves,m(OPT) be the number of
moves ofOPT , andOP be the set of edges of the U-STEINER feasible solution obtained
from OPT in Claim 1. LetLR be the set of edges selected by the local ratio approximation
algorithm when applied to the U-STEINER instance,k(LR) be the number of connected
components ofLR which intersectA, andm(LR) be the number of moves of the solution
obtained in Claim 1 fromLR. The weight functionsδ, δ1, andδ2 refer to the first call of the
local ratio algorithm, as does the realα, which we note is at least1. We have:

9

m(LR) ≤ |LR| + k(LR) − c by Claim 1

= δ(LR) + k(LR) − c

= αδ1(LR) + δ2(LR) + k(LR) − c

≤ α(2δ1(OP) − k(LR)) + δ2(LR) + k(LR) − c by Claim 2

≤ 2αδ1(OP) − k(LR) + δ2(LR) + k(LR) − c sinceα ≥ 1

≤ 2αδ1(OP) + 2δ2(OP) − c by Equation 2.1

≤ 2δ(OP) − c

= 2|OP | − c

≤ 2(m(OPT) + c) − c by Claim 1

= 2m(OPT) + c

≤ 3m(OPT), sincem(OPT) ≥ c.

This concludes the proof of Theorem 2.4.
Remark. In the graph version with unlabeled chips, if we count as onemove every edge
traversed by a chip, minimizing the number of moves can be solved in polynomial time, as
described below. Construct a complete weighted bipartite graphB = (V ∪ V ′, E) with
bipartition V : the vertices containing chips andV ′: the vertices containing targets (with
obstacles in both sides of the bipartition). The weight of anedge inE is equal to the length
of the shortest path inG connecting the endpoints of the edge. Now apply an algorithmfor
Minimum Weight Perfect Matching inB, and move accordingly: if the path a chipc1 would
take to reach its destination has another chipc2 on it, have the two chips switch destinations
and continue movingc2. One can check that the number of moves does not exceed the weight
of the perfect matching. On the other hand, the optimum solution must move chips to targets
and cannot do better than the total length of the shortest paths in a minimum matching.

3. Chips in grids. In this section we analyze the reconfiguration problem with labeled,
respectively unlabeled chips, in an infinite grid. However,a sufficiently large finite section of
the grid containing all start and target positions, clearlysuffices for this purpose.

3.1. Hardness results.THEOREM3.1. The unlabeled version in the gridU-GRID-RP
is NP-complete.

Proof. The decision version of U-GRID-RP is clearly in NP, so we only have to prove
its NP-hardness. We reduce theRectilinear Steiner Treeproblem R-STEINER to U-GRID-
RP. An instance of R-STEINER consists ofn points in the plane, and the problem is to
decide whether there is a rectilinear Steiner tree (that is,a tree containing only horizontal and
vertical edges) of length at mostq which connects all points. For convenience the points can
be chosen with integer coordinates. R-STEINER is known to beStrongly NP-complete [12]
and thus we can assume all the coordinates are given in unary.

Consider an instanceP = {p1, . . . , pn} of R-STEINER withn points. Assume that
thex-coordinate of a leftmost pointp1 ∈ P is equal to zero. The instance of U-GRID-RP
is illustrated in Fig. 3.1. It hasn − 1 chip-only vertices having the samey-coordinate with
p1 andx-coordinates0,−1,−2, . . . ,−n + 1, andn − 1 target-only vertices located at the
other points{p2, . . . , pn} of the R-STEINER instance. LetB be a smallest axis-aligned
bounding rectangle of all chip-only and target-only vertices, and∆x, ∆y be the dimensions
of B. Consider a sufficiently large axis-aligned rectangleA enclosing the chip-only and
target-only vertices (thusA enclosesB) with obstacles placed at each other integer point.
The boundary ofA is at distance∆x +∆y from the boundary ofB. This construction is done

10

p1

B

A

FIG. 3.1.Unlabeled chips in the grid obtained from a Rectilinear Steiner Tree instance withn = 9

(sketch). Chip-only vertices are drawn as empty circles, and target-only vertices are drawn as filled
(black) circles. Obstacles (not shown) are placed at each other integer point in the axis-aligned bound-
ing rectangle.

in time polynomial in∆x×∆y, which is polynomial in the size of the R-STEINER instance
since the coordinates are given in unary. The reduction is complete once we establish the
following claim.

Claim. There is a rectilinear Steiner tree of length at mostq if and only if reconfiguration can
be done using at mostq moves.

Proof of Claim: We start with the direct implication. LetT be a Steiner tree of lengthq
connecting all target-only vertices andp1. Pick a leaf ofT which is an target-only vertex,
and fill it with a chip (obstacle or chip-only) that is closestto it in T by moving it along the
corresponding path inT . If the chip comes from an obstacle vertex, a new target-onlyvertex
results in place of the leaf. The length of the resulting treeconnecting all target-only vertices
andp1 is one less than the length ofT . Continue by repeating this step until all targets have
been filled (note that there is a leaf target-only vertex at each step);q moves are performed in
total.

We continue with the converse implication. Denote byq the length of a minimum Steiner
tree T connecting the points inP . Consider a valid reconfiguration sequence of moves
m1, . . . , mt, without loss of generality having a minimum number of moves. Each move
mi is an orthogonal path in the grid covering a set of elementsV (mi) in rectangleB (since
A is large enough, each move going outside rectangleB would result in a non-optimal re-
configuration sequence). In addition, we can assume that allchips pass throughp1. Note that
V = V (m1) ∪ . . . ∪ V (mt) is the vertex set of a connected grid graphG that includes all
chip-only elements, all target-only elements, and other obstacles.

The number of edges ofG is at leastq + (n− 2), as in addition to the Steiner treen− 2
edges appear to the left ofp1; thus |V | ≥ q + (n − 2) + 1. Note thatV \ {p2, . . . , pn}
consists of chips or obstacles. Each of these chips or obstacles must participate at least once
in a move, and their number is at least(q + 1) + (n − 2) − (n − 1) = q, as required.

This also concludes the proof of Theorem 3.1.

Remark. Conform with the results of [4], there exists a polynomial-time approximation
scheme for Rectilinear Steiner Tree. Thus our reduction does not give an inapproximabil-
ity result for U-GRID-RP, and we leave open the question of whether U-GRID-RP admits
a polynomial-time approximation scheme or not.

THEOREM 3.2. The labeled version in the gridL-GRID-RP is NP-complete.

11

Proof. The argument, similar to that in the proof of Theorem 3.1, still uses a reduction
from R-STEINER. Consider an instanceP = {p1, . . . , pn} of R-STEINER withn grid
points and letpn be a rightmost point inP . The instance of L-GRID-RP is illustrated in
Fig. 3.2. It hasn labeled chipss1, . . . , sn located at the points inP (si at pi). Consider

t1 t8
Rs8s1

FIG. 3.2. Labeled chips in the grid obtained from a Rectilinear Steiner Tree instance withn = 8

(sketch). Chip-only vertices are drawn as empty circles, and target-only vertices are drawn as filled
(black) circles. Obstacles (not shown) are placed at each other integer point in the axis-aligned bound-
ing rectangle. The corridor and most of the target areaR (except its bottom row) are free.

a sufficiently large axis-aligned rectangle enclosing then chips mentioned above and filled
with obstacles placed at each other integer point, except the following: make a thin (width
is one) long corridor connecting the rightmost chipsn to a large rectangular “target area”R
located right of all then chips mentioned above; both the corridor and all rows ofR except
its bottom row are free. The bottom row contains alln targetst1, . . . , tn; hereti denotes the
target ofsi. R has∆x + ∆y + 2 rows andn columns, where∆x, ∆y are as before.

Informally, the obstacles which form a minimum rectilinearSteiner tree of then points
must go out in the target area and then come back in to their original positions. More precisely,
the reduction is complete once we establish the following claim (analogous to the claim in
the proof of Theorem 3.1).

Claim. There is a rectilinear Steiner tree of length at mostq if and only if reconfiguration can
be done using at most2q + 2 − n moves.

This concludes the proof of Theorem 3.2.

3.2. Labeled chips: upper and lower bounds on the number of moves. THEOREM

3.3. For the reconfiguration ofn labeled chips in the infinite planar rectangular grid (L-
GRID-RP), 7n/4 moves are always enough, while3n/2 moves are sometimes necessary.

Proof. The lower bound is trivial (however it does not appear to be trivial to improve on
it!): take a pair of chips labeled1 and2, say next to each other, and have the target positions
switch them; that ist1 = s2 andt2 = s1. Clearly three moves are needed to rearrange this
group of two, and by repeating it (with different labels), one gets a pair of configurations
which require3n/2 moves.

We now describe a reconfiguration algorithm which executes no more than7n/4 moves
(as mentioned in the introduction, the problem can be solvedtrivially in 2n moves).

Let S andT be the start and target configurations. Consider the directed graphG with
n edges (loops allowed) given byS → T . Vertices are grid points ofS ∪ T (the number of
vertices is betweenn and2n). Each edge originates at a start chip and ends at some (free or

12

occupied) target cell. Note that each in-degree and out-degree is at most one, soG can be
partitioned into a collection of disjoint paths and cycles (and loops).

Consider the rows ofS numbered from top to bottom:1, 2, . . . , r. Let D (resp.E) be
the set of elements in the odd (resp. even) rows; we can assumewithout loss of generality
that|D| ≤ |E|, thus|D| ≤ n/2. Let A be the set of elements ofE whose target lie inE, and
let B (resp.C) be the set of elements ofE whose target lie in rows ofD congruent to1 (resp.
to 3) modulo4. Write a = |A|, b = |B|, c = |C|. We can assume without loss of generality
thatc ≤ b.

1. Move (far) away the elements ofD (row by row, and for each row, move elements
one by one, say from left to right) to form a set of corridors.

2. Move away the elements ofC (elements of the even rows are adjacent to corridors,
therefore any subset of chips of an even row can be moved away).

3. Select and move away an element from each cycle of the directed graphG remaining
among the elements ofA (not from the loops).

4. Fill (say, from left to right) the odd rows congruent to1 modulo4 with the elements
of B and elements far away as follows: note that each even row is adjacent to an odd
row congruent to3 modulo4; take out an element ofB from the even row through
the empty corridor congruent to3 modulo4, and then back in the target odd row
congruent to1 modulo4.

5. Fill the even rows using the adjacent empty corridors (congruent to3 modulo4),
with elements fromA and elements far away. The elements ofA move directly to
their destination and such a move is possible as long as some elements ofA still
need to move, since we moved away one element from each cycle of the directed
graphG contained inA.

6. Fill (say, from left to right) the odd rows congruent to3 modulo4 (the corridors)
with elements far away.

The number of non-target moves is at most

n − (a + b + c) +
a

2
+ c ≤ n − a

2
− b ≤ 3n

4
,

sincea + 2b ≥ a + b + c ≥ n/2. Therefore the total number of moves is not more than
n + 3n/4 = 7n/4.

Remark. The above lower bound clearly holds even in the strongerlifting model, when chips
can be lifted and placed back in the plane (see [7, 8] for related aspects of disk reconfiguration
problems).

Acknowledgment.The authors thank Sergey Bereg and Marius Zimand for severalconversa-
tions on the topic.

REFERENCES

[1] M. Abellanas, S. Bereg, F. Hurtado, A. G. Olaverri, D. Rappaport, and J. Tejel, Moving coins,Computational
Geometry: Theory and Applications, 34 (2006), 35–48.

[2] P. Alimonti and V. Kann, Hardness of approximating problems on cubic graphs,Proceedings of the 3rd Italian
Conference on Algorithms and Complexity, LNCS 1203, Springer-Verlag (1997), 288–298.

[3] A. Archer, A modern treatment of the15 puzzle,American Mathematical Monthly, 106(1999), 793–799.
[4] S. Arora, Nearly linear time approximation schemes for Euclidean TSP and other geometric problems,Journal

of the ACM, 45 (1998), 1–30.
[5] V. Auletta, A. Monti, M. Parente, and P. Persiano, A linear-time algorithm for the feasibility of pebble motion

in trees,Algorithmica, 23 (1999), 223–245.
[6] R. Bar-Yehuda, One for the price of two: a unified approachfor approximating covering problems,Algorith-

mica, 27 (2000), 131–144.

13

[7] S. Bereg, A. Dumitrescu, and J. Pach, Sliding disks in theplane, International Journal of Computational
Geometry & Applications, to appear.

[8] S. Bereg and A. Dumitrescu, The lifting model for reconfiguration,Discrete & Computational Geometry, 35
(2006), 653–669.

[9] A. Dumitrescu, Motion planning and reconfiguration for systems of multiple objects; inMobile Robots: Per-
ception & Navigation, Sascha Kolski (editor), Advanced Robotic Systems, 2007, pp. 523–542.

[10] A. Dumitrescu and J. Pach, Pushing squares around,Graphs and Combinatorics, 22 (2006), 37–50.
[11] A. Dumitrescu, I. Suzuki and M. Yamashita, Motion planning for metamorphic systems: feasibility, decidabil-

ity and distributed reconfiguration,IEEE Transactions on Robotics and Automation, 20 (2004), 409–418.
[12] M. Garey and D. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness., W. H.

Freeman and Company, 1979.
[13] M. X. Goemans and D. P. Williamson, A general approximation technique for constrained forest problems,

SIAM Journal on Computing, 24 (1995), 296–317.
[14] M. X. Goemans and D. P. Williamson, The primal-dual method for approximation algorithms and its applica-

tion to network design problems, inApproximation Algorithms for NP-Hard Problems, edited by D. S.
Hochbaum, PWS Publishing Co., 1995.

[15] W. W. Johnson, Notes on the15 puzzle. I.,American Journal of Mathematics, 2 (1879), 397–399.
[16] D. Kornhauser, G. Miller, and P. Spirakis, Coordinating pebble motion on graphs, the diameter of permutation

groups, and applications,Proceedings of the 25-th Symposium on Foundations of Computer Science,
(FOCS ’84), 241–250.

[17] C. Papadimitriou, P. Raghavan, M. Sudan, and H. Tamaki,Motion planning on a graph,Proceedings of the
35-th Symposium on Foundations of Computer Science, (FOCS ’94), 511–520.

[18] C. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity classes,Journal of Com-
puter and System Sciences, 43 (1991), 425–440.

[19] D. Ratner and M. Warmuth, Finding a shortest solution for the (N × N)-extension of the15-puzzle is
intractable,Journal of Symbolic Computation, 10 (1990), 111–137.

[20] W. E. Story, Notes on the15 puzzle. II.,American Journal of Mathematics, 2 (1879), 399–404.
[21] R. M. Wilson, Graph puzzles, homotopy, and the alternating group,Journal of Combinatorial Theory, Series

B, 16 (1974), 86–96.

14

