
Minimum Power Broadcast: fast variants of greedy

approximations

Abstract—We study the problem of assigning transmission
power to the nodes of ad hoc wireless networks to minimize
power consumption while ensuring that the given source reaches
all the nodes in the network (unidirectional links allowed for
broadcast). In the most general cost model, the best published
approximation ratio is achieved by the “greedy spider” algorithm
(Calinescu et al., ESA 2003). We present a variant of this
algorithm with running time O(n3) and the same approximation
ratio of 2(1 + lnn), where n is the number of nodes.

In the restricted “Euclidean” two-dimensional cost model,
where the power requirement to transmit from node u to node v is
cuv = ‖uv‖κ (here ‖uv‖ denotes the Euclidean distance between
the positions of u and v, and κ is a real constant dependent on
the wireless environment, typically between 2 and 5), the best
known approximation ratio is achieved by the “relative greedy”
algorithm (Caragiannis et al., ICALP 2007; journal version [8]).
We present a variant of this algorithm with running time O(nm)
and the same approximation ratio of 4.2 in the Euclidean model,
where m is the number of edges in the input graph.

The new variants make use of advanced data structures and/or
simple amortized analysis, improving naive variants by a factor
of Θ(n). This improvement allows us to apply these algorithms
to large instances (1000-2000 nodes). Our experimental results
show that the best output achievable within 100 seconds improves
the solution based on minimum spanning tree by an average
of up to 15%, and comes within 25% of optimum, in average,
on the instances where we can compute the optimum (based
on an integer program). The improvement is circa 50% larger
compared to what one would get applying existing fast heuristics.

I. INTRODUCTION

Ad hoc wireless networks have received significant atten-

tion in recent years due to their potential applications in

battlefield, emergency disaster relief, and other application

scenarios (see, e.g., [12], [38], [42]). Unlike wired networks or

cellular networks, no wired backbone infrastructure is installed

in ad hoc wireless networks. A communication session is

achieved either through single-hop transmission if the recipient

is within the transmission range of the source node, or by

relaying through intermediate nodes otherwise. We assume

that omnidirectional antennas are used by all nodes to transmit

and receive signals. Thus, a transmission made by a node can

be received by all nodes within its transmission range. This

feature is extremely useful for energy-efficient multicast and

broadcast communications.

For the purpose of energy conservation, each node can

(possibly dynamically) adjust its transmitting power, based on

the distance to the receiving node and the background noise.

In the most common power-attenuation model [35], the signal

power falls as 1
lκ

where l is the distance from the transmitter

antenna and κ is a real constant dependent on the wireless

environment, typically between 2 and 5. Assume that all

receivers have the same power threshold for signal detection,

which is typically normalized to one. With this assumption,

the transmission power required to support a link between two

nodes separated by a distance l is lκ. A crucial issue is how

to find a route with minimum total energy consumption for a

given communication session. This problem is referred to as

Minimum-Energy Routing in [38], [42]. We assume throughout

that the wireless network is multi-hop and static.

In this paper, we make an experimental study of the problem

of assigning transmission power to the nodes of ad hoc

wireless networks to minimize total power consumption during

a broadcast session (unidirectional links allowed). Precisely,

MIN-POWER BROADCAST has as input a simple directed

graph G = (V,E), a vertex z ∈ V (the source), and a cost

function (sometimes called “power requirement”) c : E →
R

+. A power assignment is a function p : V → R
+. A

unidirectional link from node u to node v is established under

the power assignment p if uv ∈ E and p(u) ≥ cuv . Let B(p)
denote the set of all unidirectional links established between

pairs of nodes in V under the power assignment p. MIN-

POWER BROADCAST asks for minimizing
∑

v∈V p(v) subject
to p being valid, that is, satisfying the constraint that the

directed graph (V,B(p)) has a path from the source z to every

other vertex.

The same problem was also studied in the bidirected input

model (sometimes called “undirected” or “symmetric” in the

literature), where the edge set of the input E bidirected, (that

is, uv ∈ E if and only if vu ∈ E, and if weighted, the two

edges have the same cost). In some wireless settings, it is

reasonable to assume an Euclidean input model, where cuv is

proportional to the Euclidean distance from the position of u
to the position of v, raised to a power κ, where κ is fixed

constant between 2 and 5.
A survey of Power Assignment problems is given by Santi

[36]; as there we only consider centralized algorithms (there

is a vast literature on distributed algorithms). The general

(directed) input model is appropriate in certain scenarios (i.e,

it can take into account the residual battery of the nodes [6]),

while the bidirected input model is more general than the Eu-

clidean input model and is also appropriate in some scenarios

(i.e, when obstacles make communication between two nodes

more power-consuming, or even impossible). From an algo-

rithm standpoint, it is easiest to tackle the two-dimensional Eu-

clidean input model, then the three-dimensional input model,

followed by the bidirected input model, and the general input

model is the hardest. Even in the two-dimensional Euclidean

input model, Min-Power Broadcast was proven NP-Hard [12].

Only the one-dimensional Euclidean input has polynomial-

time algorithms.

A fair number of approximation algorithms and heuristics

have been proposed and will be discussed in the next subsec-

tions. The simplest (and fastest) is the minimum spanning tree

(MST) algorithm, and the most sophisticated are the “greedy

spider” [6] algorithm1and the “relative greedy” [8] algorithm.

These two approximation algorithms are however also the

slowest, with neither [6] nor [8] making an explicit running

time analysis. We have improved their running time, while

keeping the approximation ratio.

Precisely, in Section III, we present a variant of the Relative-

Greedy algorithm with running time O(nm) and the same

approximation ratio of 4.2 in the two-dimensional Euclidean

input model, where n is the number of nodes and m is the

number of edges in the input graph (m could be as high

as n(n − 1)/2). The space complexity of this algorithm is

O(m+ n). In Section IV we present a variant of the Greedy-

Spider algorithm with running time O(n3) and the same

approximation ratio of 2(1+ lnn) in the most general model.

The space complexity of this algorithm is O(mn), compared

to O(n2) for the naive variants (O(m + n)-space also seems

possible with O(nm(m+ n logn)) running time).

The new variants make use of existing advanced data

structures and/or simple amortized analysis, improving naive

variants by a factor of Θ(n). This improvement allows us to

apply these algorithms to large instances (2000 nodes, com-

pared to 210 in [8]). We then conducted extensive experiments

on random input data in the two-dimensional Euclidean input

model, using these two algorithms and many of the other

existing ones (we only excluded ideas that have never been

tried on large instances and for which the running time appears

to be high).

We also use a post-processing technique as suggested by

[40], once after each algorithm. It turns out that the algorithms

are varied enough that one should try all the practical ones and

pick the best output. Huge instances can be solved by the MST

algorithm, and we measure an algorithm, or combination of

algorithms, by the percentage improvement over the objec-

tive function of the MST algorithm. The improved running

times allows adding Greedy-Spider and Relative-Greedy to the

combination of algorithms for large instances (500 to 2000

nodes), which in turn increases the improvement over the

MST algorithm from an average of circa 9% (on large random

instances) to an average of circa 14% (a circa 50% increase

in this improvement).

We also tackle obtaining exact solutions, using natural

integer programs similar to a bidirected integer linear program

first proposed by [34] for Steiner Tree. Using an academic

1Actually, [6] suggests the existence of a 1.35 lnn approximation algorithm
based on the ideas of [20]; this algorithm needs in the worst case Ω(n) calls to
Minimum Weight Perfect Matching. Such running time would be impractical
for large instances. A 1.5 ln(n) approximation algorithm was claimed by
[19]; however this paper has errors. These may be fixable at the expense
of making Ω(n) calls to Minimum Weight Perfect Matching or an O(m)
increase in the running time.

version of CPLEX, we can solve exactly instances with up to

30 nodes in the Euclidean input model. Further experimental

study reveals that on instances where we can compute the op-

timum (random 30 points in two dimensions), the MST-based

algorithm is on average 36% bigger than optimum, and the

combination of approximation algorithms and fast heuristics

is on average 14% bigger than optimum (the improvement

over the MST-based algorithm decreases for larger instances).

A. Approximation Algorithms and Heurstics

Min-Power Broadcast was first studied by Wieselthier et

al. [42]. They proposed three heuristics but do not prove

approximation ratios. The first heuristic, SPT, uses a shortest-

path tree from the source z. The second heuristic, MST, uses a

minimum spanning tree. In both cases the resulting undirected

graph is oriented away from the source, and power is assigned

accordingly. The third heuristic, called BIP (broadcasting

incremental power), is a Prim-like heuristic which starts with

an outgoing branching consisting of the source, and iteratively

adds an arc connecting the set of nodes currently reached from

the source to an unreached node, with minimum increase in

the total power given by the selected arcs.

For the two-dimensional Euclidean input model, Wan et

al. [41] study the approximation ratios of the above three

heuristics. An instance was constructed in [41] to show that

the approximation ratio of SPT is as large as n
2 − o (1). On

the other hand, MST has a constant approximation ratio [12],

[41]. The approximation ratio of BIP is at most the ratio of

MST [41]. A sequence of further papers [4], [17], [16], [32],

[15], [2] improved the analysis of the MST algorithm to 6.

In three dimensions, the MST algorithm also has constant

approximation ratio [33]. The running time of the MST

algorithm is O(m + n) in bidirected input graphs (where it

has approximation ratio Θ(n)), and O(n lnn) in the two-

dimensional Euclidean input model. Thus it can be used on

huge instances; it was experimentally analyzed in [18].

It is straightforward to give a variant of BIP running in

O(n2); its approximation ratio is between 4.598 [3] and 6.

Thus BIP is a practical algorithm. The best approximation

ratio in the two-dimensional Euclidean input model is 4.2 and

is achieved by the Relative-Greedy algorithm of [8].

In the bidirected input model, a standard reduction from Set

Cover shows that no approximation ratio better than O(lnn)
is possible unless P = NP (using [14]). This reduction

was known in 2000 and appears in several papers [12], [29],

[9], [40], [27], [6]. The first O(lnn) approximation algorithm

was given by Caragiannis et al. [9]. Similar algorithms were

presented in [28], [40], and the simplest and best variant

(ratio of 2(1 + lnn)) of this algorithm was presented by [31]

and achieves a O(mn) running time (their analysis claims

O(mnα(m,n)) running time, but one observation can get rid

of the inverse Ackermann function α in the analysis). This

algorithm and the crux of its proof of approximation ratio can

be traced back to [44] which is why we call it Hypergraph-

Greedy. Later, [11] obtains another O(lnn) approximation

algorithm, with a complicated algorithms based on [20], that

2

3

45

x

Fig. 1. A star with center x and four arcs, of power max{2, 3, 4, 5} = 5

needs in the worst case Ω(n) calls to Minimum Weight Perfect

Matching. Relative-Greedy [8] also has approximation ratio of

circa 2(1 + lnn) in this model.

In the general (directed) model, [6] were the first to pub-

lish a O(lnn)-approximation: the Greedy-Spider algorithm

(adapted from [26]). In a simultaneous submission [10] (jour-

nal version: [11]) also obtains a O(lnn)-approximation, with

a worse constant in front of lnn, and with what appears to be

a large running time.

Two other heuristics that do not have a good approximation

ratio are fast enough and make sense. In [40], [25], a localized

reduction in power is proposed. We adopt this as a post-

processing for all of our algorithms (to do so after each itera-

tion of various algorithms is too time consuming). Algorithm

2 of [31], which we call Greedy-Broom, is somehow similar to

BIP, but chooses a directed star instead of an arc, minimizing

the ratio of the power of the star by the number of newly

reached nodes. It has a O(mn) running time. We do not

consider the algorithms of [21], [23], [43], [45], [1], [30] as

they seem unsuitable for large instances.

II. PRELIMINARIES

When discussing approximation ratios, natural logarithm

(ln) was used. For set X and element v, we may use X + v
to denote X ∪ {v} and X − v to denote X \ {v}. For a set of

arcs/edges X , we write c(X) =
∑

uv∈X cuv.
For u ∈ V and r ∈ {cuv | uv ∈ E}, let S(u, r) be the

directed star consisting of all the arcs uv with cuv ≤ r. We

call u the center of S and note that r is the power of S(u, r).
For a directed star S, let p(S) denote its power, let E(S) be

its set of arcs and define V (S), its set of vertices, to be its

center plus the heads of its arcs. See Figure 1 for an example.

Many algorithms described above use all the possible stars,

and there are O(m) of them (for each vertex u, the number

of stars with center u is u′s degree in the input graph).

The Hypergraph-Greedy algorithm [31] keeps a set of stars

(initially empty), giving a set of arcs H . It then selects the

next star such that to maximize the decrease in the number

of weakly connected components in (V,H) divided by the

power of the star. At the end, it re-orients if needed the edges

of H to lead away from the source z and thus obtain an out-

going arborescence from the source (this idea, first applied in

[9], only works if the input graph is bidirected, and typically

loses a factor of 2 in the approximation ratio). See [31] for

the O(mn) variant. Recently, Calinescu [5] has obtained an

O(m ln2 n) variant of this algorithm using geometric data

structures.

III. THE RELATIVE-GREEDY ALGORITHM

The Relative-Greedy algorithm of [8] (using ideas from

[46]) keeps an undirected spanning tree T (initially, the min-

imum spanning tree in G according to cost c), and then does

greedy local improvements as follows: For a set of vertices X ,

define the swap-set of X in T , WT (X), to be the maximum-

cost set of edges of T such that, removing WT (X) from T
leaves |X | components, each containing exactly one vertex of

X . Recall that V (S) is the set of vertices of a star. Choose

a star S = S(u, r) to maximize the ratio c(WT (V (S)))/p(S)
and add it to the set of stars (which starts empty), provided

that this ratio exceeds 2. Remove WT (X) from T , and add

“fake” edges: all the undirected version of the arcs of S, with
the new cost 0, to obtain the tree used for the next iteration.

Repeat choosing a new star as long as such a star exists. Once

no star has ratio exceeding 2, take the graph consisting of the

“real” edges of T and the arcs of all the selected stars, and

just as for other algorithms above, re-orient if needed all its

edges to obtain an out-going arborescence from the source z.
One needs to find the next star at most n times, and the

challenge is to compute WT (V (S)) and c(WT (V (S))) for

every S. One naive method (as in Problem 23-1 of [13]) takes

O(n2) per star. This can be improved to O(n) per star by

using the following known fact: For any spanning tree T , set
X ⊆ V , and v ∈ V \ X , the swap-set WT (X + v) consists

of WT (X) plus one edge. The stars S with the same center u
do have the property that each has one more vertex compared

to the previous one, if they are sorted by r.
The running time can be further improved to O(lnn)

amortized time per star, using the linking-and-cutting trees

data structure of Sleator and Tarjan (based on Splay Trees; see

[39]). We do better (details to follow), with the main operation

being: once the tree T is changed into T ′ by the addition of

a fake edge and the removal of a “true” edge, our algorithm

finds the edge in WT ′(X+v) \WT ′(X) (for each of the relevant

X and v) in constant time using some precomputation of the

tree T ′, and the knowledge accumulated and saved for T .
The algorithm keeps the following information, for current

tree T . Fix in the discussion vertex u ∈ V . For this u, let
v1, . . . , vd′(u) be the neighbors of u in G, sorted in non-

decreasing order by cuvi . Here d′(u) stands for the degree

of u in the graph G. For convenience, set v0 = u and

d′ = d′(u). Let S1, . . . , Sd′ be the stars with center u, where
V (Sj) = v0, v1, . . . , vj and the arcs connecting u to each vi
are included. Note that these stars with center u are sorted

such that their power is non-decreasing and p(Si) = cuvi .
For convenience, define S0 to be the one-vertex graph with

only v0. Let Aj := WT (V (Sj)). We include for completeness

a claim implicit in several earlier papers (such as [46]) -

for intuition we mention that there is submodularity hidden

when computing swap-sets, which have an interpretation as

a maximum weight independent set in a matroid (Example

44.1.1 from [37]).

Claim III.1 (Folklore). Assume all the tree weights are non-

negative.

1) For any j = 1, 2, . . . , d′, we have |Aj | = j.
2) Aj can be computed by the following procedure. Start

with A = ∅, and find (if not possible, stop, and outputA)
any two vertices of V (Sj) that are in the same connected
component of (V,E(T) \ A), then find the maximum-

weight edge on the unique simple path of T between

these two vertices, and add it to A.
3) For any j = 1, 2, . . . , d′, Aj can be obtained from Aj−1

by the following procedure: the graph (V,E(T)\Aj−1)
has j connected components, each containing one vertex
of V (Sj−1). Find the component with vj , and then find

e, the maximum-weight edge of T on its unique simple

path from vj to the unique vertex of V (Sj−1) in this

component. Then Aj = Aj−1 + e.

We omit the proof. Based on Claim III.1, the algorithm

“stores” the sets Aj by keeping a pointer to the edge ej :=
Aj \ Aj−1, using an array of size d′. This is done for every

vertex u (as the center of the stars).

With this information, in time O(m), one can go through all

the stars S (for each u, use the order S1, . . . , Sd′(u)) to com-

pute c(WT (V (S))) and identify the star S that maximizes the

ratio c(WT (V (S)))/p(S). Next, the algorithm should remove

WT (X) from T , and add “fake” edges: all the undirected

version of the arcs of S, with the new cost 0, in order to

obtain the tree used for the next iteration. Call u the center of

S, and let j be such that S = Sj (from the list S1, . . . , Sd′(u)

mentioned above). Recall that Aj = WT (V (Sj)). If instead
of removing Aj from T and adding the fake edges from Sj

(all at once), we execute sequentially, for i = 1 to j, the step

that adds a fake edge of cost 0 and endpoints u and vi, and
removes ei from T (recall that ei = Ai \Ai−1), then one can

check that we have exactly the same effect.

Lemma III.2. For all i = 1, . . . , j, ei becomes the largest-

weight edge on the unique simple path in the tree from u to

vi, before it is removed and replaced by uvi.

Proof: For any q = 1, 2, . . . , i, eq is the largest-weight

edge on the unique simple path P from vq to some vl, for
l ∈ {0, . . . , q−1}, in (V,E(T)\Aq−1), and the unique simple

path from u to vq before eq is removed from T and replaced

by uvq consists of P followed by uvl (or just P , if l = 0),
and uvl has weight 0.
To obtain a better bound on the running time, we change

the algorithm such that it does not change T in the case that

ej is a fake edge (we are unable to rule out ej being a fake

edge). This is based on the following claim, whose proofs we

omit.

Claim III.3. Let T (i) be the tree in the original algorithm

after the ith iteration. Let T ′(i) be the tree in the Relative-

Greedy algorithm after the ith iteration. Let Aj be the swap

set of Sj in T (i), A′
j be the swap set of Sj in T ′(i). Then

c(Aj) = c(A′
j) for any Sj and any i.

Thus our variant chooses the same stars as the original

algorithm [8]. Also in their approximation-ratio analysis, the

power of the output is bounded by twice the power of the

selected stars plus the cost of the remaining “true” edges of

the tree, and we have exactly the same quantity, since in our

variant the tree only differs from the tree of the original variant

in fake edges. Thus our variant has the same approximation

ratio of 4.2 in the two-dimensional Euclidean input model.

Since we do not remove any fake edges, there are in total

at most n− 1 times when we change the tree. There are also

at most n−1 stars that are added by the algorithm (each must

introduce at least one fake edge), and thus in total at most

(n − 1)2 times when some fake edge is considered (even if

not added). One also has to construct the data structures (the

arrays, one for each u, with ej in position j) for the initial

tree T . This can be easily accomplished in time O(mn) using
ideas developed later for maintaining the data structures. We

omit the details; note that we allocate much more time to this

initialization than the O(m) allocated to an update - and indeed
a running time of O(m lg n) in total seems possible using the

linking-and-cutting trees data structure of Sleator and Tarjan

(based on Splay Trees; see [39]).

Based on this discussion, once we establish how to maintain

our data structures in time O(m) whenever an edge of T is

replaced by a fake edge, we obtain a O(mn) running time for

this variant of the Relative-Greedy algorithm. Thus from now

we concentrate on the following “main” operation: given tree

T , edge xx′ of T and fake edge yy′ of cost 0, recompute the

data structures for the tree T ′ obtain from T by deleting xx′

and adding yy′. One can check that, for one tree, these data

occupies O(m + n) space. We also note that once the data

structures for T ′ are computed, we have no need to keep the

data of T . Thus the overall space is O(m+ n).

For fixed center u, as above, we have Aj as the swap-set

of V (Sj) before T is transformed in T ′. We are computing

A′
j , the swap set of Sj in T ′. Note that x, x′, y, y′ and T

are not related to u and j. We know from Claim III.1 that

A′
j+1 has exactly one more edge than A′

j , and we aim to

identify this edge, which we call e′j+1. Recall that vj is the

only vertex in V (Sj) \ V (Sj−1). Let Q be the the connected

component of (V,E(T)− xx′) that contains x and let Q′ be

the the connected component of (V,E(T)−xx′) that contains
x′ . Rename y, y′, the endpoints of the fake edge, such that

V (Q) contains y (and V (Q′) contains y′). Note that Q is also

the connected component of (V,E(T)− yy′) that contains x.

Claim III.4. |A′
j \Aj | ≤ 1.

Proof: Use the first procedure (second point) of Claim

III.1 to construct Aj using only pairs of vertices of V (Sj)
that are both in V (Q), or both in V (Q′). We select this way

|V (Sj)∩V (Q)|−1 edges for pairs of vertices of V (Sj)∩V (Q),
unless V (Sj) ∩ V (Q) = ∅, in which case no such edge is

selected. Similarly, we select this way |V (Sj) ∩ V (Q′)| − 1
edges for pairs of vertices of V (Sj)∩V (Q′), unless V (Sj)∩
V (Q′) = ∅, in which case no such edge is selected. In total,

we select either |V (Sj)| − 2 or |V (Sj)| − 1 edges.

We select exactly the same edges constructing A′
j using the

same procedure. Thus |Aj ∩ A′
j | ≥ |V (Sj)| − 2, and with

|Aj | = |A′
j | = |V (Sj)| − 1, the claim follows.

Both A′
j and Aj+1 are used when computing e′j+1. In fact,

we do not access the full A′
j and Aj+1, but only the (at most

three) elements of Aj+1 \A
′
j and A′

j \Aj+1. If A
′
j is removed

from T ′, there will be exactly one node v ∈ V (Sj) that is

connected to y and y′ in T ′; this vertex is useful and the

algorithm calls it vc. However, if the edge yy′ is selected in

A′
j , vc is not used by the algorithm any more, and the fact that

it is not correctly defined does not matter. Moreover, the tree

T ′ is pre-processed (in time O(n)) such that, for any v, v′,
with v ∈ V (Q) and v′ ∈ V (Q′), the maximum cost of an

edge on the unique simple path in T ′ from v to v′ can be

found in constant time. Then one can obtain e′j+1 in constant

time, using Algorithm 1. In the algorithm, the input consists

of vc, and tree edges f and f ′ whose meaning is as follows: if

A′
j = Aj , then f = f ′ is some arbitrary edge in Aj ; otherwise

f = Aj \A′
j and f ′ = A′

j \ f . The algorithm also makes use

of the following queries, which are all answered in constant

time (with a precomputation that takes time O(n), and which

we also describe below).

1) max to y root(v) returns, for a vertex v, the maximum

weight edge of T ′ on the unique simple path from v to y.
If v = y, it returns NULL, which has, for convenience,

negative weight. This quantity is stored in an array of

size n which is computed in a preorder traversal of T ′

when rooted at y (if we process node v, a child of v′,
then max to y root(v) is either max to y root(v′)
or the edge vv′). A look-up in the table takes constant

time.

2) max T ′(v, v′) returns, for a vertices v and v′ such

that one of them is in V (Q) and the other in V (Q′),
the maximum weight edge of T ′ on the unique simple

path from v to v′. It is done in constant time by

callingmax to y root(v) andmax to y root(v′) and
comparing the results.

3) max to x root(v) returns, for a vertex v, the maxi-

mum weight edge of T on the unique simple path from

v to x. If v = x, it returns NULL, which has, for

convenience, negative weight.

4) v descendant of e, for input vertex v and edge e, tests
if e on the path from v to y in T ′. For this, T ′ is

preprocessed, in time O(n), to answer in constant time

Least Common Ancestor queries (see [22]).

After the code is executed, one has to reset vc = vj+1

if vc descendant of e′j+1. A long proof considering all the

nine cases shows that Algorithm 1 correctly computes A′
j for

every j. Preprocessing is O(n), and applies to all stars S with

all the possible centers. Thus in time O(
∑

u∈V d′(u)) = O(m)
we can obtain WT ′ (V (S)) for all the stars S with all the

Computes e′j+1 and updates f, f ′, vc.
if f = f ′ then

if vc, vj+1 ∈ V (Q), or vc, vj+1 ∈ V (Q′) then
e′j+1 ← ej+1 // Case I

end

else

if xx′ = ej+1 then
g ← max T ′(vc, vj+1)
e′j+1 ← g // Case II

end

else
e′j+1 ← ej+1 // Case III

end

f ′ ← e′j+1

f ← ej+1

end

end

else if f ′ = ej+1 then

if vc, vj+1 ∈ V (Q), or vc, vj+1 ∈ V (Q′) then
e′j+1 ← f
f ′ = f // Case IV

end

else
g ← max T ′(vc, vj+1)
e′j+1 ← g
f ′ ← g // Case V

end

end

else if f is not on the same side as vj+1 then
e′j+1 ← ej+1 // Case VI

end

else if ej+1 is not on the same side as vj+1 then
e′j+1 ← f
f ← ej+1 // Case VII

end

else

if ej+1 is the largest edge from vj+1 to x then
e′j+1 ← max(ej+1, f)
f ← min(ej+1, f) // Case VIII

end

else
e′j+1 = ej+1 // Case IX

end

end
Algorithm 1: Filling one entry in the data structure of T ′

centers. Based on the discussion of this section, we obtain

one of our main results:

Theorem III.5. For Min-Power Broadcast, there exists an

algorithm with running time O(mn) and approximation ra-

tios 4.2 in the two-dimensional Euclidean input model and

2(1 + lnn) in the bidirected input model.

4

3
43

1

2

3

8

5

6

Fig. 2. A spider with four legs, weight max{3, 4, 3, 4}+6+(1+2+5)+
(3 + 8) = 29 and power 25.

IV. THE GREEDY-SPIDER ALGORITHM

Recall that the input here is a directed graph. Part of the

description below is copied and/or adapted from [6]. The

algorithm starts iteration i with a directed graph Hi, seen

as a set of arcs with vertex set V . The strongly connected

components of Hi which do not contain the source z and have

no incoming arc are called unhit components. The algorithm

stops if no unhit components exists, since in this case the

source can reach every vertex in Hi. Otherwise, a weighted

structure called a spider (details below) is computed such

that it achieves the biggest reduction in the number of unhit

components divided by the weight of the spider. The algorithm

then adds the spider (seen as a set of arcs) to Hi to obtain

Hi+1.

Definition IV.1. A spider is a directed graph consisting of

one vertex called head and a set of non-trivial directed paths

(called legs), each of them from the head to a (vertex called)

foot of the spider. The weight of the spider S, denoted by

w(S), is the maximum cost of the arcs leaving the head plus

the sum of costs of the legs, where the cost of a leg is the sum

of the costs of its arcs without the arc leaving the head.

See Figure 2 for an illustration of a spider and its weight.

As opposed to stars, the weight of the spider S can be higher

than p(S) (here we assume S is a set of arcs), as the legs of

the spider can share vertices, and for those vertices the sum

(as opposed to the maximum) of the costs of outgoing arcs

contributes to w(S). From every unhit component of Hi we

arbitrarily pick a vertex and we call it a representative.

Definition IV.2. The shrink factor of a spider S with head h
with respect to H , denoted by sf(S), is:

1) the number of representatives among its feet if h is

reachable (where, by convention, a vertex is reachable

from itself) from the source z or if h is not reachable

from any of its feet, or

2) the number of representatives among its feet minus one,

otherwise.

The algorithm of [6] appears in Figure 3, with small

differences in notation.

A method for finding the spider S which minimizes

Input: A directed graph G = (V, E), cost function cuv and a source vertex
z
Output: A directed spanning graph H (seen as a set of arcs, with V (H) = V)
such that in H there is a path from the source z to every vertex of V .

(1) Initialize H = ∅
(2) While H has at least one unhit component

2.1 Find the spider S which minimizes w(S)/(sf(S)) w.r.t. H
2.2 Set H ← H ∪ S

(3) For all vertices v assign p(v) = maxvu∈H cvu

Fig. 3. The Greedy-Spider algorithm for Min-Power Broadcast with
asymmetric costs

w(S)/(sf(S)) w.r.t. H is described in [6], without a proof

of correctness. A running time is not given there, but a naive

implementation, with some careful precomputation, is still

Ω(n3). Up to n spiders may be added to H by the algorithm,

and to achieve an overall O(n3) requires amortized analysis,

described next.

The new variant. We directly present the new imple-

mentation of finding the optimal spider, with competely new

arguments that the correct spider is found. As in [6], we

search for powered spiders (the power of the head is given).

Instead of minimizing the ratio w(S)/(sf(S)), we prefer to

use below maximizing the ratio (sf(S)/w(S)), which we call

theM-ratio of a spider. Using Floyd-Warshall, all pairs shortest

paths are precomputed and stored in SP [i][j]. This takes time

O(n3).
As before, for every u, the vertices v1, . . . , vd′(u) are the

neighbors of u in G, sorted in non-decreasing order by cuvi .
As in the original version [6], we try all possible heads and

all possible discrete power values for the head. That is, for

each node u and each i, we have a data structure of size n
(several variables and arrays of length n, actually), which is

designed to compute the spider with the maximum M-ratio

w.r.t H among those with head u and such that u has power

cuvi ; that is, with powered head u, i.
In the following u is fixed. The children of the powered

head u, i are u, v1, . . . , vi. Call v0 = u. Also as in the original

variant (with precise definitions), for every vertex v, let d[v]
be the length of a shortest path from a child of the spider to v
(d[v] = 0, if v itself is a child). d[v] = minik=0 SP [vk][v]. This
is computed, for fixed u and all i = 0, 1, . . . , d′(u), as follows.
For powered head u, 0, d[v] = SP [v0][v] for all v ∈ V . In

the next iteration, we try to update d[v] by SP [v1][v]. Now
d[v] is correct for powered head u, 1. Repeat for 2, . . ., until
we finish powered head u, d′(u). The total time used here is

O(n3), including some additional book-keeping.

Fix i as well so we discuss powered head u, i. All the nodes
v are sorted in increasing order of d[v], and their indices kept

in an array I[j]; we call this order u, i-sorted. u itself is the

first in I (first position). Another array I−1 keeps for each

x ∈ V , its index in I; that is, the j with I[j] = x.
The list R contains the representatives that cannot reach u,

and is kept implicitly, as follows: arrays Prev[j] and Next[j]
keep the previous and next index of I; that is, such that

I[Next[j]] is the node that follows I[j] in in the u, i-sorted R,

and Prev[j] is the node that preceeds I[j] in the u, i-sorted
R. We also keep R, a list that contains all representatives,

implicitly as R is kept above, using arrays Prev[j], Next[j].
Also, the algorithm keeps three variables, qopt, S, and

jopt, which are meant to describe the following mathematical

indices: Let x1, x2, . . . , x|R| be the elements of R, u, i-sorted.
Define P := cuvi and

Mq :=
q

P +
∑q

l=1 d[xl]
(1)

Then qopt should be argmaxq∈{1,2,...,|R|} Mq, S should be∑qopt
l=1 d[xl], and jopt should be that I[jopt] = xqopt (or in

other words, jopt = I−1[xqopt]). Due to space limitations, our

later proof that these variables stored are indeed what they

should be is omitted.

The algorithm also keeps another three variables, qopt, S,
and jopt, which are meant to describe the following math-

ematical indices: Let x1, x2, . . . , x|R| be the elements of R,

u, i-sorted. Define

M q :=
q − 1

P +
∑q

l=1 d[xl]
(2)

Then qopt should be argmaxq∈{1,2,...,|R|}M q , S should be∑qopt
l=1 d[xl], and jopt should be that I[jopt] = xqopt (or in

other words, jopt = I−1[xqopt]).

The algorithm will keep q̂opt, Ŝ, and ĵopt when u is

reachable from z. They are meant to describe the following

mathematical indices: Define

M̂q :=
q

P +
∑q

l=1 d[xl]
(3)

Then q̂opt should be argmaxq∈{1,2,...,|R|} M̂q, Ŝ should be
∑q̂opt

l=1 d[xl], and jopt should be that I[ĵopt] = xq̂opt (or in

other words, ĵopt = I−1[xq̂opt])

Lemma IV.1. For every q, there exists a spider with powered

head u, i and M-ratio at least Mq and a spider with powered

head u, i and M-ratio at least Mq . If u is reachable from

the source, there exists a spider with powered head u, i and
M-ratio at least M̂q.

We omit the straightforward proofs of this lemma, the next

lemma, and the following theorem.

Lemma IV.2. Fix powered head u, i. If u is not reachable

from z, and if the spider maximizing the M-ratio for powered

head u, i does not have any feet that can reach the head, then

Mqopt = maxq∈{1,2,...,|R|}Mq provides such a spider. If u is

not reachable from z, and if the optimal spider for powered

head u, i has at least one foot that can reach the head, then

M qopt = maxq∈{1,2,...,|R|} Mq provides such a spider. If u is

reachable from z, then M̂q̂opt = maxq∈{1,2,...,|R|} M̂q provides

the optimal spider for powered head u, i.

Theorem IV.3. Assume that qopt is indeed such that Mqopt =
maxq∈{1,2,...,|R|}Mq, qopt is indeed such that M qopt =

maxq∈{1,2,...,|R|} Mq , and M̂q̂opt = maxq∈{1,2,...,|R|} M̂q.

The maximum M-ratio of a spider w.r.t. H equals

max{Mqopt ,M qopt} over all possible u, i when u is not

reachable from z, or M̂q̂opt over all possible u, i when u is

reachable from z.

We use the following properties of Mq, previously known

in similar settings.

Lemma IV.4 (folklore). Assume 2 ≤ q ≤ |R| − 1. If Mq+1 ≥
Mq, then Mq ≥ Mq−1. If Mq−1 ≥ Mq , then Mq ≥ Mq+1.

Assume 2 ≤ q ≤ |R| − 1. If M q+1 ≥M q, then M q ≥M q−1.

If M q−1 ≥ M q, then Mq ≥ Mq+1. If M̂q+1 ≥ M̂q, then

M̂q ≥ M̂q−1. If M̂q−1 ≥ M̂q , then M̂q ≥ M̂q+1.

As the algorithm progresses, more arcs are added to H and

as result we have fewer strongly connected components, and

fewer unhit strongly connected components. The algorithm

can easily be careful to never select new representatives,

and thus R (which is R = R(u, i) for the powered head

u, i) is shrinking. R is also shrinking. Whenever a vertex y
becomes a non-representative, we go to each u and each i and
as we describe starting with the next paragraph, in constant

amortized time, modify the data structure for the u, i-powered
head to satisfy the conditions mentioned above. There are

O(n2) powered heads, and thus one vertex becoming a non-

representative takes O(n2) time, for a total of O(n3).
Modifying the data structure, for a given, fixed u, i, is as

follows. Using I−1, find the j such that I[j] = y. We have

three cases: j < jopt, j = jopt, and j > jopt. In all cases

we adjust Prev[Next[j]] = Prev[j] and Next[Prev[j]] =
Next[j]; in other words, we remove j from the doubly-linked

list that implicitly stores R(u, i).
For the purpose of the proof, let R′ be R(u, i) without

the element y (same sorted order). Also, define M ′
l (for

l = 1, . . . , |R′|) to be the M-ratio using the new list R′. If

j > jopt, there is nothing else left to do. Indeed, we do

have that S and qopt are correct, and we prove below that

Mqopt still has the highest M-ratio. Indeed, we have that

M ′
qopt

≥ M ′
qopt−1 as qopt − 1 and qopt refer to the same

sublists, respectively. And we still have thatM ′
qopt
≥M ′

qopt+1,

since even if the qopt + 1st element of R′ differs versus

R, the change resulted in an increase of P +
∑qopt+1

l=1 d[xl].
Correctness follows in this case from Lemma IV.4.

If j < jopt, we set j′ = jopt, and if j = jopt, then we

set j′ = Prev[jopt]. In both cases, we set q′ = qopt − 1,
and S′ = S − d[I[j]]. Note that M ′

q′ is correctly computed

as q′/(P +
∑q′

l=1 d[xl]). We then compare M ′
q′ with M ′

q′+1,

where M ′
q′+1 can be computed in constant time using Next

links. If M ′
q′ ≥ M ′

q′+1 we stop with jopt = j′, qopt = q′,
and S = S′; else we update q′ = q′ + 1, j′ = Next[j′],
and S′ = S′ + d[I[j′]], and continue by comparing M ′

q′ with

M ′
q′+1. We omit the arguments, based on Lemma IV.4 that

this method is correct; note however that it takes time O(1)
plus the number of times when M ′

q′ < M ′
q′+1. Each such

comparison increases Next[jopt] by at least one; note also

that Next[jopt] can never decrease. Thus the aggregate cost

of such comparisons is O(n) for every powered head u, i, for
a total of O(n3). This means that the overall cost for updating

the data structure after n − 1 representatives becoming non-

representative is O(n3).

Similar arguments are used for M ′
q′ and M̂ ′

q′ .

In each iteration, we add to H all the arcs in at most n
shortest-paths; thus the algorithms only attempts to add to H
at most n2 arcs (and for every such arc, if it already in H , we

do not do it again). We use the data structure of [24] to keep

all the reachability data of H , with an an overall running time

of O(n3). Based on the discussion of this section, we obtain

one of our main results:

Theorem IV.5. For Min-Power Broadcast, there exists an

algorithm with running time O(n3) and approximation ratio

2(1 + lnn) in the directed/asymmetric input model.

V. SIMULATION RESULTS

We implemented the following algorithms: the MST-based

algorithm, BIP, SPT (shortest-paths tree), RG (Relative-

Greedy), HG (Hypergraph-Greedy), GS (Greedy-Spider), and

an IP-based algorithm using the free CPLEX Optimization

Studio Academic Research Edition 12.2. We also wrote a post-

processing heuristic that makes the solution minimal (goes

through the vertices and reduces the power of each vertex

as much as possible while keeping the same connectivity).

We write MST-P to denote the MST algorithm, followed

by this post-processing, and similarly have BIP-P, SPT-P,

RG-P, HG-P, and GS-P. All the code, other than CPLEX,

was written in C++ and compiled with gpp, and run on a

Intel(R) Core(TM) i7-2310M CPU @ 2.10GHz desktop with

16G memory. We checked using a separate program that our

experimental outputs are out-connected from the source.

We use κ = 2 in our experiments in the two dimensional

plane. Tables I and II give the percent improvement over

MST and the runtimes for the compared algorithms. For each

instance size, we generated 50 uniformly random instances,

and 50 instances using the propellant setting of the GenSeN

topology generator [7]. In the table, the size of an instance is

followed by r if uniformly random, and p if propellant. CPU

is used to denote the CPU-time measured in seconds.

The results show that the exact algorithm has a practical

running time up to 30 nodes, and produces an average im-

provement over MST of 22-39%. Post-processing is useful

and fast enough. The Shortest-Paths based algorithm under-

performs frequently. By itself, the Relative-Greedy algorithm

does best in average, but we run into instances where its

output is worse than the MST output; this can be explained

since Relative-Greedy improves over the cost of the minimum

spanning tree, and the power of a tree could be much less

than it’s cost (up to (1/6)-th, in the two-dimensional Euclidean

input model).

Our data shows that the algorithms are varied enough that

one should try all the practical ones and pick the best output.

Table II includes MIN-E, which is obtained by running all

the existing fast algorithms (including post-processing), and

n MST-P BIP BIP-P SPT-P RG-P

% CPU % CPU % CPU % CPU % CPU

20r 1.23 0.00 6.45 0.00 8.13 0.00 -3.13 0.00 10.34 0.00

20p 3.13 0.00 7.88 0.00 8.45 0.00 6.12 0.00 7.77 0.00

25r 5.65 0.00 8.77 0.00 8.98 0.00 5.33 0.00 9.14 0.00

25p 7.46 0.00 6.45 0.00 8.35 0.00 8.06 0.00 9.36 0.00

30r 8.17 0.00 4.31 0.00 5.33 0.00 3.66 0.00 10.66 0.00

30p 6.43 0.00 7.22 0.00 8.45 0.00 5.01 0.00 9.31 0.00

40r 5.34 0.00 10.31 0.00 11.14 0.00 4.52 0.00 10.11 0.00

40p 8.34 0.00 6.58 0.00 7.34 0.00 4.03 0.00 16.71 0.00

50r 4.66 0.00 7.71 0.00 8.23 0.00 3.03 0.00 15.34 0.00

50p 6.53 0.00 7.11 0.00 8.32 0.00 2.18 0.00 11.88 0.00

60r 3.89 0.00 10.66 0.00 11.54 0.00 6.21 0.00 13.98 0.00

60p 5.76 0.00 8.44 0.00 10.14 0.00 -4.45 0.00 10.56 0.00

70r 5.41 0.00 6.53 0.00 7.91 0.00 -6.38 0.00 15.32 0.00

80r 4.12 0.00 7.86 0.00 10.53 0.00 -5.12 0.00 12.37 0.00

90r 6.23 0.00 8.98 0.00 9.28 0.00 -4.57 0.00 14.43 0.00

100r 5.12 0.00 7.24 0.00 10.31 0.00 -3.64 0.00 12.13 0.00

200r 4.14 0.00 8.13 0.00 10.12 0.00 -0.21 0.00 12.47 0.00

500r 4.56 0.00 4.14 0.00 8.94 0.00 -3.85 0.00 12.88 1.12

1000r 5.12 0.00 6.64 0.00 7.16 0.00 -1.71 0.00 13.13 4.78

2000r 3.14 0.00 6.15 0.00 7.45 0.00 -3.41 0.00 11.45 35.67

TABLE I
AVERAGE PERCENT IMPROVEMENT OVER THE MST (%) AND RUNTIME IN

SECONDS (CPU) FOR THE COMPARED ALGORITHMS.

n IP HG-P MIN-E GS-P MIN-A

% CPU % CPU % CPU % CPU % CPU

20r 28.3 1.4 7.34 0.00 12.13 0.00 5.42 0.00 16.02 0.00

20p 27.4 2.3 8.23 0.00 9.08 0.00 6.33 0.00 13.57 0.00

25r 34.5 21.0 9.13 0.00 14.13 0.00 6.52 0.00 17.93 0.00

25p 35.6 23.1 7.57 0.00 13.11 0.00 12.65 0.00 22.06 0.00

30r 35.7 69.4 5.68 0.00 12.30 0.00 9.67 0.00 20.66 0.00

30p 39.4 71.5 8.43 0.00 14.33 0.00 7.56 0.00 19.01 0.00

40r — — 5.78 0.00 15.39 0.00 11.45 0.00 17.83 0.00

40p — — 9.13 0.00 14.26 0.00 8.85 0.00 21.31 0.00

50r — — 7.34 0.00 15.27 0.00 7.36 0.00 19.73 0.00

50p — — 12.13 0.00 13.35 0.00 9.74 0.00 17.88 0.00

60r — — 9.34 0.00 12.45 0.00 11.26 0.00 24.78 0.00

60p — — 8.56 0.00 15.15 0.00 8.36 0.00 19.45 0.00

70r — — 6.45 0.00 14.34 0.00 9.36 0.00 21.14 0.00

80r — — 7.31 0.00 13.64 0.00 9.73 0.00 23.92 0.00

90r — — 8.56 0.00 12.42 0.00 8.63 0.00 20.11 0.00

100r — — 8.57 0.00 13.62 0.00 11.85 0.00 18.01 0.00

200r — — 9.45 0.00 12.42 0.00 11.65 1.22 17.10 2.34

500r — — 8.15 3.11 9.25 3.11 10.52 11.93 13.7 16.57

1000r — — 7.83 10.12 9.26 10.34 11.52 15.81 14.61 31.94

2000r — — 7.46 90.42 9.23 91.04 — — 15.43 126.71

TABLE II
AVERAGE PERCENT IMPROVEMENT OVER THE MST (%) AND RUNTIME IN

SECONDS (CPU) FOR THE COMPARED ALGORITHMS.

picking the best (the running time is pretty much the sum

of the running times), and MIN-A, which is obtained the

same way using our two new fast versions, plus all the

existing fast algorithms. For 2000 nodes, the Greedy-Spider

algorithm was too slow, and only a heuristic based on it

(no proven approximation ratio) was included in MIN-A. The

improvement over MST of MIN-A is in the range 13-24%,

and is circa 50% more than the improvement of MIN-E.

VI. CONCLUSIONS AND FUTURE WORK

This study of the problem of assigning transmission power

to the nodes of ad hoc wireless networks to minimize total

power consumption during a broadcast session showed that a

combination of fast approximation algorithms and heuristics

can be applied to large instances and improve the total power

consumption compared to the output of the well known

MST-based algorithm. Our new (faster) algorithms make this

improvement circa 50% bigger compared to existing fast

heuristics.

We plan to use the multi-thread capability using multi-core

processors to further speed up the heuristics (most greedy algo-

rithms allow some parallelization) and the IP-based algorithms

(CPLEX did use four threads).

REFERENCES

[1] S. Al-Shihabi, P. Merz, and S. Wolf. Nested partitioning for the
minimum energy broadcast problem. In Vittorio Maniezzo, Roberto
Battiti, and Jean-Paul Watson, editors, Learning and Intelligent Opti-

mization, volume 5313 of Lecture Notes in Computer Science, pages
1–11. Springer Berlin Heidelberg, 2008.

[2] C. Ambühl. An optimal bound for the MST algorithm to compute energy
efficient broadcast trees in wireless networks. In Proceedings of 32th

International Colloquium on Automata, Languages and Programming
(ICALP), volume 3580 of Lecture Notes in Computer Science, pages
1139–1150. Springer Verlag, 2005.

[3] J. Bauer, D. Haugland, and D. Yuan. New results on the time complexity
and approximation ratio of the broadcast incremental power algorithm.
Inf. Process. Lett., 109(12):615–619, May 2009.

[4] H. Cai and Y. Zhao. On approximation ratios of minimum-energy
multicast routing in wireless networks. Journal of Combinatorial
Optimization, 9(3):243–262, 2005.

[5] G. Călinescu. Faster approximation for symmetric min-power broadcast.
In CCCG. Carleton University, Ottawa, Canada, 2013.

[6] G. Calinescu, S. Kapoor, A. Olshevsky, and A. Zelikovsky. Network
lifetime and power assignment in ad-hoc wireless networks. In Proc.

11th European Symphosium on Algorithms, pages 114–126, 2003.

[7] T. Camilo, J. Silva, A. Rodrigues, and F. Boavida. Gensen: A topology
generator for real wireless sensor networks deployment. In Proc.

SEUS’07, pages 436–445, 2007.

[8] I. Caragiannis, M. Flammini, and L. Moscardelli. An exponential
improvement on the mst heuristic for minimum energy broadcasting
in ad hoc wireless networks. Networking, IEEE/ACM Transactions on,
21(4):1322–1331, Aug 2013.

[9] I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos. New results for
energy-efficient broadcasting in wireless networks. In Prosenjit Bose and
Pat Morin, editors, ISAAC, volume 2518 of Lecture Notes in Computer

Science, pages 332–343. Springer, 2002.

[10] I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos. Energy-efficient
wireless network design. In ISAAC, 2003.

[11] I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos. Energy-efficient
wireless network design. Theor. Comp. Sys., 39(5):593–617, September
2006.

[12] A. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca. On the
Complexity of Computing Minimum Energy Consumption Broadcast
Subgraphs. In 18th Annual Symposium on Theoretical Aspects of

Computer Science, LNCS 2010, 2001, pages 121–131, 2001.

[13] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2. edition, 2001.

[14] U. Feige. A treshold of lnn for approximating set cover. JACM, 45:634–
652, 1998.

[15] M. Flammini, A. Klasing, R.and Navarra, and S. Perennes. Tightening
the upper bound for the minimum energy broadcasting. Wirel. Netw.,
14(5):659–669, October 2008.

[16] M. Flammini, R. Klasing, A. Navarra, and S. Perennes. Improved
approximation results for the minimum energy broadcasting problem.
Algorithmica, 49(4):318–336, 2007.

[17] M. Flammini, A. Navarra, R. Klasing, and S. Pérennes. Improved
approximation results for the minimum energy broadcasting problem.
In DIALM-POMC, pages 85–91, 2004.

[18] M. Flammini, A. Navarra, and S. Perennes. The “real” approximation
factor of the mst heuristic for the minimum energy broadcasting. In
Proceedings of the 4th international conference on Experimental and

Efficient Algorithms, WEA’05, pages 22–31, Berlin, Heidelberg, 2005.
Springer-Verlag.

[19] S.K. Ghosh. Energy efficient broadcast in distributed ad hoc wireless
networks. In Computational Science and Engineering, 2008. CSE ’08.

11th IEEE International Conference on, pages 394–401, 2008.

[20] S. Guha and S. Khuller. Improved Methods for Approximating Node
Weighted Steiner Trees and Connected Dominating Sets. Information

and Computation, 150:57–74, 1999.

[21] S. Guo and O. Yang. Minimum-energy multicast in wireless ad
hoc networks with adaptive antennas: Milp formulations and heuristic
algorithms. IEEE Transactions on Mobile Computing, 5(4):333–346,
April 2006.

[22] D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM Journal on Computing, 13(2):338–355, 1984.

[23] H. Hernández, C. Blum, and G. Francès. Ant colony optimization
for energy-efficient broadcasting in ad-hoc networks. In Proceedings

of the 6th international conference on Ant Colony Optimization and

Swarm Intelligence, ANTS ’08, pages 25–36, Berlin, Heidelberg, 2008.
Springer-Verlag.

[24] T. Ibaraki and N. Katoh. On-line computation of transitive closures of
graphs. Inf. Process. Lett., 16(2):95–97, 1983.

[25] R. Klasing, A. Navarra, A. Papadopoulos, and S. Prennes. Adaptive
broadcast consumption (abc), a new heuristic and new bounds for the
minimum energy broadcast routing problem. In NikolasM. Mitrou, Ki-
mon Kontovasilis, GeorgeN. Rouskas, Ilias Iliadis, and Lazaros Merakos,
editors, NETWORKING 2004. Networking Technologies, Services, and
Protocols; Performance of Computer and Communication Networks;

Mobile and Wireless Communications, volume 3042 of Lecture Notes in

Computer Science, pages 866–877. Springer Berlin Heidelberg, 2004.
[26] P. Klein and R.Ravi. A nearly best-possible approximation algorithm for

node-weighted Steiner trees. Journal of Algorithms, 19:104–115, 1995.
[27] S. Krumke, R. Liu, E. Lloyd, M. Marathe, R. Ramanathan, and S.S.

Ravi. Topology control problems under symmetric and asymmetric
power thresholds. In Proc. Ad-Hoc Now, pages 187–198, 2003.

[28] D. Li, X. Jia, and H. Liu. Energy efficient broadcast routing in static ad
hoc wireless networks. IEEE Trans. Mobile Comput, 3:144–151, 2004.

[29] W. Liang. Constructing minimum-energy broadcast trees in wireless ad
hoc networks. In Proceedings of the 3rd ACM international symposium

on Mobile ad hoc networking & computing, pages 112–122. ACM Press,
2002.

[30] M. Min, A.F. O’Brien, and S.Y. Shin. Improved psor algorithm for
minimum power multicast tree problem in wireless ad hoc networks.
Int. J. Sen. Netw., 8(3/4):193–201, October 2010.

[31] F. Mtenzi and Y. Wan. The minimum-energy broadcast problem in
symmetric wireless ad hoc networks. In Proceedings of the 5th WSEAS

international conference on Applied computer science, ACOS’06, pages
68–76, Stevens Point, Wisconsin, USA, 2006. World Scientific and
Engineering Academy and Society (WSEAS).

[32] A. Navarra. Tighter bounds for the minimum energy broadcasting prob-
lem. In Proceedings of the Third International Symposium on Modeling

and Optimization in Mobile, Ad Hoc, and Wireless Networks, WIOPT
’05, pages 313–322, Washington, DC, USA, 2005. IEEE Computer
Society.

[33] A. Navarra. 3-d minimum energy broadcasting. In Paola Flocchini and
Leszek Gsieniec, editors, Structural Information and Communication

Complexity, volume 4056 of Lecture Notes in Computer Science, pages
240–252. Springer Berlin Heidelberg, 2006.

[34] T. Polzin and S.V. Daneshmand. On Steiner trees and minimum spanning
trees in hypergraphs. Oper. Res. Lett., 31(1):12–20, 2003.

[35] T.S. Rappaport. Wireless Communications: Principles and Practices.
Prentice Hall, 1996.

[36] Paolo Santi. Topology control in wireless ad hoc and sensor networks.
ACM Comput. Surv., 37(2):164–194, 2005.

[37] A. Schrijver. Combinatorial Optimization. Springer, 2003.
[38] S. Singh, C.S. Raghavendra, and J. Stepanek. Power-aware broadcasting

in mobile ad hoc networks. In Proceedings of IEEE PIMRC, 1999.
[39] R.E. Tarjan. Data Structures and Network Algorithms. SIAM, 1983.
[40] M. Čagalj, J.-P. Hubaux, and C.C. Enz. Energy-efficient broadcasting

in all-wireless networks. Wirel. Netw., 11(1-2):177–188, January 2005.
[41] P.-J. Wan, G. Calinescu, X.-Y. Li, and O. Frieder. Minimum Energy

Broadcast Routing in Static Ad Hoc Wireless Networks. Wireless

Networks, 8(6):607–617, 2002.
[42] J.E. Wieselthier, G.D. Nguyen, and A. Ephremides. On the construction

of energy-efficient broadcast and multicast trees in wireless networks.
In Proc. IEEE INFOCOM, pages 585–594, 2000.

[43] S. Wolf and P. Merz. Evolutionary local search for the minimum energy
broadcast problem. In Proceedings of the 8th European conference on

Evolutionary computation in combinatorial optimization, EvoCOP’08,
pages 61–72, Berlin, Heidelberg, 2008. Springer-Verlag.

[44] L.A. Wolsey. Analysis of the greedy algorithm for the submodular set
covering problem. Combinatorica, 2:385–392, 1982.

[45] D. Yuan, J. Bauer, and D. Haugland. Minimum-energy broadcast and
multicast in wireless networks: An integer programming approach and
improved heuristic algorithms. Ad Hoc Netw., 6(5):696–717, July 2008.

[46] A. Zelikovsky. Better approximation bounds for the network and Eu-
clidean Steiner tree problems. Technical Report CS-96-06, Department
of Computer Science, University of Virginia, 1996.

