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Abstract.
Optimizing the energy consumption in wireless sensor networks has recently become the most

important performance objective. We assume the sensor network model in which sensors can inter-
change idle and active modes. Given monitoring regions, battery life and energy consumption rate
for each of n sensors, we formulate the problem of maximizing sensor network lifetime, i.e., time
during which the monitored area is (partially or fully) covered. We give the first provably good
algorithm for finding monitoring schedule with the approximation ratio 1 + logn.

Our contributions also include (1) an efficient data structure to represent the monitored area with
at most n2 points guaranteeing the full coverage which is superior to the previously used approach
based on grid points, (2) efficient provably good centralized algorithms for sensor monitoring schedule
maximizing the total lifetime for the case when a q-portion of the monitored area is required to cover,
e.g., for the 90% area coverage our schedule guarantees to be at most 3.3 times shorter than the
best full coverage lifetime, (3) efficient provably good approximation algorithm for sensor network
lifetime problem which takes in account the (partial) monitoring and communication cost in case
when the communication range is at least twice larger than monitoring range, (4) a family of efficient
distributed protocols with trade-off between communication and monitoring power consumption, (5)
extensive experimental study of the proposed algorithms showing significant advantage in quality,
scalability and flexibility.
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1. Introduction. Wireless sensor networks have been the focus of considerable
research during the past few years. The research issues currently addressed in wire-
less sensor networks are hardware constraints, communication and routing issues, data
management problems, and software engineering principles. One of the most impor-
tant issue apart from the above mentioned ones is energy optimization in wireless
sensor networks.

A sensor network is composed of a large number of sensor nodes that are densely
deployed either inside the environment or close to it. The position of sensor nodes need
not be engineered or predetermined. This allows random deployment in inaccessible
terrains or hazardous environments. Some of the most important application areas
of sensor networks include military, natural calamities, health, and home. When
compared to traditional ad hoc networks, the most noticeable point about sensor
networks is that, they are limited in power, computational capacities, and memory.
Hence optimizing the energy consumption in wireless sensor networks has recently
become the most important performance objective.

The wireless sensor node, being a microelectronic device, can only be equipped
with a limited power source. In some application scenarios, replenishment of power
resources might be impossible. As noted in [3], the energy density of batteries has only
doubled every 5 to 20 years, depending on the particular chemistry, and prolonged
refinement of any chemistry yields diminishing returns. This shows that power man-
agement will be as critical in future sensor networks as it now.

The main task of a sensor node in a sensor network is to monitor events, i.e.,
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collect data, perform quick local data aggregation, and then transmit the data. Power
consumption can hence be divided into three domains: sensing, aggregation, and
communication. In this paper we mostly concentrate on minimizing energy for sensing
by using smart monitoring schedules. The energy for data aggregation is practically
not affected by monitoring schedules but for distributed, self-organizing schedules it is
necessary to take in account associated energy loss due to increase in communication
for establishing better schedules [9].

Our model of a sensor network is close to one described in [8, 9]. We assume that
sensors are sprayed over the region R which is required to monitor, and each sensor pi

has its own monitored region Ri which it covers, i.e., pi can collect the trustful data
from Ri without help of any other sensor. Although we assume that the monitored
region are convex (for the clarity of presentation we will use disks of the same radius
r), our algorithms can be generalized to arbitrary region shape. We also assume that
each sensor pi has also a certain initial energy supply bi which will be measured in
time during which pi can collect information from Ri.

We also assume that the number of sensors largely exceeds the amount necessary
to monitor the required region R. Therefore, it is possible to turn some sensors
in the idle mode saving their energy and prolonging the network lifetime. Sensors
can interchange their mode multiple times and possible energy loss can be taken in
account. The main constraint is that the monitored region R should be completely
(or partially with specified portion of R) covered at any moment by active sensors.
This assumption agrees with [7], where an OS-directed power management technique
to improve the power efficiency of sensor nodes is proposed.

Below we give a formal definition of the energy preserving scheduling problem.
A set of sensors C covering R will be called sensor cover. Then a monitoring

schedule is the set of pairs (C1, t1), . . . , (Ck, tk), where Ci is a sensor cover and ti is
time during which Ci is active.

Sensor Network Life Problem (SNLP). Given a monitored region R, a set of
sensors p1, . . . , pn and monitored region Ri and energy supply bi for each sensor, find
a monitoring schedule (C1, t1), . . . , (Ck, tk) with the maximum length t1 + . . . + tk,
such that for any sensor pi the total active time does not exceed bi.

Note that this formulation has never been clearly stated in the previous literature.
In [8] (see also [1, 5]) the problem has been reduced to so called disjoint set cover
problem. There it is assumed that any sensor cannot participate in different sensor
covers, i.e., it can be only once change its mode from sleeping to active. Then all
sensor covers should be disjoint. A different model assumes that the most of energy
consumption of wireless networks comes from routing the traffic, rather than moni-
toring [10] and the task is to find the best traffic flow routes for a given set of traffic
demands, e.g., using concurrent flow approaches [4].

The advantage of the introduced formulation is unbounded. Indeed, if one sensor
has n units of energy while n other sensors have 1 unit of energy and any 2 sensors
can monitor the region, then using the same sensor in different sensor covers increases
the lifetime by factor n. On the other hand, it is much more complicated to find
the maximum possible advantage of multiple mode interchange over disjoint sensor
cover when the original energy supply is the same for all sensors. Figure 1.1 gives an
example showing advantage of multiple mode interchange in case of the same initial
energy supply. In this example there are 3 sensors with disc monitored regions which
are supposed to monitor a dark square region R inside. Assume that each sensor has
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Fig. 1.1. 3 sensors with the disc monitored regions R1, R2 and R3 cover the dark square of
the monitored region R. Any two sensors can cover R but any single sensor cannot cover R.

2 units of energy supply. Then there exists only a single disjoint sensor cover which
can last for 2 units of time. On the other hand, the schedule ({p1, p2}, 1), ({p2, p3}, 1),
({p3, p1}, 1) is clearly feasible and lasts for 3 units of time. We conjecture that for the
case when the monitored regions are convex this advantage cannot exceed 50%, i.e.,
Figure 1.1 gives the worst-case example, and, in general case this advantage cannot
exceed 100%.1

The SNLP can be formulated as a packing linear program (see section 3) – one
should pack maximum number of schedules into a multidimensional knapsack with
dimensions defined by the number of energy units assigned to sensors. For solving
SNLP we use the primal-dual approach. This approach requires to solve the following
dual covering problem.

Minimum Weight Sensor Cover Problem (MWSCP). Given a monitored re-
gion R, a set of sensors p1, . . . , pn and monitored region Ri and the weight wi for each
sensor, find sensor cover with the minimum total weight.

Using approximate solutions for MWSCP we give first provably good approxi-
mation algorithms for SNLP based on approximation algorithm for MWCP. Other
contributions of our paper include:

• an efficient data structure to represent the monitored area with at most n2

points guaranteeing the full coverage which is superior to the previously used
approach based on grid points,

• efficient provably good centralized algorithms for sensor monitoring schedule
maximizing the total lifetime for the case when a q-portion of the monitored
area is required to cover

• efficient provably good approximation algorithm for sensor network lifetime
problem which takes in account the (partial) monitoring and communica-
tion cost in case when the communication range is at least twice larger than
monitoring range,

1We have constructed a series of instances with the limit advantage of 100% based on involved
combinatorics.
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• a family of efficient distributed protocols with trade-off between communica-
tion and monitoring power consumption

• extensive experimental study of the proposed algorithms showing significant
advantage in quality, scalability and flexibility.

The rest of the paper is organized as follows.
In Section 2 we give an efficient data structure for representation of the moni-

tored area with at most n2 points guaranteeing the full coverage which is superior
to the previously used approach based on grid points [8]. This data structure al-
lows efficiently reduce the Minimum Weight Sensor Cover problem to the standard
weighted set cover problem. This problem cannot be efficiently solved with guarantee
better than O(log k), where k is the size of the largest set and it is not known to have
any better algorithm for the case of planar sets. Anyway, our primal-dual solution
is the first algorithm guaranteeing solution which is at most O(logn) worse than the
optimum, where n is the number of sensors.

In Section 3 we explain Garg-Könemann algorithm [2] for solving packing linear
programs, which allows to solve the Maximum Sensor Network Life problem with
almost the same guarantee with which one can solve the dual problem, i.e., Minimum
Weight Sensor Cover problem. We also give a practical enhancement of their approach
resulted in fast improvement of the quality of obtained solutions.

In many cases, it can be required to cover sufficiently large portion of the moni-
tored region R rather than the entire R. In Section 3.1 we formulate the respective
problem when only q · area(R) for a given q ∈ [0, 1]. We then give an approximation
algorithm which finds the solution at most (1 + ln(1 − q)−1) times heavier than the
optimum full coverage. For instance, when q = 0.9, i.e., when we wish to cover 90%
of the region R, this implies an algorithm guaranteeing finding sensor 0.9-cover at
most 3.3 times heavier than the the optimum full cover and a monitoring schedule
always covering at least 90% of monitored region and at most 3.3 times shorter than
the optimal sensor schedule.

In Section 3.2, we show how to take in account communication costs – if the
communication radius is at least twice the monitoring radius then we can guarantee
constant-factor approximation.

In Section 4, we present a series of distributed algorithms based on our new data
structure which are superior to the previous approaches (see [9]) since they account
for each node energy supply. We have implemented all the suggested algorithms and
present our simulation results in Section 5.

2. Efficient Data Structure Representing Sensor Coverage. In [8] a grid
data structure is used to express sensor node coverage over an area. They establish a
set of grid points that form a g× g-array to discretize the area. Then they determine
for each point the subset of covering sensors disks. Next they partition all grid points
into fields, where a field is defined as a subset of grid points covered by the same set of
sensors. Similar idea has been suggested in [3]. The main advantage of this coverage
model is ease of implementation if the covering area does not have to be delineated
very precisely. If there are few points in the grid, then the area to be covered is
not well defined. On the other hand, if the grid is very fine, then the calculation
overhead for this model becomes quite large. Another challenging computation task
is partitioning into fields since potentially O(2n×n) possible fields may exist only fields
which are present should be extracted.

In this paper we present a superior data structure which overcomes the above
disadvantages. The monitored region is represented by a planar graph P = (V, E) with



EFFICIENT ENERGY MANAGEMENT IN SENSOR NETWORKS 5

face 1

face 8

face 7

face 6

face 11

face 2
face 3

face 4

face 5

face 10face 9

face 12face 13

Fig. 2.1. The data structure for four sensors with disk monitored regions. The planar graph
P = (V, E) with vertices corresponding to points of intersections and edges connecting adjacent
points. There are 10 vertices, 21 edges and 13 faces.

intersection of 3

region boundaries new face 

Fig. 2.2. The left example contains a triple intersection (the vertex is filled). On the right,
there is a modified example with one circle slightly moved up. As a result a new dotted face appears.

vertices V corresponding to the points of intersections of boundaries of all sensor’s
coverage regions (e.g., circles) and edges E connect pairs of adjacent intersection
points along the boundaries of sensor circles (see Figure 2.1).

It is easy to see that the faces of the graph P , i.e., the parts of the plane bounded
by edges, are regions covered by the same set of sensor disks. Therefore, if we would
identify all the faces of the graph P we would effectively enumerate all fields and
moreover, this will be a complete and accurate representation of all fields since we do
not use grid points and do not rely on an assumption that we have sufficient amount
of grid points to nail each face.

One can efficiently find all faces since the number of such faces is comparatively
small. Indeed, the following simple fact bounds the number of faces.

Theorem 2.1. Let m be the number of points of intersection of boundaries of the
monitored regions of all sensors, then the number of faces in the graph P is at most
m + 2.

Proof. The proof is based on Euler’s formula for planar graphs. Since P = (V, E)
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Fig. 2.3. Solid arcs show how the edges outgoing from the filled vertex are traversed, the dotted
arcs show the order in which a face boundary is traversed.

is a planar graph, |V | − |E| + |F | = 2, where V , E and F are the sets of vertices,
edges and faces of P , respectively. If several boundaries intersect at the same point,
then by slightly changing boundaries, one can increase the number of faces (see Figure
2.2). Thus, for counting purposes, we can assume that each point can be intersection
of boundaries of at most two monitored regions. Then each vertex of the graph P
has degree 4. If we sum up degrees of all vertices, then we count each edge twice,
therefore, |E| = 2|V |. Thus, |V | − 2|V | + |F | = 2 and the number of faces equals
|F | = |V |+ 2.

If the monitored regions are convex, then any two boundaries can intersect at
most twice, i.e., there are at most n(n− 1) intersection points.

Corollary 2.2. Given n sensors each with convex monitored region, the number
of faces of the graph P is at most n(n− 1) + 2.

Below we describe an efficient implementation of our data structure when each
monitored region is a disk (or in general a convex region) (see Figure 2.3). The graph
P is considered to be directed with each edge represented by two opposite arcs and
each arc belongs to the boundary of exactly one face. For each vertex all outgoing
arcs are sorted in a counterclockwise order. The faces are identified by walking along
the arcs, if we come to the node using arc e, then we should follow the arc next to the
next arc which opposite to e. Finally, determining which sensors cover which faces is
accomplished by measuring the distances of the face vertices to the sensors.

If monitored regions are not convex then we suggest to partition them into convex
subregions and apply the planar graph data structure afterwards. This may happened
in case of obstacles when collecting visual information (see Figure 2.4). If the moni-
tored regions are given implicitly, then finding intersection points may be a challenging
task and we may need to reuse the grid point representation. In this case, finding
fields can be done efficiently using hash functions.

3. Centralized Maximization of Sensor Network Lifetime. In this section
we formulate the Sensor Network Lifetime problem as a packing linear program, give
the (1+log n)-approximation algorithm for SNLP, show how to modify our algorithm
in case when only partial coverage is required and, finally show how to take in account
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Fig. 2.4. An example of a sensor with nonconvex monitored region caused by a solid obstacle.
The region is partitioned by a dashed line into the convex regions.

communication cost.
After finding different sensor covers which satisfies sensor network constraint, we

have to maximize the network lifetime by assigning the active time stretch for each
sensor cover. Formally, for each sensor cover cj from a family SC = {c1, . . . cm}, we
need to find the time variable tj . We can generate a matrix Cij with rows i = 1, . . . , m
representing each sensor, and columns j = 1, . . . ,m representing each sensor cover.
The linear program corresponding to SNLP can be formulated as follows.

Maximize :
m∑

j=1

tj

Subject to
m∑

j=1

Cijtj ≤ bi

where bi is energy supply of the sensor i and

Cij =
{

0 if sensor i is not in set cover j
1 if sensor i is in disk cover j

The linear program above is a packing LP. In general, a packing LP is defined as

max{cT x|Ax ≤ b, x ≥ 0}(3.1)

where A, b, and c have positive entries; we denote the dimensions of A as mxn. In
our case the number of columns of A is prohibitively large (exponential in number of
sensors) and we will use the (1+ε)-approximation Garg-Könemann algorithm [2]. The
algorithm assumes that the LP is implicitly given by a vector b ∈ Rm and an algorithm
which finds the column of A minimizing so-called length. The length of column j

with respect to LP in Equation (3.1) is defined as lengthy(j) = ΣiA(i,j)y(i)
c(j) for any
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Input: A vector b ∈ Rm, ε > 0, and an f -approximation algorithm F for the problem
of finding the minimum length column Aq(y) of a packing LP {max cT x|Ax ≤ b, x ≥ 0}
Output: A set of columns {Aj}k

j=1 each supplied with the value of the corresponding
variable xj , such that (x1, . . . , xk) correspond to all non-zero variables in a near-
optimal feasible solution of the packing LP {max cT x|Ax ≤ b, x ≥ 0}

(1) Initialize: δ = (1 + ε)((1 + ε)m)−1/ε, for i = 1, . . . , m y(i) ← δ
b(i) , D ← mδ,

j = 0
(2) While D < 1

Find the column Aq using the f -approximation F .
Compute p, the index of the row with the minimum b(i)

Aq(i)

j ← j + 1, xj ← b(p)
Aq(p) , Aj ← Aq

For i = 1, . . . ,m, y(i) ← y(i)
(
1 + ε b(p)

Aq(p)/
b(i)

Aq(i)

)
, D ← bT y.

(3) Output {(Aj , xj

log1+ε
1+ε

δ

)}k
j=1

Fig. 3.1. The Garg-Könemann Algorithm with f-approximate minimum length columns

positive vector y. The Garg-Könemann algorithm with f -approximate minimum
length columns is presented in Figure 3.1.

When applied to our LP (3.1), the Garg-Könemann algorithm can use an (ap-
proximation) algorithm F solving the Minimum Weight Sensor Cover problem with
weights proportional to the elements of vector y, i.e., for each node i = 1, . . . ,m,
w(i) = 1/yi. This implies the following general result.

Theorem 3.1. The Network Lifetime problem can be approximated within a
factor of (1 + ε)f , for any ε > 0, using Algorithm on Figure 3.1 with f being the
approximation ratio of the algorithm F for the Minimum Weight Sensor Cover prob-
lem.

From section 2 follows that the Minimum Weight Sensor Cover problem is equiv-
alent to the classical Minimum Weight Set Cover problem with k = O(n2) elements
(i.e., faces) to cover. Using standard greedy algorithm for this problem with the
approximation ratio 1 + ln k = 1 + 2 ln n, we obtain the following

Corollary 3.2. The Network Lifetime problem can be approximated within a
factor of (1 + ε)(1 + 2 ln n), for any ε > 0, using Algorithm on Figure 3.1 with the
algorithm F being the greedy (1 + 2 ln n)-approximation algorithm for the Minimum
Weight Sensor Cover problem.

3.1. Partial Sensor Coverage . In this subsection we consider the problem of
finding the minimum weighted sensor set partially covering the monitored area.

Partial q-Coverage problem. Given a constant q ∈ [0, 1], the monitored region R
with area M and a set of sensors Sensors find subset p1, p2, . . . , pt of Sensors such
that

Minimize :
∑

w(pi)

Subject to Area

(
t⋃

i=0

Si

)
≥ qM,
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where M is the total monitored area and Si is the monitored region of sensor pi.

This problem can be reformulated as follows.

Set q-Cover problem. Given a finite set X of elements each having cost2 cost :
X → R+ and family of F of subsets Si ⊆ X, each having weight w : Si → R+, and
q ∈ [0, 1], find minimum weight subfamily C ⊆ F covering subsets of X, such that total
cost of elements covered by sets in C is at least q · cost(X), where cost(X) =

∑
x∈X x.

The greedy algorithm for Set q-Cover problem iteratively chooses the set Si ∈ C,
with minimum

(
w(Si)

cost(Si)

)
, where cost(Si) =

∑
x∈Si

cost(x). It stops when the area
covered is at least q · cost(X). Due to space limitations we omit the proof of the
following

Theorem 3.3. The greedy algorithm for Set q-Cover problem finds a cover with
weight at most 1 + ln 1

1−q times the weight of optimal cover of the entire X.
Proof. Let Xi be the set of elements of X which are uncovered after selecting

set S1, S2, . . . , Si, and cost of Xi, cost : Si → R+ is total cost of elements of Xi.
The cost(X0) is cost of elements of X before selecting any set Si, so that cost(X0) =
cost(X) and,

cost(Xi) = cost(Xi−1)− cost(Si)(3.2)

Let S∗1 , S∗2 , . . . , S∗k be sets selected in optimal solution covering entire X, so that,

OPT

cost(Si)
≥

∑
w(S∗j )∑

cost(S∗j )

≥ min

(
w(Sj)

cost(Sj)

)

≥ w(Si)
cost(Si)

(3.3)

From (3.2),

cost(Xi) ≤ cost(Xi−1)
(

1− w(Si)
OPT

)

Let m be the maximum number such that remaining cost cost(Xm) is at least (1 −
q)cost(X). So that,

cost(Xm+1) < (1− q)cost(X) ≤ cost(Xm)(3.4)

From inequality ln(1 + x) ≤ x,

ln
cost(X0)
cost(Xm)

≥ − ln
∏ (

1− w(Si)
OPT

)

= −
∑

ln
(

1− w(Si)
OPT

)

≥
∑

w(Si)
OPT

(3.5)

2The cost of an element corresponds to the area of a face.
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The cost of solution by Greedy method is equal to
∑m+1

i=0 w(Si), so using (3.4),(3.5)
approximation ratio is,

APR =
∑m

i=0 w(Si) + (w(Sm+1))
OPT

=
∑m

i=0 w(Si)
OPT

+
w(Sm+1)

OPT

≤ ln
cost(X0)
cost(Xm)

+ 1

≤ ln
1

(1− q)
+ 1

Because, from (3.3),

w(Sm+1)
OPT

≤ cost(Si+1)
cost(Xi+1)

≤ 1

Corollary 3.4. When q-portion of the monitored region R is allowed to cover,
the SNLP can be approximated within a factor of (1+ε)(1+ln(1−q)−1), for any ε > 0,
using Algorithm on Figure 3.1 with the algorithm F being the greedy (1+ln(1−q)−1)-
approximation algorithm for the Minimum Weight Sensor q-Cover problem.

3.2. Taking in Account Communication Cost. In this section we show that
our approach for monitoring schedule can be generalized to take in account commu-
nication cost (assuming that the communication range of nodes is at least twice the
monitoring range).

In this section we adopt a model where each sensor can be in one of the following
four states: monitoring, relaying, linking to the base station, and idle. Each state
has a different energy consumption per unit of time, which is respectively Cmonitor,
Crelay, Clink, and 0. In practice, Crelay ≤ Cmonitor ≤ Clink, as the sensors necessarily
relay their own data, and linking to the satellite uses the most energy.

While in monitoring schedule we need to specify only which nodes are active and
which are inactive, here we also need to specify relaying nodes as well as nodes linked
to the base. Formally, an assignment triple Q = (M, R, L) consists of the following
three sets of sensors: monitoring nodes M = M(Q), relaying nodes R = R(Q) and
nodes linked to the base L = L(Q). A triple is feasible if the set M is a (partial)
set cover, and each node in M is either belong to L (i.e., linked to the base) or is
connected in the communication graph to at least one node in L via nodes in R (i.e.,
relaying nodes).

In this context, SNLP becomes the following packing linear program with expo-
nentially many variables t(Q) denoting the time stretch of a feasible assignment triple
Q:

Maximize :
∑

Q

t(Q)

Subject to Cmonitor

∑

Q | i∈M(Q)

t(Q)+Crelay

∑

Q | i∈R(Q)

t(Q)+Clink

∑

Q | i∈L(Q)

t(Q) ≤ bi
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where Q = (M(Q), R(Q), L(Q)) are feasible assignment triples and bi is the energy
supply of node i.

In order to apply the Garg-Könemann algorithm, we need to (approximately)
solve the dual problem formulated as follows:

Weighted Linked Coverage Problem. Given arbitrary weights yi, find the feasible
assignment triple Q = (M,R, L) which minimizes Cmonitor

∑
i∈M yi+Crelay

∑
i∈R yi+

Clink

∑
i∈L yi.

Below we give an approximation algorithm for Weighted Linked Coverage when
M is required to be a partial cover. A minor adaptation of the algorithm can be used
for the case when M is required to be a complete cover, having approximation ratio
O(log n).

In the first stage, the algorithm computes an approximate partial cover M . Using
the results from the Subsection 3.1 we deduce that Cmonitor

∑
i∈M yi is within a

constant c1 of the optimum solution for full coverage. In the following, we construct
an instance G = (V, E, c, M ′) of the classical Steiner tree problem which asks for
minimum cost tree in the graph G = (V, E, c) which spans all given terminals from M ′.
The set of vertices V coincides with the set of sensors plus one node s corresponding
to the base. The subset M ′ of given terminals is defined as M ′ = M∪{s}. We connect
each sensor i and the base s with an edge of cost yiClink. We also connect each pair
of sensors i and j which are able to communicate in one hop, the corresponding edge
has cost Crelay(yi+yj). An arbitrary constant-factor approximation algorithm for the
Steiner Tree problem (see for example [6]) can be used for obtaining an approximate
solution T of this Steiner Tree instance. Then the feasible assignment triple Q consists
of M , the set of relay nodes R coincides with the set of Steiner nodes in the tree T ,
and, finally, the set L consists of nodes in T adjacent to the base node s.

4. Distributed Algorithms for Lifetime Maximization. Distributed algo-
rithms for SNLP have been previously considered in [9]. It has been shown that the
sensor network lifetime can be substantially increased by using smart self-organizing
monitoring schedules. Our approach below has the following advantages: (1) the su-
perior monitored area representation, (2) dynamic accounting for energy supply of
each sensor, (3) minimization of the set of active sensors.

We further assume that each sensor s can communicate with all sensors sharing
faces with s, otherwise, we can, e.g., increase for this purpose communication range.
The data structure from Section 2 can be easily built in the distributed manner as
follows: (1) each sensor broadcast to its neighbors its id and geographical position,
(2) each sensor determines all the faces in its monitored area and associate with each
face the id’s of all sensors covering this face.

As pointed in [9], there are two main questions which should be answered by any
self-organizing monitoring scheduling: (1) What are the rules for each node to decide
whether turn itself on or off? and (2) When should nodes make such decision?

We first describe the states of each node and transition rules. In the proposed
generic distributed algorithm, each sensor at any moment is in one of the following
three states: active, i.e., the sensor monitors its monitoring region; idle, i.e., the sensor
listens to other sensors, but does not monitor its region; and intermediate vulnerable
state, i.e., the sensor monitors its region but should as soon as possible change its
state to either active or idle. Each sensor knows in which state all its neighbors –
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any state transition is immediately broadcasted to the neighbors together with the
current energy (battery) supply.

The state transitions are described by the following rules:
A. When a sensor is in the vulnerable state, then it should change its state into

active state if there is a face which is not covered by any other active or
vulnerable sensor and

B. When a sensor is in the vulnerable state, then it should change its state into
idle state if all its faces are covered by one of two types of sensors: active or
vulnerable sensors with a larger energy supply.

C-D. When a sensor is in an active or idle state, then it should go into the vulnerable
state if any neighboring sensor becomes vulnerable.

As soon as any sensor becomes vulnerable, the vulnerable state propagates over
the entire network and eventually each sensor settles down in either idle or active
state. We call this process a global reshuffle.

An extended state diagram corresponding to the proposed distributed algorithm
is illustrated on Figure 4.1. Two extra states correspond to the case when a single
alive sensor can monitor a region (permanent state) and when a sensor exhaust its
energy supply (terminated state). Once the sensor node becomes active, it will be per-
manently active till it exhausts all its batteries. When a sensor node near-completely
exhausts its energy supply, it will broadcast about that to its neighbors. A minimal
subset of idle sensors will become active in order to cover the faces which will be soon
abandoned by the exhausted sensor. For the purpose of comparison of our protocol
with the protocol from [9], we have implemented the protocol without any reshuffle.

Now we will show that the proposed distributed algorithm is deadlock-free and
needs only constant number (per sensor) of broadcasts to the neighbors.

Lemma 4.1. The distributed algorithm is deadlock-free, i.e., among vulnerable
sensors there is always one that either should become active or idle.

Proof. Toward contradiction, assume that each vulnerable sensor covers at least
one face non-covered by any active/permanent sensor and does not have an individual
face, i.e. a face which is not covered by any other vulnerable sensor. Then there is
always a vulnerable sensor which is not a champion (has a largest energy supply) for
any of its faces, i.e., a sensor eligible for transition into the idle state. Indeed, the
sensor with the globally largest energy supply among all vulnerable sensors is such a
sensor.

Theorem 4.2. Each global reshuffle needs 2 broadcasts (to the neighbors) from
each sensor and the resulted set of all active sensors form a minimal sensor cover.

Proof. Assume that each sensor knows the coordinates of all its neighbors and,
therefore, all the faces. For each reshuffle there is one broadcast informing neighbors
that a sensor goes into vulnerable state and also announcing the available energy
supply. The second broadcast inform the neighbors that a sensor change it state to
one of 4 non-vulnerable states. The resulted set of active/permanent sensors covers all
faces since a sensor cannot go to idle state if it has individual face. Finally, the resulted
set of active/permannet sensors is minimal since any active sensor has individual face
which is not covered by any other active/permannet sensor.

Now all node states and transition rules are described and we should decide when
the global reshuffle should happened. Definitely, a near-complete exhaustion of energy
supply should be one of such triggering events. A more accurate schedule needs more
frequent reshuffles implying increase in communication cost. We suggest to initiate a
reshuffle when the energy supply of a sensor drops by a certain predefined threshold
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Fig. 4.1. State diagram of the proposed distributed algorithm for lifetime maximization. A
single sensor among vulnerable and active sensors covering a certain face uses transition A, a sensor
which does not have maximum energy supply among sensors covering any face uses transition B,
transitions C and D are used by neighbors of vulnerable sensors, transition E is a variation of
transition A when a sensor is the only alive sensor covering certain face, transitions F and G are
used by sensors which exhausted their energy supply.

value H. The smaller reshuffle-triggering threshold H, the more frequent reshuffles
are performed which will result in a more balanced schedule.

If communicating needs much more energy than sensing, we suggest optional local
reshuffles with vulnerable state propagation limited to a certain neighborhood (e.g.,
3-neighborhood) of the sensor which triggers the reshuffle.

5. Experimental Study. All algorithms were implemented in C++. The
heuristics were compiled using gpp with -O2 optimization, and run on a Sun worksta-
tion Ultra-60. The experiments were run on randomly generated testcases.

For experiments we have taken sensor area as 1000m×1000m, monitored area as
800m×800m. We experimented with 100, 200, 300, 400, 500, and 1000 sensor nodes,
sensing range of 100m and 150m, coverage area of 100% (q=1) and 90%(q=0.9).
The position of sensor node is randomly distributed in sensor area. We ran our
experiments with uniformly assigned batteries (10) to each sensor node and randomly
assigned batteries between 10 to 20 to each sensor node. We have taken value of ε
equals to 0.1, which decides the quality of Garg-Könemann solution. We primarily
report lifetime of the network for Garg-Könemann, Tight, CPLEX and distributed
algorithm. We also report the trade-off between communication overhead and lifetime
for distributed algorithm with different reshuffle-triggering threshold.

After finding sensor covers from Garg-Könemann solution, we can find the optimal
schedule by assigning the best times for each sensor cover by CPLEX, with constraint
to satisfy battery requirement of Sensor Nodes and to maximize the total life time.
Garg-Könemann’s solution does not guarantee that there is a tight energy constraint,
i.e., there is a sensor which completely exhausts its energy supply. The ”Tight”
solution is obtained from Garg-Könemann solution by finding the tightest energy
constraint and making it tight by scaling up the timespans for each sensor cover.

Table 5.1 shows test cases and average runtime to find different solution for dif-
ferent number of nodes with sensing range of 100m and 150m. The largest scenario
we have considered is with 1000 nodes and 100m sensing range. The number of faces
increases as the number of nodes and/or the sensing range increases. The runtime for
Tight algorithm is higher than Garg-Könemann, and CPLEX runtime is higher than
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Test Case Parameter Interval Maximum
No. of Nodes 100-500 1000
Sensor Range 100-150 100
No. of Faces 861-43160 81845
Runtimes
Find Faces 8.96s - 886s 1840s

Garg-Könemann 3.55s - 2487.94s 3605.45s
Tight 5.06s - 2589.94s 3758.17s

CPLEX 9.75s - 3462.32s 7887.53s
Table 5.1

Number of faces and runtime to find faces, Garg-Könemann solution, Tight solution and
CPLEX solution for different number of nodes with different sensing range.

# of sensors Reshuffle-Triggering Threshold Value
1 2 3 5 10

100 31.33 30.33 29.66 28.66 26.00
3503 1732 1194 735 416

200 54.00 53.33 52.66 53.33 52.33
11220 5591 3799 2396 1377

300 120.00 116.00 112.00 111.33 105.33
35981 17431 11582 7888 4991

400 169.66 167.33 164.66 159.0 155.0
66765 33457 22551 14381.7 9393

500 211.43 210.33 206.33 199.66 182.33
93650 52114 35285 22578.0 13040

Table 5.2
Lifetime and communication overhead for the distributed algorithm with sensing range 150m,

and randomly assigned batteries between 10 and 20. Bold data are based on a single instance.

for the Tight.
Figures 6.1, 6.2 and 6.3 show the life time of network for CPLEX, Tight, Garg-

Könemann and distributed algorithms for different number of nodes. Fig. 6.1 shows
the results for, sensor range of 100m, uniformly assigned batteries (10) and 100%
coverage of monitored area (q=1). Fig. 6.2 shows the results for sensor range of 150m,
randomly assigned batteries between 10 and 20, and 100% coverage of monitored area.
Fig. 6.3 shows the results for sensor range of 100m, uniformly assigned batteries 10,
and 90% coverage of monitored area. The Tight solution is always better than Garg-
Könemann’s, and CPLEX solution is always better than Tight solution. When we
should cover the entire monitored region (q=1) (Fig. 6.1, 6.2), distributed solution
is very near to centralized solution (GK and REAL), but when constraint is to cover
only 90% of monitored area (Fig. 6.3), distributed solution is significantly worse than
that of centralized solution.

Table 5.2 shows trade-off between life time and communication overhead for dis-
tributed algorithm with different reshuffle-triggering threshold. Sensing range of 100m
is used for this experiment. Increasing the reshuffle-triggering threshold reduces the
communication overhead but decreases the lifetime.

6. Conclusions. In this paper, we have formulated Maximum Sensor Network
Life Problem and suggested centralized and distributed algorithms for solving this
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Fig. 6.1. Lifetime for CPLEX, Tight, GK and the distributed algorithm with reshuffle threshold
1 and Permanent. The sensing range is 100m, battery supply 10, and q=1.
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Fig. 6.2. Lifetime for CPLEX, Tight, GK and the distributed algorithm with reshuffle threshold
1 and Permanent. The sensing range is 150m, battery supply between 10 and 20, and q=1.

problem. We have explored the case when the monitored area is required to partially
covered. We experimentally have checked the quality of our distributed algorithms
comparing them with the centralized solution. We are going to simulate our algo-
rithms within the LEACH protocol.
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