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Abstract. The Steiner tree problem asks for a minimum cost tree spanning a
given set of terminalsS ⊆ V in a weighted graphG = (V, E, c), c : E → R+.
In this paper we consider a generalization of the Steiner tree problem, so called
Polymatroid Steiner Problem, in which a polymatroidP = P (V ) is defined onV
and the Steiner tree is required to span at least one base ofP (in particular, there
may be a single baseS ⊆ V ). This formulation is motivated by the following
application in sensor networks – given a set of sensorsS = {s1, . . . , sk}, each
sensorsi can choose to monitor only a single target from a subset of targetsXi,
find minimum cost tree spanning a set of sensors capable of monitoring the set
of all targetsX = X1 ∪ . . .∪Xk. The Polymatroid Steiner Problem generalizes
many known Steiner tree problem formulations including the group and covering
Steiner tree problems. We show that this problem can be solved with the polylog-
arithmic approximation ratio by a generalization of the combinatorial algorithm
of Chekuri et. al. [7].
We also define the Polymatroid directed Steiner problem which asks for a min-
imum cost arborescence connecting a given root to a base of a polymatroidP
defined on the terminal setS. We show that this problem can be approximately
solved by algorithms generalizing methods of Charikar et al [6].
Keywords: wireless sensor networks, Steiner trees, polymatroid, approximation
algorithms

1 Introduction

This paper is motivated by the following lifetime problem in energy-constrained sensor
networks. LetS be a set of (stationary) sensors which can be employed for monitoring
a setX of (possibly moving) targets. Each sensorsi ∈ S can monitor at most one target
chosen fromXi ⊆ X, a subset of targets visible tosi. All targets are supposed to be
simultaneously monitored by activated sensors which should continuously transmit col-
lected data to the base possibly using multi-hop connections through other sensors, i.e.,
the activated sensors and the base should be connected with a Steiner tree. Aschedule
is a set of pairs(T, t), whereT a Steiner tree connecting sensors capable of monitoring
all targets andt is time during whichT is used. A simple energy model assumes that
all sensors transmit with a single unit power and the Steiner tree is derived from the
unit-disk graph. Then the energy consumption of each sensor is proportional to the time
t during which it is used.

? A preliminary version of this paper appeared in ISAAC 2004
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Target-monitoring sensor network lifetime problem. Find a schedule of the maxi-
mum total time span such that each sensorsi ∈ S does not exceed given initial energy
supplybi.

Previously, several versions of the communication ad-hoc network lifetime prob-
lems as well as sensor network lifetime problem have been explored in [4] and [3],
respectively. A provably good approach to the lifetime problems consists of the follow-
ing steps:

(i) formulating the lifetime problem as a packing linear program (with exponentially
many variables - the feasible trees),

(ii) approximately solving the feasibility problem of the dual covering linear program
linear program,

(iii) applying the primal-dual algorithm [11] for solving the primal packing linear pro-
gram with almost the same approximation factor as for the feasibility problem of
the dual covering linear program.

For details, we refer to [4]. Therefore, our focus here is on the following problem
which solves the feasibility problem of the dual to the target-monitoring sensor network
lifetime problem by putting appropriate costs on the edges of the graph (as in [3]).

Target-monitoring sensor covering problem.Find minimum cost Steiner tree span-
ning the base and a set of sensors capable of simultaneous monitoring of all targets.

Consider a bipartite graph with vertex setB = S∪X and edges connecting sensors
with visible targets. Then any set of sensors capable of simultaneous monitoring of
all targets is a set ofS-endpoints of a matching completely coveringX. Therefore,
all minimal feasible sets of sensors form a set of bases of a matroid or, in general,
a polymatroid. The following problem generalizes the Steiner tree problem in a very
natural way.

Polymatroid Steiner problem (PSP).Given a graphG = (V, E, c) with costs on
edges and a polymatroidP = P (V ) on vertices ofG, find minimum cost treeT within
G spanning a base ofP .

Equivalently, letr : 2V → {0, 1, . . .} be a function on the set of vertices ofG
(called therank function of the polymatroidP (V )) satisfying

– r(A ∩B) + r(A ∪B) ≤ r(A) + r(B), for all A,B ⊆ V (submodularity)
– r(∅) = 0
– if A ⊆ B thenr(A) ≤ r(B) (non-decreasing).

Then PSP asks for a minimum cost treeT spanning a maximum rank subset ofV .
PSP generalizes various Steiner tree problem formulations. For example, setting the

rank functionr(A) = |A ∩ S|, A ⊆ V whereS ⊆ V is a given set of terminals,
we obtain the classicalSteiner tree problemwhich asks for a minimum cost tree span-
ning terminalsS. Thegroup Steiner tree problemsearches a tree spanning at least one
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vertex from each of given groups (subsets of vertices)V1, . . . , Vk ⊆ V – it is also an
instance of PSP with the rank functionr(A) = |{Vi|A∩Vi 6= ∅}|. Thecovering Steiner
tree problem(see [17, 16, 8]) generalizes the group Steiner tree problem by requiring
at leastki vertices from a groupVi to be spanned – the corresponding rank function is
r(A) =

∑k
i=1 min{ki, |A ∩ Vi|}. Finally, the target-monitoring sensor covering prob-

lem is reduced to PSP by adding a single auxiliary target matching the base and setting
r(A) equal to the maximum number of targets thatA can match.

The complexity of PSP can be derived from the recent papers [13, 14]. Halperin
and Krauthgamer [14] showed that for every fixedε > 0, Group Steiner Tree problem
admits nolog2−ε n-approximation, unless NP has quasi-polynomial Las Vegas algo-
rithms.

When applying primal-dual algorithm of [11] it is necessary to solve weighted
target-monitoring sensor covering problem, i.e., the version in which each sensor has a
certain weight and the cost of the solution is the sum of weights of chosen sensors rather
than just number of chosen sensors. PSP does not seem to generalize the node-weighted
version, but it can be reduced to the following:

Polymatroid directed Steiner problem (PDSP).Given a directed graphG = (V, E, c)
with costs on edges and a polymatroidP = P (V ) on vertices ofG. Find minimum cost
arborescenceT within G connecting a given roots ∈ V to all vertices of at least one
base ofP .

The PDSP generalizes the Directed Steiner Tree Problem which can be obtained
from PDSP by setting rank of a subset to its size. The best known approximation algo-
rithm, due to Charikar et. al. [6], has running timeO(nik2i) and approximation ratio
i2(i−1)k1/i for any fixed integeri > 1. Thus, in polynomial time, their approximation
ratio isO(kε), while in quasipolynomial time (O(nc lg n), for constantc ) they achieve
a polylogarithmic approximation ratio ofO(log 3k).

The simple energy model for the target-monitoring sensor network lifetime problem
can be enhanced by allowing sensors to choose the power of transmission. Then the
energy consumption of each sensorsi is proportional to the cost of the hop connecting
si to the next sensor on the path to the base as well as timet during whichT is used. This
model straightforwardly reduces the target-monitoring sensor network lifetime problem
to PDSP. It turns out (as in [4]) that that the version of PDSP used for solving the
feasibility problem of the dual of the lifetime program is equivalent to PDSP – the cost
of each edgee should be multiplied by the weight of the beginning ofe.

In the next section we show how to adapt the algorithm of [6] to solve PDSP with
almost the same approximation factor. The section 3 is devoted to generalization of the
algorithm of [7] to solve PSP with polylogarithmic approximation ratio.

2 The Polymatroid Directed Steiner Tree Problem

In this section we establish performance bounds of the generalization of the algorithm
of Charikar, Chekuri, Cheung, Dai, Goel, Guha, and Li [6] to the Polymatroid Directed
Steiner Tree problem.
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First we introduce a version of Polymatroid Directed Steiner Trees which allows the
presentation of the algorithm. Without loss of generality, we assume that the directed
graph is complete andc(u, v) equals the minimum cost path fromu to v. All the edges
and trees in this section are directed. Given a set of nodesX ⊆ V , we denote byrX

the rank function withX contracted; that isrX(Z) = r(X ∪ Z) − r(X). The rank
function of a polymatroid is submodular implying that ifX ⊆ Y ⊆ V , then for any
Z ⊆ V , we haverX(Z) ≥ rY (Z). Let PDST (k, v,X) denote the problem of finding
the minimum-cost treeT rooted atv with rX(V (T )) ≥ k, whereV (T ) is the vertex set
of the treeT . Note that the new version is in fact equivalent with the standard version
asrX is another submodular rank function. One can think ofrX as the residual rank
function.

We ensure that all the nodesv with r(v) > 0 do not have outgoing edges by ”du-
plicating” v as follows: if v has outgoing edges and positive rank, we introduce an-
other nodev′ with r(v′) = 0, replace every edge incident tov by a corresponding
edge incident tov′, and introduce the edge(v′, v) of cost 0. This allows us to write
r(T ) := r(V (T )) = r(L(T )) for any directed treeT with vertex setV (T ) and leafs
L(T ) assumingT ′s root has rank0 (as will be the case for all our trees: even the original
root is duplicated if it has positive rank).

Let c(T ) be the cost of the directed treeT (the sum of the costs of the edges of
T ). Then we define thedensityof the treeT with respect to vertex setX asdX(T ) =
c(T )/rX(T ).

An l-level tree is a tree where no leaf is more thanl edges away from the root.
Robins and Zelikovsky [15] give:

Lemma 1. For all l ≥ 1 and any treeT ⊆ G, there exists anl-level treeT ′ ⊆ G with
L(T ′) = L(T ) andc(T ′) ≤ l · |L(T )| 1l c(T ).

An earlier claim from [19] thatc(T ′) ≤ |L(T )| 1l , used in [6], has a gap in the proof.

2.1 The Algorithm

We describe the Charikar et. al. algorithm [6], adapted for our more general problem.
The recursive algorithmAi(k, v, X) appears in Figure 1. The parameters passed down
are the desired rankk, the desired rootv, the maximum heighti, and a pointer to a
vectorX describing the vertices already in the tree. The algorithm returns a pointer to
an i-level treeT = Ti(k, v, X) rooted atv satisfyingrX(T ) ≥ k, or ∅ if no such tree
exists. The base case isi = 1 (as opposed toi = 2 in the original version), as it is NP-
Hard to compute a minimum density bunch (a tree with only one vertex with outdegree
larger than one) in the polymatroid setting. Wheni > 1, the recursive algorithm copies
the vectorX and uses the copy during its execution, while wheni = 1 the vectorX is
not modified.

Note the following invariant of the algorithm:rX(Xj) = k−kj . Indeed,rX(X1) =
r(X)−r(X) = 0 = k−k1, andrX(Xj+1) = r(Xj+1)−r(X) = r(Xj+1)−r(Xj)+
r(Xj)− r(X) = rXj (TBEST (j)) + rX(Xj) = (kj − kj+1) + (k − kj) = k − kj+1.
In particular, we haverX(Ti(k, v, X)) ≥ k, so the returned solution is valid.
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Input: k, v, X
Output: An i-level treeT = Ti(k, v, X) rooted atv with rX(T ) ≥ k

0. Let L(v) be the vertices reachable from v. IfrX(L(v)) < k, return∅.
1. If i = 0, return the tree with no edges and vertex set{v} if rX(v) ≥ k, or ∅ if rX(v) < k.
2. j ← 1; kj ← k; Xj ← X
3. while kj > 0

3.1 TBEST (j) ← ∅
3.2 for each vertexu ∈ V and eachk′, 1 ≤ k′ ≤ kj

3.2.1 T ′ ← Ai−1(k
′, u, Xj) ∪ {(v, u)}

3.2.2 if dXj (TBEST (j)) > dXj (T
′) thenTBEST (j) = T ′

3.3 kj+1 ← kj − rXj (TBest(j)); Xj+1 ← Xj ∪ L(TBEST (j)); j ← j + 1

4. Return∪j−1
q=1TBEST (q)

Fig. 1. Algorithm Ai(k, v, X).

LetT (i)
OPT (k, v,X) be an optimumi-level tree solvingPDST (k, v, X). The lemma

below is the counterpart of Lemma 3 of [6], and is proved by the same method. It is
interesting to see where submodularity plays a crucial role in the proof.

Lemma 2. Far all i ≥ 1, each treeTBEST (j) chosen by algorithmAi(k, v, X) satis-
fies

dXj (TBEST (j)) ≤ i · dXj (T
(i)
OPT (kj , v, Xj))

.

Proof. The proof is by induction oni, with the base casei = 0 being immediate.
Assume the statement of the lemma holds for allk, v, X, andi−1. T (i)

OPT (kj , v, Xj)
consists of several edges(v, up) and subtreesTp rooted atup, such thatrXj (∪pTp) ≥
kj . Submodularity implies that

∑
p rXj (Tp) ≥ rXj (∪pTp), and therefore by an averag-

ing argument and renumbering, we have

c(v, u1) + c(T1)
rXj (T1)

≤ dXj (T
(i)
OPT (kj , v,Xj)) (1)

Consider the execution of the algorithmAi−1(kj , u1, Xj). TreesR1, R2, . . . are
selected in this order, and letQp = ∪p

q=1Rq. Now, whenAi−1(k′, u1, Xj) is called for
k′ = rXj (Qp), thenQp ∪ {(v, u1)} is returned and is a candidate forTBEST (j). Our
goal is to wisely choose suchp and show that is has an appropriate density

c(v, u1) + c(Qp)
rXj (Qp)

≤ i
c(v, u1) + c(T1)

rXj (T1)
(2)

which together with Equation 1 would imply the theorem. We pickp to be the smallest
integer such thatrXj (Qp) ≥ rXj (T1)/i, which implies

c(v, u1)
rXj (Qp)

≤ i
c(v, u1)
rXj (T1)

(3)
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It remains to prove that
c(Qp)

rXj
(Qp)

≤ i
c(T1)

rXj
(T1)

(4)

as this equation together with Equation 3 implies Equation 2.
By the induction hypothesis, we have for allq ≤ p

c(Rq)
rQq−1∪Xj

(Rq)
≤ (i− 1)

c(T1)
rQq−1∪Xj

(T1)
(5)

sinceRq is TBEST (q) when executingAi−1(rXj
(T1), u1, Xj). We pickedp such that

rXj
(Qp−1) < 1

i rXj
(T1), and thereforerXj∪Qp−1(T1) = r(Xj ∪Qp−1∪T1)− r(Xj ∪

Qp−1) ≥ r(Xj ∪ T1)− r(Xj ∪Qp−1) = (r(Xj ∪ T1)− r(Xj))− (r(Xj ∪Qp−1)−
r(Xj)) = rXj (T1)− rXj (Qp−1) ≥ i−1

i rXj (T1).
Submodularity of the rank function implies that for allq ≤ p,

rXj∪Qq−1(T1) ≥ rXj∪Qp−1(T1) ≥ i− 1
i

rXj (T1) (6)

and, therefore,

p∑
q=1

c(Rq) ≤
p∑

q=1

rQq−1∪Xj (Rq)(i− 1)
c(T1)

rQq−1∪Xj (T1)

≤ i
c(T1)

rXj (T1)

p∑
q=1

rQq−1∪Xj (Rq) (7)

But

rXj (Qp) = r(Xj ∪Qp)− r(Xj)
= r(Xj ∪Qp)− r(Xj ∪Qp−1) + r(Xj ∪Qp−1)− . . .− r(Xj ∪Q0)

=
p∑

q=1

rXj∪Qq−1(Rq)

Thus Equation 7 implies Equation 4, finishing the proof of Lemma 2.

Theorem 1. For everyi > 1, k ≥ 0, v ∈ V andX ⊆ V , the algorithmAi(k, v, X)
provides ani3k1/i approximation toPDST (k, v,X) in time O(ni+1k2i+2q(n)),
whereq(n) is the time an oracle returnsrX(v) for an arbitraryX ⊆ V .

Proof. The proof follows closely [6]. Note thatTOPT (k, v,X) is a valid solution for
PDST (kj , v,Xj) since

rXj (TOPT (k, v, X)) = r(Xj ∪ TOPT (k, v, X))− r(Xj)
≥ r(X ∪ TOPT (k, v,X))− r(X)− (r(Xj)− r(X))
≥ k − rX(Xj) = k − (k − kj) = kj
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where we used the invariant of the procedureAi(k, v, X). Therefore, by Lemma 1,
we havec(T (i)

OPT (kj , v,Xj)) ≤ ik
1/i
j c(TOPT (kj , v,Xj)) and c(TOPT (kj , v, Xj) ≤

c(TOPT (k, v, X)), and by Lemma 2, we have

dXj (TBEST (j)) ≤ i · dXj (T
(i)
OPT (kj , v, Xj))

≤ i · i · k1/i
j · c(TOPT (k, v,X))

kj

So we know that

c(TBEST (j))
rXj

(TBEST (j))
≤ i2k

1/i
j

c(TOPT (k, v, X)
kj

SincerXj
(TBEST (j)) = kj+1 − kj , we obtain

c(TBEST (j)) ≤ i2c(TOPT (k, v, X)) (kj+1 − kj)
k

1/i
j

kj

Summing overj (cf. Lemma 1 of [6]) and usingk1 = k andkj+1 < 0, we obtain

c(Ti(k, v, X)) ≤ i2c(TOPT (k, v, X))
∑

j

(kj+1 − kj)
k

1/i
j

kj

≤ i2c(TOPT (k, v, X)
∫ k

0

x1−1/idx

= i3k1/ic(TOPT (k, v,X))

The procedureAi invokesAi−1 at mostnk2 times, and the bound on the running time
follows.

If the input is a star (directed tree with one level), the algorithm becomes the Greedy
algorithm for the Submodular Set Covering problem [18].

Corollary 1. The approximation ratio of the Greedy Algorithm applied to the Submod-
ular Set Covering problem is at most1 + ln k.

Wolsey [18] investigated this problem and has shown that the Greedy algorithm has in
fact a slightly better approximation ratioHq, whereq = maxv | r(v)>0 r(v).

3 The Polymatroid Steiner Tree Problem

In this section we give the solution of the (undirected) Polymatroid Steiner tree Prob-
lem. The first choice for solving this problem is to generalize the linear-program based
algorithms of Garg, Konjevod, and Ravi [10], Konjevod, Ravi, and Srinivasan [16], and
Zosin and Khuller [20]. The corresponding linear programs have polynomial-time sep-
aration oracle. Unfortunately, it is truly cumbersome to apply rounding to the linear
programs of PSP. Instead, our algorithm for PSP relies on the combinatorial approxi-
mation algorithm for Group Steiner Tree of Chekuri, Even, and Korsatz [7].
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The Chekuri et. al. algorithm is obtained by modifying the Charikar et. al. algorithm
[6], and is applied after the graph metric has been replaced by a tree metric [1, 2, 5, 9],
losing a factor ofO(log n) in approximation ratio. Thus we also assume the input is a
rooted tree.

Chekuri et. al. [7] preprocess the tree to decrease the depth and degree. This prepro-
cessing approximately preserves the cost of any solution, so we can apply it to Polyma-
troid Steiner Tree as well. Precisely, every set of leafsL ⊆ L(T ) induces a subtreeTl

consisting of the union of all paths from the root to the leafs inL. If A andB are two
trees with the same root and the same set of leafs, the treeB is aα-faithful representa-
tion of the treeA if

∀L ⊆ L(A) : c(AL) ≤ c(BL) ≤ αc(AL).

The preprocessing is stated in the following theorem of Chekuri et. al. [7]:

Theorem 2. Given a treeT with n leafs and integer parametersα andβ > 2, there
is a linear time algorithm to transformT into a O(α)-faithful tree T ′ with height
O(logα n + logβ/2 n) and maximum degreeO(β).

Thus, by losing a factor ofO(α log n) (log n comes from embedding the original
metric in a tree metric), we can assume that the instance for Polymatroid Steiner Tree
is a tree with heightO(logα n + logβ/2 n) and maximum degreeO(β).

For the reader familiar with the Chekuri et. al. paper [7], below you’ll find the
correspondence between the notions used by this previous paper and our notions. Their
theorems and proofs “translate” to PST, some of them directly.

– w(T ) —- c(T )
– z′ —- k
– r′ —- v
– Tr′ (excluding the leafs already reached) —-X (the leafs already reached)
– Taug —- TBEST (j)
– zres —- kj

– γ(T ) —- dX(T )
– cover —- ∪j

i=1TBEST (j)
– m(T ) —- rXj (T )
– m(cover) —- rXXj

– remove groups covered byTaug from T res —- Xj+1 ← Xj ∪ L(TBEST (j))
– coverh —- jh

– Group-Steiner∗(T res
r′ , zres) —- TOPT (kj , v, Xj)

The Modified-Group-Steiner algorithm of Chekuri et. al. [7], as adapted for Polyma-
troid Steiner Tree for trees is described in Figure 2. The recursive procedureM(k, v, X)
uses an integer parameterλ as the basis for the geometric search. We useTv to denote
the subtree rooted atv andCv the set of children ofv. h(T ′) denotes the height of a
subtreeT ′.

In the practical implementations, one can continue the while loop from Step 3 in-
stead of stopping in Step 3.4, returning the lowest density tree from∪j−1

q=1TBEST (q)
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Input: k, v, X
Output: A treeT = T (k, v, X) rooted atv with rX(T ) ≥ k, or ∅ if no such tree exists

0. If rX(L(Tv)) < k, return∅.
1. If v is a leaf, return the tree with no edges and vertex set{v}
2. j ← 1; kj ← k; Xj ← X
3. while kj > 0

3.1 TBEST (j) ← ∅
3.2 for each vertexu ∈ Cv and eachk′ power of(1 + λ) in

h
kj

deg(v)(1+1/λ)(1+λ)
, kj

i

3.2.1 T ′ ← M(k′, u, Xj) ∪ {(v, u)}
3.2.2 if dXj (TBEST (j)) > dXj (T

′) thenTBEST (j) = T ′

3.3 kj+1 ← kj − rXj (TBest(j)); Xj+1 ← Xj ∪ L(TBEST (j)); j ← j + 1

3.4 If rX(Xj) ≥ k/(h(Tv) + 1), then return∪j−1
q=1TBEST (q)

Fig. 2. Algorithm M(k, v, X).

and ∪jh−1
q=1 TBEST (q), where jh is the value ofj at the first momentrX(Xj) ≥

k/(h(Tv) + 1).
The proof of the following lemma is exactly as the proof of Lemma 3.3 of [7],

except that in the base case (leafs) an oracle call must be made, which we assume takes
time q(n).

Lemma 3. Let∆ be the maximum degree of the tree andb = ∆(1 + 1/λ)(1 + λ). The
running time ofM(k, v, X) is O((n + q(n))αh(Tv)) whereα = b · h(Tv) · log k ·∆ ·
log1+λ b.

The main lemma needed for establishing the approximation ratio is a the equivalent
of Lemma 3.4 of [7].

Lemma 4.

dXj (TBEST (j)) ≤ (1 + λ)2h(Tv)h(Tv)dXj (TOPT (kj , v, Xj))

Proof. The proof follows closely [7]. The base case for us requires some extra argu-
ments. It is also interesting to see where the submodularity of the rank function is used.

We useγ∗ = dXj (TOPT (kj , v, Xj)). The proof is by induction onh(Tv), the height
of the subtree rooted atv. Both the base caseh(Tv) = 1 and the general case need the
following argument.

Let u1, u2, . . . , ud be the children ofv in TOPT (kj , v, Xj), andTi, 1 ≤ i ≤ d, be
the subtree ofTOPT (kj , v, Xj) rooted atui. ThusrXj

(∪d
i=1Ti

) ≥ kj . We divide the

set1, 2, . . . d into the setB giving “big” trees: thosei with rXj (Ti) ≥ kj

deg(v)(1+1/λ) ,

and the setS giving “small” trees: thosei with rXj (Ti) <
kj

deg(v)(1+1/λ) . Then
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rXj
(∪i∈STi) ≤

∑
i∈S rXj

(Ti) <
kj

1+1/λ and, therefore,

∑

i∈B

rXj (Ti) ≥ rXj (∪i∈BTi)

≥ kj − d
kj

deg(v)(1 + 1/λ)

≥ kj

1 + λ

By an averaging argument, there is a big tree (which we renumberT1) such that

c(v, u1) + c(T1)
rXj

(T1)
≤

∑
i∈B c(v, ui) + c(Ti)∑

i∈B rXj (Ti)

≤ (1 + λ)
c(TOPT (kj , v, Xj))

kj

= (1 + λ)γ∗ (8)

.
Let z be the power of(1 + λ) such thatz ≤ rXj (T1) < (1 + λ)z and note thatz

is in the range of powers of(1 + λ) considered in Line 3.2 of the algorithm. Therefore
M(z, u1, Xj) is called.

In the base case,u1 is a leaf, and therefore a candidate forTBEST (j) is the treeT ′

with only the edge(v, u1), having densitydXj (T
′) = c(v,u1)

rXj
(T1)

≤ (1 + λ)γ∗. Thus the

base case of induction holds.
In the general case, letR1, R2, . . . , Rp be the trees picked asTBEST during the

execution ofM(z, u1, Xj). LetQq = ∪q
i=0Ri and leth1 = h(Tu1). Induction gives for

i ∈ {1, 2, . . . , p}

c(Ri)
rXj∪Qi−1(Ri)

≤ (1 + λ)2h1h1dXj∪Qi−1(TOPT (z − rXj (Qi−1), u1, Xj ∪Qi−1))

≤ (1 + λ)2h1h1
c(T1)

rXj∪Qi−1(T1)
(9)

where the second inequality follows from the fact thatrXj∪Qi−1(T1) ≥ z− rXj (Qi−1)
(which follows fromrXj (T1) ≥ z and the submodularity ofr), and, therefore,T1 is a
candidate forTOPT (z, u1, Xj ∪Qi−1).

By the return condition of the algorithm,rXj (Qi−1) < 1
h1+1z and, therefore,

rXj∪Qi−1(T1) ≥ rXj (T1)− rXj (Qi−1)

≥ z(1− 1
h + 1

)

=
h

h + 1
z
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Together with Equation 9, we obtain:

c(Ri)
rXj∪Qi−1(Ri)

≤ (1 + λ)2h1(h1 + 1)
c(T1)

z

≤ (1 + λ)2h1+1(h1 + 1)
c(T1)

rXj
(T1)

(10)

sincez was chosen such thatz ≤ rXj
(T1) < (1 + λ)z. Thus,

p∑
q=1

c(Rq) ≤
p∑

q=1

rXj∪Qq−1(Rq)(1 + λ)2h1+1(h1 + 1)
c(T1)

rXj
(T1)

(11)

But

rXj
(Qp) = r(Xj ∪Qp)− r(Xj)

= r(Xj ∪Qp)− r(Xj ∪Qp−1) + r(Xj ∪Qp−1)− . . .− r(Xj ∪Q0)

=
p∑

q=1

rXj∪Qq−1(Rq)

and, therefore,
∑p

q=1 c(Rq)
rXj (Qp)

≤ (1 + λ)2h1+1(h1 + 1)
c(T1)

rXj (T1)
(12)

Note thatp was picked such thatrXj (Qp) ≥ 1
h1+1z ≥ 1

(h1+1)(1+λ)rXj (T1) and there-
fore

c(v, u1)
rXj (Qp)

≤ (h1 + 1)(1 + λ)
c(v, u1)
rXj (T1)

(13)

Combining the previous equation with Equation 12 we obtain

c(u, v) +
∑p

q=1 c(Rq)
rXj (Qp)

≤ (1 + λ)2h1+1(h1 + 1)
c(v, u1) + c(T1)

rXj (T1)
(14)

Using Equation 8 and the fact thath(Tv) ≥ h(Tu1) + 1 = h1 + 1, we obtain

c(u, v) +
∑p

q=1 c(Rq)
rXj (Qp)

≤ (1 + λ)2h(Tv)h(Tv)γ∗ (15)

Thus, the treeT ′ returned byM(z, u1, Xj), which is a candidate forTBEST (j) in the
execution ofM(k, v,X), satisfiesdxj (T

′) ≤ (1 + λ)2h(Tv)h(Tv)γ∗.
Chekuri et. al. [7] choose (and we do the same)α = (log n)ε, β = log n, 1/λ =

log n). Assuming the oracle computation is polynomial time, the proof of Theorem 3.5
and Corollary 3.6 of [7] gives our corresponding statement:

Theorem 3. There is a combinatorial polynomial-timeO( 1
ε · 1

log log n ·(log n)1+ε log k)-
approximation algorithm for Polymatroid Steiner Tree on trees withn nodes, wherek is
the desired rank. For general undirected graphs, there is a combinatorial polynomial-
timeO( 1

ε · 1
log log n · (log n)2+ε log k)-approximation algorithm
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4 Conclusion

Motivated by applications in wireless sensor networks (when sensors can monitor only
a single target), we have introduced the Polymatroid (Directed and Undirected) Steiner
Tree Problems (PSP). These problems asks for a (directed) Steiner tree spanning a sub-
set of terminals of sufficiently large rank. The undirected version of PSP generalizes
all known versions of the Group Steiner Tree Problem and is shown to be solved by a
generalization of the algorithm from [7] with polylogarithmic approximation ratio. The
directed version of PSP is a generalization of the Directed Steiner Tree Problem as well
as Polymatroid Set Cover Problem. We show that this problem can be approximately
solved by methods generalizing [6].
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