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Abstract. Let f : 2N → R+ be a non-decreasing submodular set func-
tion, and let (N, I) be a matroid. We consider the problem maxS∈I f(S).
It is known that the greedy algorithm yields a 1/2-approximation [9] for
this problem. It is also known, via a reduction from the max-k-cover prob-
lem, that there is no (1 − 1/e + ε)-approximation for any constant ε > 0,
unless P = NP [6]. In this paper, we improve the 1/2-approximation to
a (1−1/e)-approximation, when f is a sum of weighted rank functions of
matroids. This class of functions captures a number of interesting prob-
lems including set coverage type problems. Our main tools are the pi-
page rounding technique of Ageev and Sviridenko [1] and a probabilistic
lemma on monotone submodular functions that might be of independent
interest.

We show that the generalized assignment problem (GAP) is a special
case of our problem; although the reduction requires |N | to be expo-
nential in the original problem size, we are able to interpret the recent
(1 − 1/e)-approximation for GAP by Fleischer et al. [10] in our frame-
work. This enables us to obtain a (1 − 1/e)-approximation for variants
of GAP with more complex constraints.

1 Introduction

This paper is motivated by the following optimization problem. We are given
a ground set N of n elements and a non-decreasing submodular set function
f : 2N → R+. The function f is submodular iff f(A)+f(B) ≥ f(A∪B)+f(A∩B)
for all A, B ⊆ N . We restrict attention to non-decreasing (or monotone) sub-
modular set functions, that is f(A) ≥ f(B) for all B ⊆ A and f(∅) = 0. An
independence family I ⊆ 2N is a family of subsets that is downward closed, that
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is, A ∈ I and B ⊆ A implies that B ∈ I. A set A is independent iff A ∈ I.
A family I is a p-independence family for an integer p ≥ 1 if for all A ∈ I
and e ∈ N there exists a set B ⊆ A such that |B| ≤ p and A \ B + e is inde-
pendent. For computational purposes we will assume that f and I are specified
as oracles although in many specific settings of interest, an explicit description
is often available. The problem (or rather class of problems) of interest in this
paper is the following: maxS∈I f(S). We will be mostly interested in the special
case when I consists of the independent sets of a matroid on N . The problem
of maximizing a submodular set function subject to independence constraints
has been studied extensively. A number of interesting and useful combinatorial
optimization problems, including NP-hard problems, are special cases. Some no-
table examples are maximum independent set in a matroid, weighted matroid
intersection, and maximum coverage. Below we describe some candidates for f
and I that arise frequently in applications.

Modular functions: A function f : 2N → R+ is modular iff f(A) + f(B) =
f(A∪B)+f(A∩B). If f is modular then there is a weight function w : N → R+

such that f(A) = w(A) =
∑

e∈A w(e).

Set Systems and Coverage: Given a universe U and n subsets S1, S2, . . . , Sn of
U we obtain several natural submodular functions on the set N = {1, 2, . . . , n}.
First, the coverage function f given by f(A) = |∪i∈ASi| is submodular. This nat-
urally extends to the weighted coverage function; given a non-negative weight
function w : U → R+, f(A) = w(∪i∈ASi). We obtain a multi-cover version
as follows. For x ∈ U let k(x) be an integer. For each x ∈ U and Si let
c(Si, x) = 1 if x ∈ Si and 0 if x /∈ Si. Given A ⊆ N , let c′(A, x), the cov-
erage of x under A, be defined as c′(A, x) = min{k(x),

∑
i∈A c(Si, x)}. The

function f with f(A) =
∑

x∈U c′(A, x) is submodular. A related function de-
fined by f(A) =

∑
x∈U maxi∈A w(Si, x) is also submodular where w(Si, x) is a

non-negative weight for Si covering x.

Weighted rank functions of matroids and their sums: The rank function of a
matroid M = (N, I), rM(A) = max{|S| : S ⊆ A, S ∈ I}, is submodular. Given
w : N → R+, the weighted rank function defined by rM,w(A) = max{w(S) :
S ⊆ A, S ∈ I} is a submodular function. A sum of weighted rank functions is
also submodular. Functions arising in this way form a rich class of submodular
functions. In particular, all the functions on set systems and coverage mentioned
above are captured by this class. However, the class does not include all monotone
submodular functions; one notable exception is multi-cover by multisets.

Matroid Constraint: An independence family of particular interest is one induced
by a matroid M = (N, I). A very simple matroid constraint that is of much
importance in applications [5,14,2,3,10] is the partition matroid; N is partitioned
into � sets N1, N2, . . . , N� with associated integers k1, k2, . . . , k�, and a set A ⊆ N
is independent iff |A ∩ Ni| ≤ ki. In fact even the case of � = 1 (the uniform
matroid) is of interest. Laminar matroids generalize partition matroids. We have
a laminar family of sets on N and each set S in the family has an integer value
kS . A set A ⊆ N is independent iff |A ∩ S| ≤ kS for each S in the family.
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Intersection of Matroids: A natural generalization of the single matroid case is
obtained when we consider intersections of different matroids M1, M2, . . . , Mp

on the same ground set N . That is, I = ∩iIi where Ii is the independence family
of Mi. A simple example is the family of hypergraph matchings in a p-partite
graph (p = 2 is simply the family of matchings in a bipartite graph).
Matchings: Given a general graph G = (V, N) the set of matchings forms a 2-
independent family. Given a hypergraph G = (V, N) such that each edge e ∈ N
is of cardinality at most p, the set of matchings in G induce a p-independent
family. Note that matchings in general graphs are not captured as intersections
of matroids.

The Greedy Algorithm: A simple greedy algorithm is quite natural for this
problem. The algorithm incrementally builds a solution (without backtracking)
starting with the empty set. In each iteration it adds an element that most
improves the current solution (according to f) while maintaining independence of
the solution. The greedy algorithm yields a 1/p-approximation for maximizing a
modular function subject to a p-independence constraint [12,13]. For submodular
functions, the greedy algorithm yields a ratio of 1/(p + 1) [9]. 1 These ratios for
greedy are tight for all p even when the p-independent system is obtained as
an intersection of p matroids. For large but fixed p, the p-dimensional matching
problem is NP-hard to approximate to within an Ω(log p/p) factor [11].

For the problem of maximizing a submodular function subject to a matroid
constraint (special case of p = 1), the greedy algorithm achieves a ratio of 1/2.
When the matroid is the simple uniform matroid (S ⊆ N is independent iff
|S| ≤ k) the greedy algorithm yields a (1−1/e)-approximation [14]. This special
case already captures the maximum coverage problem for which it is shown
in [6] that, unless P = NP , no 1 − 1/e + ε approximation is possible for any
constant ε > 0. This paper is motivated by the following question. Is there a
(1−1/e)-approximation algorithm for maximizing a submodular function subject
to (any given) matroid constraint? We resolve this question for a subclass of
monotone submodular functions, which can be expressed as a sum of weighted
rank functions of matroids. The following is our main result.

Theorem 1. Given a ground set N , let f(S) =
∑m

i=1 gi(S) where g1, . . . , gm :
2N → R+ are weighted rank functions, gi defined by a matroid Mi = (N, Xi)
and weight function wi : N → R+. Given another matroid M = (N, I) and
membership oracles for M1, M2, . . . , Mm and M, there is a polynomial time
(1 − 1/e)-approximation for the problem maxS∈I f(S).

As immediate corollaries we obtain a (1 − 1/e)-approximation for a number
of coverage problems under a matroid constraint. It is known that there exist
submodular monotone functions that cannot be expressed as a sum of weighted
rank functions of matroids (see [16], 44.6e). For such functions, our framework
1 We give a somewhat new proof of this result in the full version of the paper. If only

an α-approximate oracle (α ≤ 1) is available for the function evaluation, the ratio
obtained is α/(p+α). Several old and recent applications of greedy can be explained
using this observation.
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does not seem to apply at this moment. We leave it as an open question whether
a (1 − 1/e)-approximation is possible for all monotone submodular functions.

Our main tools are the the pipage rounding technique of Ageev and Sviri-
denko [1], and the following useful lemma.

Lemma 1. Let f : 2N → R+ be a monotone submodular function and let f∗ :
[0, 1]N → R+ be defined as f∗(y) = minS(f(S) +

∑
i yi(f(S + i) − f(S))). For

y ∈ [0, 1]N , let ŷ denote a random vector in {0, 1}N obtained by independently
setting ŷi = 1 with probability yi and 0 otherwise. Then, E[f(ŷ)] ≥ (1−1/e)f∗(y).

We give a non-trivial application of Theorem 1 to variants of the generalized
assignment problem (GAP). In GAP we are given n bins and m items. Each
item i specifies a size sji and a value (or profit) vji for each bin j. Each bin
has capacity 1 and the goal is to assign a subset of items to bins such that the
bin capacities are not violated and the profit of the assignment is maximized.
Recently Fleischer et al. [10] gave a (1 − 1/e)-approximation for this problem,
improving upon a 1/2-approximation [4]. We rederive the same ratio casting the
problem as a special case of submodular function maximization. Moreover our
techniques allow us to obtain a (1−1/e)-approximation for GAP even under any
given laminar matroid constraint on the bins. A simple and easy to understand
example is GAP with the added constraint that at most k of the n bins be used.

Theorem 2. Let A be an instance of GAP with n bins and m items and let
B be the set of bins. Let M = (B, I) be a laminar matroid on B. There is a
polynomial time (1 − 1/e)-approximation to find a maximum profit assignment
to bins such that the subset S ⊆ B of bins that are used in the assignment satisfy
the constraint S ∈ I.

We note that the approximation ratio for GAP has been improved to 1−1/e+δ1
for a small δ1 > 0 in [8] using the same LP as in [10]. However, the algorithm in
[10] extends to even more general assignment problems in which the sets of items
allowed in a bin are further constrained; for such allocation problems it is shown
in [10] that it is NP-hard to obtain an approximation ratio of 1− 1/e+ ε for any
constant ε > 0. Our framework also extends to this wider class of assignment
problems and hence 1 − 1/e is the best approximation factor one can achieve
with this approach.

1.1 Preliminaries

Given a submodular function f : N → R+ and A ⊂ N , the function fA defined
by fA(S) = f(S ∪A)− f(A) is also submodular. Further, if f is monotone, fA is
also monotone. For i ∈ N , we abbreviate S ∪ {i} by S + i. By fA(i), we denote
the “marginal value” f(A+i)−f(A). Submodularity is equivalent to fA(i) being
non-increasing as a function of A for every fixed i.

Given a matroid M = (N, I), we denote by rM the rank function of M
where rM(A) = max{|S| : S ⊆ A, S ∈ I}. The rank function is monotone and
submodular. We denote by P (M) the polytope associated with M; this is the set
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of all real vectors y ∈ [0, 1]N that satisfy the constraints: y(S) ≤ rM(S) ∀S ⊆
N , where y(S) =

∑
i∈S yi. Edmonds showed that the vertices of P (M) are

precisely the characteristic vectors of the independent sets of M. Further, given
a membership oracle for M (that is given S ⊆ N , the oracle answers if S ∈ I or
not), one can optimize linear functions over P (M).

A base ofM is a setS ∈ I such that rM(S) = rM(N). The base polytope B(M)
of M is given by {y ∈ P (M) | y(N) = rM(N)}. The extreme points of B(M)
are the characteristic vectors of the bases of M. Given the problem maxS∈I f(S),
where M = (N, I) is a matroid, there always exists an optimum solution S∗ where
S∗ is a base of M. Note that this is false if f is not monotone. Thus, for monotone
f , it is equivalent to consider the problem maxS∈B f(S) where B is the set of bases
of M. See [16] for more details on matroids and polyhedral aspects.

2 Pipage Rounding Framework

Ageev and Sviridenko [1] developed an elegant technique for rounding solutions
of linear and non-linear programs that they called “pipage rounding”. Subse-
quently, Srinivasan [17] and Gandhi et al. [15] interpreted some applications of
pipage rounding as a deterministic variant of dependent randomized rounding.
In a typical scenario, randomly rounding a fractional solution of a linear program
does not preserve the feasibility of constraints, in particular equality constraints.
Nevertheless, the techniques of [1,17,15] show that randomized rounding can be
applied in a certain controlled way to guide a solution that respects certain class
of constraints. In particular these techniques were used to round fractional so-
lutions to the generalized assignment problem. In this paper we show that the
rounding framework applies quite naturally to our problem. Further, our analysis
also reveals the important role of submodularity in this context.

We now describe the pipage rounding framework as adapted to our problem. We
follow [1] in spirit although our notation and description is somewhat different and
tailored to our application: given a monotone submodular function f : 2N → R+

and a matroid M = (N, I), we wish to solve maxS∈I f(S). Let yi ∈ {0, 1} be
a variable that indicates whether i is picked in a solution to the problem. Then
maxS∈I f(S) can be written as the following problem: max{f(y) : y ∈ P (M), y ∈
{0, 1}N}. As we observed in Section 1.1, this is equivalent to max{f(y) : y ∈
B(M), y ∈ {0, 1}N} where B(M) is the base polytope of M.

The framework relies on the ability to solve a relaxation of the problem in
polynomial time. To obtain a relaxation we let y ∈ [0, 1]N . This also requires
us to find an extension of f to a function f̃ : [0, 1]N → R+ such that the
problem max{f̃(y) : y ∈ P (M)} can be solved in polynomial time. We require
two properties of the extension: (i) f̃(y) = f(y) for all y ∈ {0, 1}N , and (ii)
monotonicity, that is f̃(y) ≥ f̃(z), for all y ≥ z; y, z ∈ [0, 1]N . Note that the
optimum value of the relaxation is at least the integral optimum solution denoted
by OPT. Given an optimum fractional solution y∗ to the relaxation, our goal is
to round y∗ to an integer solution z such that f(z) ≥ αf̃(y∗) ≥ αOPT. Clearly
the quality of the relaxation depends on the extension function f̃ . The rounding
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framework relies on a potential function F : [0, 1]N → R+, derived from f , that
guides the rounding and at the same time allows one to derive bounds on the
quality of the approximation. The reason to consider f̃ and F separately will
become clear later. Assuming the existence of f̃ and F , we describe the pipage
rounding algorithm for our problem.

Given y ∈ [0, 1]n we say that i is fractional in y if 0 < yi < 1. For y ∈ P (M),
a set A ⊆ N is tight if y(A) = rM(A). The following useful proposition follows
easily from the submodularity of the rank function rM.

Proposition 1. If A and B are two tight sets with respect to y then A ∩ B and
A ∪ B are also tight with respect to y.

The monotonicity of f̃ also implies the following.

Proposition 2. There exists an optimum solution y∗ to max{f̃(y) : y ∈ P (M)}
such that y∗(N) =

∑
i∈N y∗

i = rM(N).

Alternatively we can solve the problem max{f̃(y) : y ∈ B(M)} which would
automatically ensure that y∗(N) = rM(N). We are interested in tight sets that
contain a fractional variable. Observe that a tight set with a fractional variable
has at least two fractional variables. Given a tight set A with fractional variables
i, j, we let yij(ε) be the vector obtained by adding ε to yi and subtracting ε
from yj and leaving the other values unchanged. Let ε+ij(y) = max{ε ≥ 0 |
yij(ε) ∈ P (M)}. Similarly we let ε−ij(y) = min{ε ≤ 0 | yij(ε) ∈ P (M)}. We
let y+

ij = yij(ε+ij) and y−
ij = yij(ε−ij). For a given y and i, j ∈ N , we define a

real-valued function F y
ij : [ε−ij(y), ε+ij(y)] → R+ where F y

ij(δ) = F (yij(δ)).

Algorithm PipageRound(y):
While (y is not integral) do
Let A be a minimal tight set containing fractional i, j ∈ A
If (F (y+

ij) ≥ F (y−
ij)) y ← y+

ij

Else y ← y−
ij

EndWhile
Output y, f(y).

Lemma 2. The pipage rounding algorithm outputs an integral feasible y in
O(n2) iterations. Given an oracle access to F and a membership oracle for M,
the algorithm can be implemented in polynomial time.

Proof (sketch). Using Proposition 2, we assume that N is tight with respect to
y. Since y+

ij and y−
ij both belong to P (M), the algorithm maintains the invariant

that y ∈ P (M) and that N is tight. Thus there is always a tight set with two
fractional variables as long as y is not integral. We observe that the algorithm
does not alter a variable yi once yi ∈ {0, 1}. To simplify the algorithm’s analysis
we can alter it slightly so that the set A that is picked in each iteration is not
only minimal but also of minimum cardinality among such minimal sets. Let
y(h) be the vector y at the beginning of iteration h. We claim that y(h + n − 1)
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has at least one more integral variable than y(h). This will give us the desired
bound of O(n2) on the total number of iterations.

To prove the claim, let Ah be the tight set picked by the algorithm, and
ih, jh ∈ Ah the two fractional variables modified in iteration h. If one of them
becomes integral in y(h+1), we are done. Otherwise we claim that |Ah+1| < |Ah|,
hence after n−1 iterations we are guaranteed to have one more integral variable.
To see that |Ah+1| < |Ah|, assume wlog that y(h + 1) = y(h)+ihjh

; since ih, jh

are still fractional, there is a new tight set B with respect to y(h + 1), which
prevented us from going further. B contains exactly one of ih, jh, otherwise y(B)
does not change in iteration h. From Proposition 1, it follows that B ∩Ah is also
tight, it contains a fractional variable, and |B∩Ah| < |Ah|. In the next iteration,
we can use Ah+1 = B ∩ Ah. To implement an iteration, we need to compute y+

ij ,
y−

ij and the new tight set in polynomial time. These can be done by appealing
to known methods [16]. We defer the details to a full version of the paper.

To obtain a guarantee on the quality of the solution, F needs to satisfy some
properties, as suggested in [1].

– F is an extension of f and F (y) ≥ αf̃(y) for all y ∈ [0, 1]N .
– F y

ij is convex for all y and i, j.

Given the above two conditions, it is shown in [1] that the pipage rounding
algorithm yields the following: given an optimum fractional solution y∗, the
rounding yields an integral solution z such that F (z) ≥ F (y∗). This follows from
the convexity requirement on F y

ij ; either F (y+
ij) ≥ F (y) or F (y−

ij) ≥ F (y) and
the choice of the algorithm ensures that in each iteration the value of F does
not decrease. Therefore we can conclude that f(z) = F (z) ≥ F (y∗) ≥ αf̃(y∗).
Since f̃(y∗) ≥ OPT, we have f(z) ≥ αOPT.

3 Extensions of Submodular Functions

In this section, we address the issue of extending a monotone submodular func-
tion f : 2N → R+ to continuous functions f̃ , F : [0, 1]N → R+, as required by
the framework.
F as the expected value of f : We consider a simple and natural candidate
for F that is implicitly generated from f . Define F (y) = E[f(ŷ)] where ŷ is
a random integer vector obtained from y by independently rounding each i to
1 with probability yi and to 0 with probability 1 − yi. In shorthand, we write
F = Ef . We can evaluate F = Ef to any desired accuracy by taking several
independent samples. We defer details that show that a polynomial number of
samples suffice to obtain a (1−1/poly(n))-approximation to F (y). Alternatively
we could use a randomized version of the pipage rounding that does not require
us to evalute F explicitly.

In [1], F was given as an explicit function for some simple functions and the
convexity of F y

ij was explicitly shown. A nice feature of F = Ef is that the
convexity requirement is satisfied for all submodular f .
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Lemma 3. For any submodular f , if F = Ef , then F y
ij is convex for all y ∈

[0, 1]N and i, j ∈ N .

Proof. Let F = Ef . For S ⊆ N \ {i, j} and y ∈ [0, 1]N , let py(S) =
∏

l∈S yl∏
l∈N\{i,j}\S(1 − yl) be the probability that S is precisely the set obtained by

randomized rounding on N \ {i, j}. Then

F (y) =
∑

S⊆N\{i,j}
py(S) ((1 − yi)(1 − yj)f(S) + (1 − yi)yjf(S + j))

+yi(1 − yj)f(S + i) + yiyjf(S + i + j)).

We have F y
ij(δ) = F (yij(δ)). Let x = yij(δ), i.e. xi = yi + δ, xj = yj − δ and

xl = yl for all l ∈ N\{i, j}. Hence it follows that px(S) = py(S) for S ⊆ N\{i, j}.
It can be seen that F (yij(δ)) = F (x) = c2δ

2 + c1δ + c0 where c2, c1, c0 do not
depend on δ (they depend only on y and f). Thus to show that F y

ij(δ) is convex
in δ, it is sufficient to prove that c2 ≥ 0. It is easy to check that

c2 =
∑

S⊆N\{i,j}
py(S)(−f(S) + f(S + j) + f(S + i) − f(S + i + j)).

By submodularity, f(S+i)+f(S+j) ≥ f((S+i)∩(S+j))+f((S+i)∪(S+j)) =
f(S) + f(S + i + j) which proves that c2 ≥ 0.

Next, we need an extension f̃ such that max{f̃(y) : y ∈ P (M)} can be solved
in polynomial time. The approximation guarantee is the largest α such that
F (y) ≥ αf̃(y).

Extension f+: Our first candidate for f̃ is an extension similar to the objective
function of the “Configuration LP” [10,7,8].

– f+(y)=max
{∑

S⊆N αSf(S) :
∑

S αS ≤ 1, αS ≥ 0 & ∀j;
∑

S:j∈S αS ≤ yj

}
.

Extension f∗: Another candidate is a function appearing in [14] and subse-
quently [9,18,19], where it is used indirectly in the analysis of the greedy algo-
rithm for submodular function maximization:

– f∗(y) = min
{
f(S) +

∑
j∈N fS(j)yj : S ⊆ N

}
.

Unfortunately, as the theorem below shows, it is NP-hard to evaluate f+(y)
and f∗(y) and also to optimize them over matroid polytopes.

Theorem 3. It is NP-hard to compute f+(y) or f∗(y) for a given y ∈ [0, 1]n

and a given monotone submodular function f . Also, there is δ > 0 such that
for a given matroid M it is NP-hard to find any point z ∈ P (M) such that
f+(z) ≥ (1 − δ)max{f+(y) : y ∈ P (M)}. Similarly, it is NP-hard to find any
point z ∈ P (M) such that f∗(z) ≥ (1−δ)max{f∗(y) : y ∈ P (M)}. These results
hold even for coverage-type submodular functions and partition matroids.
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We defer the proof to a full version of the paper; the authors are unaware of prior
work that might have addressed this question. Still, both f+(y) and f∗(y) will
be useful in our analysis. We remark that for any class of submodular functions
where either f+(y) or f∗(y) is computable in polynomial time, we obtain a
(1 − 1/e)-approximation for our problem.

It is known and easy to see that for y ∈ {0, 1}N , both f+ and f∗ functions
coincide with f and thus they are indeed extensions of f . For any y ∈ [0, 1]N ,
we first show the following.

Lemma 4. For any monotone submodular f , F (y) ≤ f+(y) ≤ f∗(y).

Proof. To see the first inequality, let αS =
∏

i∈S yi

∏
i/∈S(1 − yi) be the proba-

bility that we obtain ŷ = χS by independent rounding of y. Since
∑

S:j∈S αS =
Pr[ŷj = 1] = yj, this is a feasible solution for f+(y) and therefore f+(y) ≥∑

S αSf(S) = E[f(ŷ)] = F (y).
For the second inequality, consider any feasible vector αS and any set T ⊆ N :

∑

S

αSf(S) ≤
∑

S

αS

⎛

⎝f(T ) +
∑

j∈S

fT (j)

⎞

⎠ ≤ f(T ) +
∑

j∈N

yjfT (j)

using submodularity and the properties of αS . By taking the maximum on the
left and the minimum on the right, we obtain f+(y) ≤ f∗(y).

It is tempting to conjecture that f+(y) and f∗(y) are in fact equal, due to some
duality relationship. However, this is not the case: both inequalities in Lemma 4
can be sharp and both gaps can be close to 1 − 1/e. For the first inequality,
consider the submodular function f(S) = min{|S|, 1} and yj = 1/n for all j;
then F (y) = 1 − (1 − 1/n)n and f+(y) = 1. For the second inequality, choose
a large but fixed k, f(S) = 1 − (1 − |S|/n)k and yj = 1/k for all j. The reader
can verify that f+(y) = 1 − (1 − 1/k)k, while f∗(y) ≥ 1 − k/n → 1 as n → ∞.
We prove that 1 − 1/e is the worst possible gap for both inequalities. Moreover,
even the gap between F (y) and f∗(y) is bounded by 1 − 1/e.

Lemma 5. For any monotone submodular f , F (y) ≥
(
1 − 1

e

)
f∗(y).

Proof. For each element j ∈ N , set up an independent Poisson clock Cj of rate
yj , i.e. a device which sends signals at random times, in any infinitesimal time
interval of size dt independently with probability yjdt. We define a random
process which starts with an empty set S(0) = ∅ at time t = 0. At any time
when the clock Cj sends a signal, we include element j in S, which increases
its value by fS(j). (If j is already in S, nothing happens; the marginal value
fS(j) is zero in this case.) Denote by S(t) the random set we have at time t.
By the definition of a Poisson clock, S(1) contains element j independently with
probability 1 − e−yj ≤ yj . Since such a set can be obtained as a subset of the
random set defined by ŷ, we have E[f(S(1))] ≤ F (y) by monotonicity. We show
that E[f(S(1))] ≥ (1 − 1/e)f∗(y) which will prove the claim.

Let t ∈ [0, 1]. Condition on S(t) = S and consider how f(S(t)) changes in an
infinitesimal interval [t, t+dt]. The probability that we include element j is yjdt.
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Since dt is very small, the events for different elements j are effectively disjoint.
Thus the expected increase of f(S(t)) is (up to O(dt2) terms)

E[f(S(t + dt)) − f(S(t)) | S(t) = S] =
∑

j∈N

fS(j)yjdt ≥ (f∗(y) − f(S))dt

using the definition of f∗(y). We divide by dt and take the expectation over S:

1
dt

E[f(S(t + dt)) − f(S(t))] ≥ f∗(y) − E[f(S(t))].

We define φ(t) = E[f(S(t))], i.e. dφ
dt ≥ f∗(y) − φ(t). We solve this differential

inequality by considering ψ(t) = etφ(t) and dψ
dt = et(dφ

dt + φ(t)) ≥ etf∗(y). Since
ψ(0) = φ(0) = 0, this implies

ψ(x) =
∫ x

0

dψ

dt
dt ≥

∫ x

0
etf∗(y)dt = (ex − 1)f∗(y)

for any x ≥ 0. We conclude that E[f(S(t))] = φ(t) = e−tψ(t) ≥ (1 − e−t)f∗(y)
and F (y) ≥ E[f(S(1))] ≥ (1 − 1/e)f∗(y).

We remark that we did not actually use submodularity in the proof of Lemma 5!
Formally, it can be stated for all monotone functions f . However, f∗(y) is not a
proper extension of f when f is not submodular (e.g., f∗(y) is identically zero
if f(S) = 0 for |S| ≤ 1). So the statement of Lemma 5 is not very meaningful in
this generality.

To summarize what we have proved so far, we have two relaxations of our
problem:

– max{f+(y) : y ∈ P (M)}
– max{f∗(y) : y ∈ P (M)}

Our framework together with Lemma 4 and Lemma 5 implies that both of these
relaxations have integrality gap at most 1 − 1/e. Theorem 3 shows NP-hardness
of solving the relaxations. We show how to use the framework efficiently in a
restricted case of interest which is described in the following section.

4 Sums of Weighted Rank Functions

We achieve a (1 − 1/e)-approximation, under a matroid constraint M, for any
submodular function f that can be expressed as a sum of “weighted rank func-
tions” of matroids. This is the most general subclass of submodular functions
for which we are able to use the framework outlined in Section 2 in an efficient
way. Here we describe this in detail.

Weighted rank functions of matroids: Given a matroid (N, X ) and a weight
function w : N → R+, we define a weighted rank function g : 2N → R+,

g(S) = max{
∑

j∈I

wj : I ⊆ S & I ∈ X}.
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It is well known that such a function is monotone and submodular. A simple
special case is when X = {I | |I| = 1}. Then g(S) returns simply the maximum-
weight element of S; this will be useful in our application to GAP.

Sums of weighted rank functions: We consider functions f : 2N → R+

of the form f(S) =
∑m

i=1 gi(S) where each gi is a weighted rank function for
matroid (N, Xi) with weights wij . Again, f(S) is monotone and submodular.

The functions that can be generated in this way form a fairly rich subclass
of monotone submodular functions. In particular, they generalize submodu-
lar functions arising from coverage systems. Coverage-type submodular func-
tions can be obtained by considering a simple uniform matroid (N, X ) with
X = {I ⊆ N | |I| ≤ 1}. For a collection of sets {Aj}j∈N on a ground set
[m], we can define m collections of weights on N , where wij = 1 if Aj con-
tains element i, and 0 otherwise. Then the weighted rank function gi(S) =
max{wij : j ∈ S} is simply an indicator of whether

⋃
j∈S Aj covers element

i. The sum of the rank functions gi(S) gives exactly the size of this union
f(S) =

∑m
i=1 gi(S) =

∣
∣
∣
⋃

j∈S Aj

∣
∣
∣. Generalization to the weighted case is straight-

forward.

LP formulation for sums of weighted rank functions: For a submodular
function given as f(S) =

∑m
i=1 gi(S) where gi(S) = max{wi(I) : I ⊆ S, I ∈ Xi},

consider an extension g+
i (y) for each gi, as defined in Section 3:

g+
i (y) = max{

∑

S⊆N

αSgi(S) :
∑

S

αS ≤ 1, αS ≥ 0 & ∀j;
∑

S:j∈S

αS ≤ yj}.

Here, we can assume without loss of generality that αS is nonzero only for S ∈ Xi

(otherwise replace each S by a subset I ⊆ S, I ∈ Xi, such that gi(S) = wi(I)).
Therefore, g+

i can be written as

g+
i (y) = max{

∑

I∈Xi

αI

∑

j∈I

wij :
∑

I∈Xi

αI ≤ 1, αI ≥ 0 & ∀j;
∑

I∈Xi:j∈I

αI ≤ yj}.

We can set xij =
∑

I∈Xi:j∈I αI and observe that a vector xi = (xij)j∈N can
be obtained in this way if and only if it is a convex linear combination of
independent sets; i.e., if it is in the matroid polytope P (Xi). The objective
function becomes

∑
j∈N wij

∑
I∈Xi:j∈I αI =

∑
j∈N wijxij and so we can write

equivalently

g+
i (y) = max{

∑

j∈N

wijxij : xi ∈ P (Xi) & ∀j; xij ≤ yj}.

We sum up these functions to obtain an extension f̃(y) =
∑m

i=1 g+
i (y). This

leads to the following LP formulation for the problem max{f̃(y) : y ∈ P (M)}:
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max
m∑

i=1

∑

j∈N

wijxij ;

∀i, j; xij ≤ yj ,

∀i; xi ∈ P (Xi),
y ∈ P (M).

We can solve the LP using the ellipsoid
method, since a separation oracle can be ef-
ficiently implemented for each matroid poly-
tope, and therefore also for this LP. To obtain
a (1−1/e)-approximation (Theorem 1) via the
above LP using the pipage rounding frame-
work from Section 2, it is sufficient to prove
the following lemma.

Lemma 6. For any sum of weighted rank functions f , F (y) ≥ (1 − 1/e)f̃(y).

Proof. By Lemma 5, F (y) ≥ (1 − 1/e)f∗(y) and hence it suffices to prove that
f∗(y) ≥ f̃(y). By Lemma 4, g+

i (y) ≤ g∗i (y) where g∗i (y) = minSi(gi(Si) +∑
j yjgi,Si(j)). (Here, gi,Si(j) = gi(Si + j) − gi(Si).) Consequently,

f̃(y) =
m∑

i=1

g+
i (y) ≤

m∑

i=1

min
Si

(gi(Si) +
∑

j∈N

yjgi,Si(j))

≤ min
S

m∑

i=1

(gi(S) +
∑

j∈N

yjgi,S(j)) = min
S

(f(S) +
∑

j∈N

yjfS(j)) = f∗(y).

5 The Generalized Assignment Problem

Here we consider an application of our techniques to the Generalized Assignment
Problem (“GAP”). An instance of GAP consists of n bins and m items. Each
item i has two non-negative numbers for each bin j; a value vji and a size sji.
We seek an assignment of items to bins such that the total size of items in each
bin is at most 1, and the total value of all items is maximized.

In [10], a (1−1/e)-approximation algorithm for GAP has been presented. The
algorithm uses LP1.

LP1 : max
∑

j,S∈Fj

yj,Svj(S);

∀j;
∑

S∈Fj

yj,S ≤ 1,

∀i;
∑

j,S∈Fj:i∈S

yj,S ≤ 1,

∀j, S; yj,S ≥ 0.

In LP1, Fj denotes the collection of all
feasible assignments for bin j, i.e. sets
satisfying

∑
i∈S sji ≤ 1. The variable yj,S

represents bin j receiving a set of items S.
Although this is an LP of exponential size,
it is shown in [10] that it can be solved to
an arbitrary precision in polynomial time.
Then the fractional solution can be rounded
to an integral one to obtain a (1 − 1/e)
approximation.

We show in this section that this (1 − 1/e)-approximation algorithm can be
interpreted as a special case of submodular maximization subject to a matroid
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constraint2, and this framework also allows some generalizations of GAP3. For
this purpose, we reformulate the problem as follows.

We define N = {(j, S) | 1 ≤ j ≤ n, S ∈ Fj} and a submodular function
f : 2N → R+,

f(S) =
m∑

i=1

max{vji : ∃(j, S) ∈ S, i ∈ S}.

We maximize this function subject to a matroid constraint M, where S ∈ M
iff S contains at most one pair (j, S) for each j. Such a set S corresponds to
an assignment of set S to bin j for each (j, S) ∈ S. This is equivalent to GAP:
although the bins can be assigned overlapping sets in this formulation, we only
count the value of the most valuable assignment for each item. We can write
f(S) =

∑m
i=1 gi(S) where gi(S) = max{vji : ∃(j, S) ∈ S, i ∈ S} is a weighted

rank function of a matroid Xi on N . In the matroid Xi an element (j, S) ∈ N has
weight vji if i ∈ S and 0 otherwise. A set is independent in Xi iff its cardinality
is at most 1. Therefore the problem falls under the umbrella of our framework.

We now write explicitly the LP arising from interpreting GAP as a submodular
function problem. We have variables yj,S for each j and S ∈ Fj. In addition, for
each matroid Xi, we define copies of these variables xi,j,S . The resulting linear
program is given as LP2.

LP2 : max
∑

j,S∈Fj,i∈S

vjixi,j,S ;

∀i, j, S; xi,j,S ≤ yj,S,

∀i; xi ∈ P (Xi),
y ∈ P (M).

LP2 has exponentially many variables
and exponentially many constraints. How-
ever, observe that a feasible solution yj,S

for LP1 is also feasible for LP2, when we set
xi,j,S = yj,S for i ∈ S and 0 otherwise. This
is because the constraint

∑
j,S:i∈S yj,S ≤ 1

in LP1 implies xi ∈ P (Xi), and the con-
straint

∑
S yj,S ≤ 1 implies y ∈ P (M).

Therefore, we can solve LP1 using the techniques of [10] and then convert the
result into a feasible solution of LP2. Finally, we can apply the pipage rounding
technique to obtain a (1 − 1/e)-approximation.

This is simply a reformulation of the algorithm from [10]. However, the flex-
ibility of our framework allows a more complicated matroid constraint M than
each bin choosing at most one set. We briefly discuss this below.

Laminar matroid constraints on the bins: Let B be the set of bins in a
GAP instance. Consider a laminar matroid M on B. We consider the problem
of assigning items to a subset of bins B′ ⊆ B such that B′ is independent in M.
An example is when M is the simple uniform matroid; that is B′ is independent
iff |B′| ≤ k. This gives rise to a variant of GAP in which at most k of the n bins

2 This formulation of GAP is also described in [10] as a personal communication from
an author of this paper.

3 In [10] more general allocation problems are considered that allow constraints on the
sets of items packable within a bin. Our approach also works for such problems but
in this extended abstract we limit our discussion to GAP.
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can be used. One can modify LP1 by adding a new constraint:
∑

j,S∈Fj
yj,S ≤ k,

to obtain a relaxation LP3 for this new problem.

LP3 : max
∑

j,S∈Fj

yj,Svj(S);

∀j;
∑

S∈Fj

yj,S ≤ 1,

∀i;
∑

j,S∈Fj:i∈S

yj,S ≤ 1,

∑

j,S∈Fj

yj,S ≤ k,

∀j, S; yj,S ≥ 0.

Using the same ideas as those in [10],
one can solve LP3 to an arbitrary
precision in polynomial time. The simple
rounding scheme of [10] for LP1 does not
apply to LP3. However, as before, we can
see that a solution to LP3 is feasible for LP2
where the matroid M now also enforces
the additional constraint that at most k
elements from N are chosen. Thus pipage
rounding can be used to obtain a (1−1/e)-
approximation. A similar reasoning allows
us to obtain a (1 − 1/e)-approximation for
any laminar matroid constraint on the bins
B. We defer the details to a full version of the paper.

6 Conclusions

We obtained a (1 − 1/e)-approximation for an interesting and useful class of
submodular functions. We note that the methods in the paper apply to some
interesting submodular functions that are not in the class. An example is the
maximum multiset multicover problem which generalizes the multicover problem
defined in Section 1. The difference between multicover and multiset multicover
is that a set can cover an element multiple times (at most the requirement of the
element). We can obtain a (1−1/e) approximation for this problem even though
this function cannot be expressed as a weighted sum of matroid rank functions.
We defer the details. It would be of much interest to prove or disprove the
existence of a (1 − 1/e)-approximation for all monotone submodular functions.
Note that our hardness results (Theorem 3) hold even when f can be expressed
as a sum of weighted rank functions of matroids, yet we can obtain a (1 − 1/e)-
approximation in this case.

The unconstrained problem maxS⊆N f(S) is NP-hard and hard to approxi-
mate if f is a non-monotone submodular set function; the Max-Cut problem is a
special case. However, the pipage rounding framework is still applicable to non-
monotone functions (as already shown in [1]). For non-monotone functions, the
problem we need to consider is maxS∈B f(S) where B is the set of bases of M. It
is easy to see that Lemma 2 and Lemma 3 still apply. Thus, the approximation
ratio that can be guaranteed depends on the extension f̃ .

Pipage rounding [1] and dependent randomized rounding [17,15] are based on
rounding fractional solutions to the assignment problem into integer solutions
while maintaining the quality of a solution that is a function of the variables on
the edges of the underlying bipartite graph. A number of applications are given
in [1,17,15]. This paper shows that submodularity and uncrossing properties of
solutions to matroids and other related structures are the basic ingredients in
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the applicability of the pipage rounding technique. We hope this insight will lead
to more applications in the future.
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