
Scalable Computing in the Multicore Era

Xian-He Sun, Yong Chen and Surendra Byna

Illinois Institute of Technology, Chicago IL 60616, USA

Abstract. Multicore architecture has become the trend of high perfor-
mance processors. While it is generally accepted that we have entered the
multicore era, concerns exist on scaling multicore processors. Technology
is available, but major vendors are hesitant in entering the multicore mar-
ket with processors that have large number of cores, citing Amdahl’s law.
This is a very interesting phenomenon, where history seems to repeat it-
self on the scalability debate of parallel processing occurred 20 years
ago. Following the scalable computing concept, especially the fixed-time
and memory-bounded speedup metrics, in this study, we argue that the
scalability of multicores is not limited by Amdahl’s law. We study two
speedup models of multicore architecture from the scalable computing
point of view. These two models show that multicores have a good scal-
ability and add a new dimension of scalable computing.

1 Introduction

High performance computing has received long missed intensive attention from
industry and academia recently. This renewed interest is due to two new devel-
opments in computing: cloud computing and multicore processors. Cloud com-
puting employs a cloud of computers, usually a cluster of supercomputers, and
Grid technology to provide virtual computers on demand. Multicore processors
integrate many cores into one chip to overcome the physical constraints of uni-
processor architecture and deliver high computing power with single chip.

Cloud computing and traditional high-end computing applications demand
high performance power; multicore architecture has emerged as an able technol-
ogy to meet that demand. By scaling up the number of cores, multicore proces-
sors provide a new dimension to scale up performance. However, recently we have
noticed a very interesting phenomenon. While some small start-up companies
are making large-scale multicores [16][10], established companies are reluctant
to enter the multicore market with processors that have large number of cores.
IBM’s Cell processor [6], for instance, has only 8 cores (plus a master core).
AMD’s mainstream processors, Phenom and Opteron families, have only four
cores. While Intel has a road map for multicores, building an 80-core processor
in 2011 [15], it is too conservative and slow moving. This slow movement has
its theoretical foundations. Based on Amdahl’s law, many researchers believe
multicore systems are not scalable [1][9]. Amdahl’s law states that if a portion
of a computer can be improved and another portion of the architecture cannot
be improved, then the portion that cannot be improved will quickly dominate



the performance, and further improvement of the improvable portion will have
little impact. With the known memory-wall problem [14], many believe that
multicore processor with a small number of cores, such as 8, is a good design
choice. History seems to repeat itself and reminds the days before Gustafson in-
troduced the scalable computing concept for parallel processing in 1988 [7]. IBM
and Cray were making parallel machines with 2 to 8 processors, such as IBM
7030 Stretch Data Processing System and Cray Y-MP before scalable comput-
ing was introduced. The introduction of the scalable computing concept changed
the view of parallel processing and made major vendors entered the massively
parallel processing arena. Today, IBM’s Petaflop machine Roadrunner at Los
Alamos National Laboratory has 25,200 processors. The Ranger supercomputer
at Texas Advanced Computing Center has 15,744 processors. Unfortunately, the
scalable computing concept [7][13][5][12] has not been well introduced into the
multicore processors design at this time. Studying the scalability of multicore
processors is a timely research effort. Recently Hill and Marty have studied the
Amdahl’s law applicability for multicore design and call for models of multicore
performance [8]. In response to their call, we study the scalability of multicore
processors and analyze two speedup models following the results in scalable par-
allel processing in this research. We first revisit the three speedup models of
parallel processing, fixed-size (Amdahl’s law), fixed-time and memory-bounded
speedup; we then extend them to multicore scalability analysis. Detailed case
studies are presented. We conclude that multicore architecture is scalable and
has the potential to achieve linear speedup in scalable computing, where problem
size is increased with the number of cores.

2 Speedup Models of Parallel Processing

In this section, we review the three classic speedup models, Amdahl’s law [1],
Gustafson’s law [7], and Sun and Ni’s law [13], of parallel processing in brief.

2.1 Amdahl’s Law

The original idea presented by Amdahl [1] is a general observation about the per-
formance improvement limit of any enhancement, and was later summarized as
the well-known Amdahl’s law. When we apply Amdahl’s law to parallel process-
ing, we have the speedup metric as:

SAmdahl =
Performancenew

Performanceold
=

SequentialExecutionT ime

ParallelExecutionT ime
=

Ts

Tp

(1)

Suppose α is the fraction of the code that is sequential, which cannot be
parallelized, and p is the number of processors. Assuming that all overheads are
ignored, we have: Tp = αTs + (1− α)Ts/p. Therefore,

SAmdahl =
Ts

Tp

=
Ts

αTs + (1− α)Ts/p
=

1
α + (1− α)/p

(2)



This formula is called Amdahl’s law for parallel processing. When p, the
number of processors, increases to infinity, the speedup becomes lim

p→∞
SAmdahl =

lim
p→∞

1
α+(1−α)/p = 1/α. This equation shows that the speedup is limited by the

sequential fraction, a nature of the problem under study, even when the number
of processors is scaled to infinity. Amdahl’s law advocates that a large-scale
parallel processing is less interesting because the speedup has an upper bound
of 1/α.

2.2 Gustafson’s Law

A tacit assumption in Amdahl’s law is that the problem size, or the workload, is
fixed. The speedup emphasizes time reduction of a given problem. Amdahl’s law
is thus also called fixed-size speedup model. In 1988, Gustafson introduced fixed-
time speedup model [7] to motivate large-scale parallel processing. The fixed-time
speedup model suggests powerful machines can be designed for solving large
problems and the problem size should be scaled to match the increased comput-
ing capability in a parallel processing system. Thus, the fixed-time speedup is
defined as:

SGustafson =
SequentialT imeofSolvingScaledWorkload

ParallelT imeofSolvingScaledWorkload
(3)

Suppose the original workload and the scaled workload finished in the same
amount of time are W and W ′, respectively. We have W ′ = αW + (1 − α)pW .
Therefore,

SGustafson =
SequentialT imeofSolvingW ′

SequentialT imeofSolvingW
=

W ′

W
= α + (1− α)p (4)

This equation is known as Gustafson’s law. It states that the fixed-time
speedup is a linear function of p if the workload is scaled up to maintain a fixed
execution time. Gustafson’s law suggests that it is beneficial to build a large-scale
parallel system as the speedup can grow linearly with the system size.

2.3 Sun and Ni’s Law

Many parallel applications cannot scale up to meet the time bound constraint
due to some physical constraint. In practice, the physical constraint is often the
memory limitation. In distributed-memory machines, the number of processors
and memory are increased in pair. Out-of-core computing will reduce the per-
formance significantly and is largely prohibited. With this in mind, Sun and Ni
proposed memory-bounded speedup model [13]. Let W ∗ be the scaled workload
under memory space constraint. The memory-bounded speedup is defined as:

SSunNi =
SequentialT imeofSolvingScaledWorkload, W ∗

ParallelT imeofSolvingScaledWorkload, W ∗ (5)



Assume that the parallel portion of the workload can be scaled up G(p) times.
That is, the scaled workload is W ∗ = αW + (1 − α)G(p)W . The factor G(p)
reflects the increase in the workload as the memory capacity increases p times.
Therefore,

SSunNi =
αW + (1− α)G(p)W

αW + (1− α)G(p)W/p
=

α + (1− α)G(p)
α + (1− α)G(p)/p

(6)

Sun and Ni’s law is a generalization of Amdahl’s law and Gustafson’s law,
where Amdahl’s law is a special case with G(p) = 1, and Gustafson’s law is a
special case with G(p) = p. In general, the computational workload increases
faster than the memory requirement, thus G(p) > p and the memory-bounded
speedup model gives a higher speedup than the fixed-size and fixed-time speedup.

3 Multicore Architecture Assumptions and Definitions

We follow the models of parallel processing to study the scalability of multicore
architectures. We take data access as the bottleneck that we cannot improve,
and study the scalability of multicores in terms of cores in a processor.

3.1 Multicore Architecture

To simplify the discussion, this study assumes symmetric multicore processor
architectures. We assume that the multicore processor under study has n cores,
and each core has a dedicated primary cache, L1 cache, and all cores share
remaining levels of the memory hierarchy. This assumption matches with most
of existing multicore/manycore processors that are either commercially available
or in production. For simplicity, we also assume that there is no context switch
while running a parallel application on a multicore processor.

3.2 Definitions

We introduce the following definitions in order to describe the scalability analysis
model of a multicore architecture.

Definition 1. The work (or workload, or problem size) is defined as the number
of instructions that are to be executed.

Let I denote the number of instructions, or the work. The work is composed of
computation instructions and data access instructions. Let Ip denote the number
of computation instructions, and Ic denote the number of data communication
instructions. Therefore, I = Ip + Ic.

Definition 2. The execution time is defined as the number of CPU cycles spent
for executing the instructions, either for computation or for data access.



Let T denote the execution time. The execution time is composed of the
computation time spent on processing units and the communication to wait the
data to be ready. Let Tp denote the computation time, and Tc denote the data
access time. Therefore,

T = Tp + Tc (7)

Note that, in the context of parallel processing, this formula is under two
assumptions: the load is balanced and every processing unit performs computa-
tion and communication at the same time. Following Amdahl’s law of parallel
processing, we assume that computing is perfectly parallelized and the load is
balanced. Since we have assumed that the studied multicore processor is a sym-
metric architecture, the computation instructions are issued with a same speed
on each core. Equation 7 stands under our study. If we assume the execution
speed of each core is τ instructions per second, we have Tp = Ip/τ . We can fur-
ther analyze the data access time Tc as well in a typical multicore architecture.
A major fraction of data access time is spent on the data transfer between the
lowest-level cache memory, L2 cache in this study, and the main memory. The
data access time can thus be roughly modeled as:

Tc = (Ic × (1−HL1)× (1−HL2)× [F × Lword + (1− F )× Lcache])/B (8)

where HL1 is the L1 cache hit ratio, HL2 is the L2 cache hit ratio, Lword and
Lcache are word size and L2 cache line size respectively, F is a locality factor to
represent the spatial locality characteristic of the work, ranging from 0 in the
case of totally random accesses to 1 in the case of totally sequential accesses,
and B is the memory bandwidth. When the cache hit ratio, locality factor, word
size and cache line size are fixed for a study, we rewrite Tc as: (c1 is a constant)

Tc = c1Ic (9)

In computer architecture, speedup is a measure of improvement. The follow-
ing definition explains the speedup concept we employs in this study.

Definition 3. The speedup, in the context of computer architecture, is defined
as the ratio of the execution time in the original architecture and the execution
time in the enhanced architecture.

4 Scalability of Multicore Architecture

Now, we are ready to extend the three speedup models of parallel processing
into multicore architectures and present theoretical analysis.

4.1 Amdahl’s Law on Multicore Architecture

Amdahl’s law [1] is a basic law of architecture design. It shows that the inherited
limitation of any architecture improvement is determined by some performance



factor that cannot be improved with architecture improvement. For parallel com-
puting, this factor is the portion of the application which must be solved sequen-
tially. In the context of multicore architecture, the data access delay is such a
limiting factor that cannot be enhanced no matter how many cores are utilized
in computation. With a similar assumption used in the Amdahl’s law in parallel
processing, we assume that computing can be perfectly parallelized and data
access is independent of problem size and the number of cores. Then with an n-
core processor architecture, the new execution time is: T ′ = T ′p +T ′c = Tp/n+Tc.
Thus, the Amdahl’s speedup is:

SFS =
T

T ′
=

Tp + Tc

Tp/n + Tc
(10)

Amdahl’s law states that the performance gain of a multicore architecture is
quickly limited by the data access delay, with an upper bound of (Tp+Tc)/Tc. The
gap between data access and computing speed has been growing larger and larger
during the last three decades and is known as the memory-wall problem [14]. By
Amdahl’s law, the multicore architecture is not scalable. It is a pessimistic view,
and has accepted by many in both academia and industry [8][9].

As in parallel processing, Amdahl’s law of multicore architecture is under a
tacit assumption: the application workload is fixed. Multicore is also a way of
parallel processing. The scalable computing concept of parallel processing should
be extended to multicore design. Considering data access as the non-improvable
performance factor, we study two scaled speedup models in the following section.

4.2 Multicore Architecture for Scalable Computing

Allowing problem size increases with computing power, we now study the scala-
bility of multicore architectures from scalable computing point of view. We first
present a fixed-time scaled speedup model.

Definition 4. The fixed-time speedup of a multicore architecture machine is
defined as the ratio of execution time of solving the scaled workload on a single
core to execution time of solving the scaled workload on multiple cores, where
the scaled workload is the amount of work that is finished in the enhanced mode
within the same amount of time as in the original mode.

Following a similar assumption of Gustafson’s law of parallel processing, we
assume that the communication work/cost is fixed. The assumption is valid since
the goal of this study is to show the potential scalability of multicore architec-
tures. According to the definition and the assumption, the scaled workload is
nTp + Tc. Therefore, the fixed-time speedup of the multicore architecture from
the scaled computing viewpoint is:

SFT = TimeofSolvingScaledWorkloadinOriginalMode
TimeofSolvingScaledWorkloadinEnhancedMode

= TimeofSolvingScaledWorkloadinOriginalMode
TimeofSolvingOriginalWorkloadinOriginalMode = nTp+Tc

Tp+Tc

(11)



This result reveals that, from the scalable computing viewpoint, the multicore
architecture is linearly scalable and suitable for large-scale manufacturing as
long as the data communication time is fixed. When the number of cores, n,
goes to infinity, the speedup can grow linearly with n. This finding confirms that
multicore architecture with large number of cores is meaningful and has real
scalability potential. We do not need to reduce the data access delay, but the
assumption here is the data access delay is fixed and does not increase with the
number of cores and the problem size. While formula (11) shows the potential
of large-scale multicores, data access remains as a technical hurdle that needs to
be overcome.

The fixed-time scaled speedup model exposes an optimistic view of the scal-
ability of multicore architectures. Nevertheless, the problem size scaling up is
often not constrained by the execution time, but the memory capacity. Please
notice that the term memory here is a general term. It is not only for main
memory, but for any layer in a memory hierarchy. When the problem size in-
creases and the amount of data is larger than the storage of a layer in the
memory hierarchy (for instance, accessing data via virtual memory), data access
delay will have a significant increase and performance will have a significant
drop. We consider such a performance drop is intolerable. In other words, data
access bandwidth and data access latency prohibit accessing the next layer of
the memory hierarchy and the problem size increment is limited by the mem-
ory available in the current memory hierarchy under consideration. In general,
memory capacity is increased with the computing power. In distributed paral-
lel processing, processor and its local memory are paired together. In multicore
architecture, core and L1 cache are paired together (although we could scale
up L2 cache along with the increase of the number of cores). The constraint
of scalable computing is often to be the memory availability. Thus, following
the speedup models of parallel processing, we study a memory-bounded speedup
model for multicore architecture. Similar to the fixed-time speedup model, the
memory-bounded speedup model also provides a scaled computing view of the
multicore architecture. The difference is that the execution time is the limiting
factor in the fixed-time speedup, while the data access capability is the limit-
ing factor in the memory-bounded speedup. In addition to show the potential
of large-scale multicore systems, the memory-bounded model also reveals the
tradeoff of computing speed and memory capacity in multicore design.

Definition 5. The memory-bounded speedup of a multicore architecture is de-
fined as the ratio of execution time of solving the scaled workload on a single
core to execution time of solving the scaled workload on multiple cores, where the
scaled workload is the amount of work that is finished in the enhanced mode with
a constraint on the data access latency.

Suppose the work is scaled with a function g(n) under memory bound con-
straint. According to the memory-bounded speedup model, the amount of work
that can be scaled exactly with the data access constraint is dependent on the
available memory and the memory requirement of the application under study.



For instance, a matrix multiplication application has 3N2 memory requirement
and 2N3 computing power requirement, where N is the matrix rank, assuming
two source matrices are square N × N matrices. Therefore, the computing re-
quirement in terms of the memory requirement, function g(n), is about 0.38n3/2.
Hence, the scaled workload under memory bound constraint is g(n)Tp +Tc. The
memory-bounded speedup is

SMB =
TimeofSolvingScaledWorkloadinOriginalMode

T imeofSolvingScaledWorkloadinEnhancedMode
=

g(n)Tp + Tc

g(n)Tp/n + Tc

(12)
When g(n) = 1, we have SMB = g(n)Tp+Tc

g(n)Tp/n+Tc
= Tp+Tc

Tp/n+Tc
. When g(n) = n, we

have SMB = g(n)Tp+Tc

g(n)Tp/n+Tc
= nTp+Tc

Tp+Tc
. This shows that the fixed-size speedup and

the fixed-time scaled speedup are special cases of the memory-bounded scaled
speedup when the scaling function under the data access constraint is 1 and n
respectively, similar as the property of the memory-bounded speedup model of
parallel processing. In general, g(n) > n, such as g(n) = 0.38n3/2 (for sufficiently
large n). Thus, SMB > SFT .

As shown above, the theoretical analysis of the fixed-time and memory-
bounded scaled speedup of multicore architecture reveals that multicore archi-
tectures can scale up well. The memory-bounded scaled speedup with data ac-
cess as the constraint can usually achieve an even better performance than the
fixed-time model does. It shows the memory constraint on performance and in-
dicates the tradeoff between memory capacity and computing power of cores
in a multicore design. Memory-bounded speedup has its role in scalable multi-
core/manycore processor design.

5 Case Studies

In this section, we analyze the three speedup models of the multicore architecture
with different case studies, and compare the results in detail.

5.1 Amdahl’s Speedup of Multicore Architecture

According to the definition and assumptions, we can further analyze Amdahl’s
speedup and examine its property with parameters of real practice. Amdahl’s
speedup, or the fixed-size speedup, is:

SFS =
Tp + Tc

Tp/n + Tc
=

Ip/τ + c1Ic

Ip/nτ + c1Ic
(13)

As we discussed previously, c1 and τ are constants in a study. The value
of c1 has a magnitude of 10−8 to 10−9 according to formula 8 and 9, and the
practical value of L1 and L2 cache hit ratio, word size, cache line size and memory
bandwidth. The value of τ has a magnitude of 109 according to the contemporary
processor core’s clock frequency and instruction issue bandwidth. Therefore, the



product value of c1τ is around 1 or 10 in practice. We analyze the Amdahl’s
speedup value under these two different scenarios.

Fig. 1a shows the Amdahl’s speedup under different ratios of computation
and data access instructions, where c1τ = 1. We define the ratio of the computa-
tion instructions and the overall instructions as β, that is β = Ip/(Ip + Ic). For
example, the case with β = 0.2 represents the computation instruction is 20%
of the total instructions (or the application workload). We compute Amdahl’s
speedup following formula 13 and plot the results in Fig. 1a. The horizontal axis
represents the number of cores, scaled from 1 to 1024. The vertical axis repre-
sents the speedup value. As we can see clearly from this figure, the Amdahl’s
speedup illustrates a very limited scalability of the multicore architecture. For
instance, when β = 0.8, the achieved speedup with 32 and 64 cores is about
4.44 and 4.71 respectively. The speedup has quickly reached its limit, around 5,
when the number of cores is scaled to 128. If β is increased to 0.9, the speedup
has a similar pattern to the previous case, except the speedup limit is around
10 and is reached when the number of cores is scaled to 256. Even if the ratio of
computation instructions is increased to 98%, the speedup is improved slightly,
but still quickly reaches the limit with 512 cores and the maximum speedup is
only around 50.

Fig. 1b shows Amdahl’s speedup under similar scenarios as the previous case
study, however with c1τ = 10. This figure illustrates that the speedup values
have a similar pattern as the previous case study results, but the speedups are
even worse. For instance, the speedup starts to reach its limit with 128 cores
even β = 0.98, and the maximum speedup is merely about 5.9.

4 32 64 128 256 512 1024
0

5

10

15

20

25

30

35

40

45

50

Number of Cores

S
pe

ed
up

Amdahl’s Speedup of Multicore Architecture

 

 
β = 0.2
β = 0.4
β = 0.6
β = 0.8
β = 0.9
β = 0.92
β = 0.94
β = 0.96
β = 0.98

(a) c1τ = 1

4 32 64 128 256 512 1024
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Number of Cores

S
pe

ed
up

Amdahl’s Speedup of Multicore Architecture

 

 
β = 0.2
β = 0.4
β = 0.6
β = 0.8
β = 0.9
β = 0.92
β = 0.94
β = 0.96
β = 0.98

(b) c1τ = 10

Fig. 1: Amdahl’s Speedup of Multicore Architecture

Both of these case studies demonstrate that Amdahl’s speedup presents a
pessimistic view of the multicore architecture scalability. However, as we argue
in this study, the real applications tend to utilize the enhanced multicore ar-
chitecture computation capability to scale the problem size to achieve a much
better and more accurate result. Amdahl’s speedup, a fixed-size speedup in es-



sential, is not suitable to analyze the scalability of multicore architecture in real
practice. The suggested scaled fixed-time and memory-bounded speedup model
present a more realistic view of the multicore architecture scalability. The fol-
lowing subsections present the case study results of these two models.

5.2 Fixed-time Scaled Speedup Model of Multicore Architecture

According to the assumption and the fixed time constraint, we have

T ′c = Tc;T ′p =
I ′p
nτ

= Tp =
Ip

τ
(14)

Hence, the scaled workload, I ′p, that is finished in the enhanced mode is:
I ′p = nIp. Therefore, the fixed-time speedup of the multicore architecture can
also be expressed as:

SFT =
I ′p + Ic

Ip + Ic
=

nIp + Ic

Ip + Ic
= 1 + (n− 1)β (15)

4 32 64 128 256 512 1024
0

200

400

600

800

1000

1200

Number of Cores

S
pe

ed
up

Fixed−time Speedup of Multicore Architecture

 

 

β = 0.2

β = 0.4

β = 0.6

β = 0.8

β = 0.9

β = 0.92

β = 0.94

β = 0.96

β = 0.98

Fig. 2: Fixed-time Scaled Speedup of
Multicore Architecture

Fig. 2 demonstrates the scalabil-
ity of multicore architecture with the
fixed-time speedup model. We com-
pute the speedup following formula
15 under different scenarios where β
ranges from 0.2 to 0.98, and plot
the results in Fig. 2. The fixed-time
speedup model provides a more prac-
tical characterization of the capabil-
ity of a multicore architecture. As
shown in Fig. 2, this speedup model
presents a much more optimistic view
of the multicore architecture. For in-
stance, when β = 0.2, even though
the speedup improves slowly, it still
achieves a value of around 205 with
1024 cores. When the ratio of computation instructions increases, the speedup
improves gradually. When β reaches 0.8 and 0.9, the speedup achieved is around
819 and 922, respectively, with 1024 cores. When β further increases, the speedup
increment is slowed down and the speedup with 1024 cores is around 1003 when
β = 0.98.

5.3 Memory-bounded Speedup Model of Multicore Architecture

Fig. 3a and 3b demonstrate the speedups with the memory-bounded scaled
speedup model for multicore architectures. These two figures report that the
speedup value with the scaling function g(n) as 2n and 0.38n3/2, respectively.



Similar to the fixed-time model, the memory-bounded speedup model also re-
veals that the multicore architecture can scale well as long as the workload size
of the application can be allowed to grow with the number of cores to achieve
more accurate and better results. In addition, the results of the memory-bounded
speedup model show that an even better performance can be achieved when data
access constraint is considered to scale workload instead of the execution time
constraint. As shown in Fig. 3a and 3b, the scalability of multicore architecture
can increase steadily compared with the fixed-time model. The memory-bounded
speedup model can reflect the reality well and exhibit a promising view of the
large-scale multicore architecture. It suggests that multicore architectures can
be scaled up well.

4 32 64 128 256 512 1024
0

200

400

600

800

1000

1200

Number of Cores

S
pe

ed
up

Memory−bounded Speedup of Multicore Architecture

 

 

β = 0.2

β = 0.4

β = 0.6

β = 0.8

β = 0.9

β = 0.92

β = 0.94

β = 0.96

β = 0.98

(a) g(n) = 2n

4 32 64 128 256 512 1024
0

200

400

600

800

1000

1200

Number of Cores

S
pe

ed
up

Memory−bounded Speedup of Multicore Architecture

 

 

β = 0.2

β = 0.4

β = 0.6

β = 0.8

β = 0.9

β = 0.92

β = 0.94

β = 0.96

β = 0.98

(b) g(n) = 0.38n3/2

Fig. 3: Memory-bounded Scaled Speedup of Multicore Architecture

6 Conclusion

We present two scaled speedup models, fixed-time and memory-bounded model,
from a scaled computing view to characterize the scalability of multicore archi-
tectures in this study. Both theoretical and case study results illustrate that the
multicore architecture is scalable with the number of cores.

In this study, we do not assume data access delay being changed with the
increasing of computing power, but assume it is fixed. While our study shows
large scalable multicore systems have a real potential, data access remains as a
critical issue that needs to be addressed to achieve a desired scalability of the
multicore architecture. Many approaches are proposed in recent years to address
the memory-wall problem, including the data prefetching approach proposed by
the authors [2]. Ours Data Access History Cache (DAHC) based data prefetching
[3] provides a practical hardware solution at processor-memory level. In the
meantime, the data server based push prefetching [11][4] provides a software
solution at memory-disk level. A hybrid adaptive data prefetching mechanism



reduces the latency via two-stage, processor-memory and memory-disk stage,
and combines both merits of prediction and pre-execution approaches [11][3][4].

The scalability of multicore architectures is an area that is largely unex-
plored. The scaled computing view of the multicore architecture presented in
this paper provides an insight to the design and evaluation of a large-scale mul-
ticore architecture. We expect this study will inspire further discussions in this
direction. We also hope that our study can shatter the pessimistic view of the
limited scalability of multicore architectures in the industry and academia, and
to stimulate a breakthrough in designing large-scale multicore processors.

7 Acknowledgements

Professor Guo-Liang Chen introduced scalability study in his textbook “Parallel
Computing: Architecture, Algorithm and Programming” about ten years ago,
probably the first one introducing the concept in a Chinese textbook. We visit
the scalability issues again under multicore processors in this study in honor of
his contribution to scalability and parallel processing research in China.

References

1. Amdahl, G. M.: Validity of the Single-Processor Approach to Achieving Large
Scale Computing Capabilities. In AFIPS Conference Proceedings. (1967)

2. Byna, S., Chen, Y., Sun, X.-H.: A Taxonomy of Data Prefetching Mechanisms. In
Proc. of Intl. Symp. on Parallel Architectures, Algorithms, and Networks. (2008)

3. Chen, Y., Byna, S., Sun, X.-H.: Data Access History Cache and Associated Data
Prefetching Mechanisms. In Proc. of ACM/IEEE Supercomputing 2007. (2007)

4. Chen, Y., Byna, S., Sun, X.-H., Thakur, R., Gropp, W.: Exploring Parallel I/O
Concurrency with Speculative Prefetching. In the 37th International Conference
on Parallel Processing. (2008)

5. Chen, Y., Sun, X.-H., Wu, M.: Algorithm-System Scalability of Heterogeneous
Computing. Journal of Parallel and Distributed Computing. (To appear).

6. Gschwind, M.: Chip Multiprocessing and the Cell Broadband Engine. Computing
Frontiers. (2006)

7. Gustafson, J. L.: Reevaluating Amdahl’s Law. Communications of the ACM. (1988)
8. Hill, M., et. al.: Amdahl’s Law in the Multicore Era. IEEE Computer. (2008)
9. Madden, P.H.: Forty Years of Amdahl’s Law or The Sky Is Falling.

http://vlsicad.cs.binghamton.edu/Sky.pdf
10. Makino, J., Hiraki, K., Inaba, M.: GRAPE-DR: 2-Pflops Massively-Parallel Com-

puter with 512-Core. In Proc. of ACM/IEEE Supercomputing 2007. (2007)
11. Sun, X.-H., Byna, S., Chen, Y.: Server-based Data Push Architecture for Multi-

processor Environments. Journal of Computer Science and Technology. (2007)
12. Sun, X.-H., Chen Y., Wu, M.: Scalability of Heterogeneous Computing. In Pro-

ceedings of 34th International Conference on Parallel Processing. (2005)
13. Sun, X.-H., Ni, L.: Scalable Problems and Memory-Bounded Speedup. Journal of

Parallel and Distributed Computing. (1993)
14. Wulf, W.A., McKee, S.A.: Hitting the Memory Wall: Implications of the Obvious.

Computer Architecture News. 23(1):20-24. (1995)
15. Intel. http://news.cnet.com/2100-1006 3-6119618.html
16. Kilocore. http://www.rapportincorporated.com/kilocore/kilocore overview.html


