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ABSTRACT 
Data prefetching is an effective way to bridge the increasing 

performance gap between processor and memory. As computing 

power is increasing much faster than memory performance, we 

suggest that it is time to have a dedicated cache to store data access 

histories and to serve prefetching to mask data access latency 

effectively. We thus propose a new cache structure, named Data 

Access History Cache (DAHC), and study its associated 

prefetching mechanisms. The DAHC behaves as a cache for recent 

reference information instead of as a traditional cache for 

instructions or data. Theoretically, it is capable of supporting many 

well known history-based prefetching algorithms, especially 

adaptive and aggressive approaches. We have carried out 

simulation experiments to validate DAHC design and 

DAHC-based data prefetching methodologies and to demonstrate 

performance gains. The DAHC provides a practical approach to 

reaping data prefetching benefits and its associated prefetching 

mechanisms are proven more effective than traditional approaches. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Design Studies 

General Terms 
Performance, Design, Verification 

Keywords 

Data access performance, Memory performance, Data prefetching, 

Prefetching simulation, Cache memory 

1. INTRODUCTION 
While microprocessor performance improved by 52% a year until 

2004 and has been increasing by 25% from then, memory speed is 

only increasing by roughly 9% each year [9]. The performance 

disparity between processor and memory keeps expanding. Deeper 

memory hierarchies were introduced to bridge this gap [9]. Each 

memory level closer to the processor is smaller and faster than the 

next lower level. The rationale behind memory hierarchy design is 

the principle of data locality, which states that programs tend to 

reuse data and instructions which are accessed recently (temporal 

locality) or to access those items whose addresses are close to one 

another (spatial locality). However, when applications lack locality 

due to a working set size larger than the cache and/or 

non-contiguous memory accesses, cache memories are ineffective. 

The data prefetching approach was thus proposed to reduce the 

processor stall time when applications lack temporal or spatial 

locality. As the name indicates, data prefetching is a technique to 

fetch data in advance. The essential idea is to observe data 

referencing patterns, then to speculate future references, and to 

fetch the predicted reference data closer to the processor before the 

processor demands them. Numerous studies have been conducted 

and many strategies have been proposed for data prefetching [2-5][8] 

[10-17][19][23]. These studies concluded that prefetching is a promising 

solution to reducing access latency. The ultimate goal of data 

prefetching is to reduce access delay. However, the performance 

gain (how much we can reduce access delay) depends on many 

factors, such as prefetch coverage and accuracy. While computing 
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capability is still increasing with a much faster pace than memory 

performance, more aggressive prefetching algorithms are desired, 

which provide wider coverage and higher accuracy. In the 

meantime, application features dominate referencing patterns. 

There is no single universal prefetching algorithm suitable for all 

applications. It is beneficial to support adaptive algorithms based 

on data access histories. 

As the processor-memory performance gap increases, application 

features demand faster access to data, and hardware technologies 

evolve, we argue that it is time to dedicate one cache for 

prefetching to fully harvest benefits of aggressive, adaptive and 

other data prefetching strategies. We thus propose a dedicated 

prefetching cache structure, named Data Access History Cache 

(DAHC), and present data prefetching mechanisms to address this 

fundamental issue. The rest of this paper is organized as follows. 

Section 2 introduces the proposed DAHC design and methodology 

to serve multiple prefetching algorithms. Section 3 discusses our 

simulation experiments and performance results in detail to verify 

DAHC design and to demonstrate the potential performance 

improvement brought by DAHC-based data prefetching. Section 4 

reviews related works and compares them with our approaches. 

Finally, we summarize our current work and discuss future work in 

Section 5. 

2. DATA ACCESS HISTORY CACHE 
The main purpose of the proposed DAHC is to track recent data 

access histories and maintain the correlations from different 

perspectives. Those histories and correlations are valuable 

information for data prefetching, especially for aggressive and 

adaptive strategies. In existing work, only very limited correlations 

are maintained, which limits the prefetching accuracy, coverage, 

and aggressiveness. Moreover, they only target a specific 

algorithm and have difficulty applying to diverse applications. 

However, with advances of processor technologies and the rapidly 

growing performance gap between processor unit and memory 

unit, it would be beneficial to trade computing power for a 

reduction in data access latency. With this idea, we propose to 

dedicate a cache (DAHC) for tracking data accesses and letting the 

processing unit perform comprehensive data prefetching. 

Therefore, processor stall time due to data accesses could be 

reduced and the overall system performance would be increased. 

2.1 Design and Methodologies 
The key idea of the DAHC is that history-based prefetching 

algorithms must rely on correlations within either program counter 

stream or data address stream, or both. Thus, the DAHC is 

designed to have three tables: one data access history table (DAH) 

and two index tables (PC index table and address index table). The 

DAH table accommodates history details, while the PC index table 

and the address index table maintain correlations from the PC and 

data address stream viewpoints respectively. A prefetching 

implementation can access these two tables to obtain the required 

correlations as necessary. Figure 1 illustrates the general design of 

DAHC and a high-level view of how it can be applied to support 

various prefetching algorithms. 

 

Figure 1. DAHC general design and high-level view 

The detailed design of the DAHC is shown in Figure 2 through an 

example. The DAH table consists of PC, PC_Pointer, Addr, 

Addr_Pointer and State fields. PC and Addr fields store the 

instruction address and data address separately. The PC_Pointer 

and Addr_Pointer point to an entry where the last access from the 

same instruction or the last access of the same address is located. 

Therefore, PC_Pointer and Addr_Pointer link all accesses from the 

instruction stream and data stream perspectives. This design offers 

the fundamental mechanism to detect potential correlations and 

access patterns. The State field maintains state machine status used 

in prefetching algorithms. Various algorithms could occupy 

different bits of this field for maintaining their own states. The 

length of this field is implementation dependent, and the usage is 

decided by prefetching strategies. 

The PC index table has two fields, PC and Index. The PC field 

represents the instruction address, which is a unique index in this 

table. The Index field records the entry of the latest data access in 



the DAH table from the instruction stored in the correspondent PC 

field. It is the connection between the PC index table and the DAH 

table. The address index table is similarly defined. For instance, in 

Figure 2, the DAH table captured four data accesses, three of them 

issued by instruction 403C20 (stored in the PC field) and one by 

instruction 4010D8. The instruction 403C20 accessed data at 

address 7FFF8000, 7FFF8004 and 7FFF800C in sequence, which 

is shown through the Addr and PC_Pointer fields. The instruction 

403C20 and 4010D8 are also stored in the PC index table, and the 

corresponding Index field tracks the latest access from the DAH 

table, which are entry 3 and 1 respectively. The address index table 

keeps each accessed address and the latest entry, as shown in the 

bottom left of the figure, thus connecting all the data accesses on 

the basis of the address stream. Both PC index table and address 

index table can be implemented in a variety of ways including a 

fully associative structure and a set-associative structure. Notice 

that DAHC design is general and it does not imply any restriction 

to the system environment. It works in CMP or SMT environment, 

as well as in multiple applications environment. 

 

Figure 2. DAHC blueprint: PC index table, address index table 

and DAH table 

Figure 3 shows a snapshot of the DAHC after capturing more data 

accesses. The PC index table, address index table and DAH table 

are updated. The latest access entries for instruction 403C20 and 

4010D8 become index 9 and 8, respectively. The address accessed 

and the corresponding entry are updated in the address index table. 

In this case, a complex structured stride pattern of (4, 8, 4, 8) is 

detected for instruction 403C20 after examining address 

7FFF8000, 7FFF8004, 7FFF800C, 7FFF8010 and 7FFF8018; 

therefore, data at address 7FFF801C and 7FFF8024 could be 

prefetched to memory in advance to avoid cache misses when 

7FFF801C and 7FFF8024 are accessed as predicted. Such a 

complex structured pattern is a general case of stride pattern. 

However, the conventional stride prefetching approach [3] is unable 

to detect it without the DAHC support. This example also shows 

an address correlation between 100003F8 and 100003FA, which is 

often observed and utilized for prediction in the Markov 

prefetching algorithm [10] . The following section discusses data 

prefetching methodologies based on the proposed DAHC. 

 

Figure 3. DAHC snapshot 

2.2 DAHC-based Data Prefetching 
Mechanisms 

2.2.1 Stride Prefetching 
Stride prefetching predicts future references based on strides of 

recent references. This approach monitors data accesses and detects 

constant stride access patterns. Stride prefetching is usually 

implemented with a Reference Prediction Table (RPT) [3][7] as 

shown in Figure 4. RPT acts like a separate cache and holds data 

reference information of recent memory instructions. Since stride 

prefetching involves tracking the difference between two 

consecutive accesses and predicting the next access based on the 

stride, it is straightforward to design such an RPT table for stride 

prefetching implementation. Each entry in RPT is the instruction 

address, and it contains the last access address, the stride and the 

state transition information to predict future accesses. The right part 

of Figure 4 shows the state transitions. Once a pattern enters steady 

state or remains at steady state, which means a constant stride is 

found, a prefetch is triggered. The prefetched data address is simply 

calculated by adding the stride to the previous address. 

Although RPT is effective for capturing constant stride of data 

accesses, it has several limitations. The first limitation is that RPT 

only calculates the stride between two consecutive accesses. It is 

hard to detect variable strides and impossible to find complex 

patterns, such as a repeating pattern of length n (e.g., 2, 4, 8, 2, 4, 



8, …). Those complex patterns are common in user-defined data 

types. The second limitation is that RPT only tracks the last two 

accesses and omits many useful history references; thus, the 

accuracy in detecting patterns is relatively low. Those issues are 

addressed well in our proposed DAHC structure. Since DAHC 

tracks a large set of working histories, it is capable of detecting 

variable strides. Those detailed histories can also be used to 

improve the accuracy of stride detection. Moreover, DAHC makes 

detection of complex structure patterns possible, as discussed in 

previous examples. 

 

Figure 4. Reference prediction table and state transition 

diagram 

Stride prefetching can be implemented with the DAHC as follows. 

First, when a data access happens at monitoring level and is tracked 

by added DAHC component and related logic (see Section 3.1 for 

more details), the instruction address is searched for in the PC index 

table. If the instruction address does not match any entry in the PC 

index table, which means it is the first time that we see this 

instruction address in current working window, no prefetching 

action is triggered. If the instruction address matches one entry (it 

will match only one entry because the entries in index tables are 

unique), we follow the index pointer to traverse previous access 

addresses and detect whether a strided pattern or a structured 

pattern is present. If a pattern is detected, one or more data blocks 

are prefetched to data cache or a separate prefetch cache. The 

prefetching degree and prefetching distance can vary depending on 

the actual implementation. Finally, a new entry with this data access 

is created and inserted into the DAH table. The PC index table and 

address index table are updated correspondingly. Notice that the 

approach described above is enhanced stride prefetching with 

detection of variable and complex stride patterns. The conventional 

stride prefetching [3][7] can be implemented by detecting constant 

strides only. 

2.2.2 Markov Prefetching 

Markov prefetching is another classical prefetching strategy. The 

Markov prefetching algorithm builds a state transition diagram 

through past data accesses. The probability of each transition from 

one state to another state is calculated and updated dynamically. 

The algorithm assumes the future data accesses might repeat the 

histories. Therefore, once a new data access is captured, the future 

references predicted from the state transition diagram are 

prefetched in advance. For instance, Figure 5 shows the correlation 

table and state transition diagram for the data access stream 

7FFF8000, 1010FF00, 10B0C600, 7FFF8000, 7FF3CA00, 

7FFF8000, 10B0C600 and 7FF3CA00. 

 

Figure 5. Markov prefetching correlation table and state 

transition diagram 

The conventional Markov prefetching strategy treats all history 

accesses with the same weight. In practice, we usually give the 

highest weight to the latest access. This approach is essentially a 

combination of Markov model and LAST model [6]. The rationale 

is that the next data access is most probably the one that had 

followed the current access in the nearest past. For example, if we 

have a sequence of accesses to address A, B, A, C, D, A, then it is 

likely that the next access is C. With DAHC support, Markov 

prefetching can be implemented as follows. First, the data reference 

address is searched for within the address index table. If the newly 

accessed address does not match any existing entries, it is simply 

inserted into the DAH table. The PC index and address index table 

are also updated. If it matches an entry in the address index table, 

then we insert it to the DAH table and walk through the DAH table 

following the index and address pointer as shown in Figure 6. Each 

address next to these entries we visit is a prefetching candidate 

because each of this address was immediately accessed following 

the present access address in histories. Similar as in stride 

prefetching, different prefetching degree and prefetching distance 

can be supported depending on the actual implementation. If the 

prefetching degree is greater than one, we fetch multiple continuous 

data addresses following these entries we visit. We can also increase 



prefetching distance to initiate multiple visits. Continuing with the 

previous example and as shown in Figure 6, if a new data access 

address is 10B0C600, then a new entry is inserted into the DAH 

table at index 7, and the address index table is updated. After we 

walk through the DAH table following index 7, pointer 5 and 

pointer 2, data at address 7FF3CA00 and 7FFF8000 are prefetch 

candidates if we set prefetching degree as one and prefetching 

distance as two. Notice that Markov prefetching builds state 

transition based on data addresses. It does not need to use the state 

field. 

 

Figure 6. Markov prefetching with DAHC 

2.2.3 Aggressive Prefetching Strategies 
Since the DAHC maintains recent accesses in detail and the 

correlation among them, it is more powerful than supporting 

traditional prefetching approaches such as stride prefetching and 

Markov prefetching. It can support many other history-based 

prefetching strategies like more aggressive prefetching algorithms. 

It is an easy task to implement aggressive strategies with the DAHC 

because the DAHC is designed to support aggressive strategies 

naturally. The Multi-Level Difference Table (MLDT) prediction 

algorithm is such a representative aggressive strategy [21]. This 

prediction strategy forms a difference table of depth d of recent data 

accesses. Figure 7 demonstrates an example of the difference table. 

If a constant difference can be found in the first depth, which means 

a constant stride is found among data access histories, then the kth 
future access from access Ar is predicted as *A A k Br k r= ++ , 

where B is the constant difference among accesses. Some 

polynomial formula is used to predict the future access for general 

cases. For example, if a constant difference is found in the third 

depth, the future access is predicted as  

* ( 1)* *1 22
k kA A k B C M Dr k r r r k

+
= + + ++ − − . 

Here Mk = 2* ( 1) * ( 2)
6
k k k k− − + , where k = 1, 2…  

 

Figure 7. Example of difference table 

MLDT strategy is similar to existing stride prefetching but is more 

aggressive since it searches references up to depth d. The stride 

prefetching is the special case where depth equals one. In addition, 

this method finds sets of repeating differences and ultimately finds 

the actual pattern in the accessing structures with variable stride 

data access patterns. For variable stride patterns, MLDT searches 

for regularity among data references by finding a deeper difference 

table. It can also be extended to find repeating sets of strides (e.g. 4, 

8, 4, 4, 8, 4, 4, 8, 4…) at each level of difference table. Our 

proposed DAHC provides an implementation approach for the 

MLDT prefetching algorithm. First, when we see a data access at 

monitoring level, we check this access’s instruction address with 

the PC index table. We update the DAH, PC index and address 

index tables as necessary. Second, we follow the index pointer and 

walk through the DAH table to find out previous accesses. These 

operations are similar as in stride prefetching case. The difference 

between MLDT prefetching and stride prefetching is that multiple 

level differences are calculated to detect if any constant stride, 

variable stride or complex structure pattern exists in each level, 

which means we perform a stride prefetching at each stride 

difference level. If a pattern is detected at some level, we stop 

going to further levels. If we continue to the further level, we 

calculate the strides of next level and they become the strides we 

deal with. Therefore, we always work with one level of stride 

similarly as in the conventional stride prefetching case. Figure 3 

shows an example where a complex structure pattern (4, 8, 4, 8) is 

detected when we perform the MLDT prefetching with the DAHC. 

2.3 Implementation Issues 
The DAHC is straightforward and an effective prototype design of 

a prefetching-dedicated structure. It is a cache for data access 

information compared with conventional cache for instructions or 

data. The proposed DAHC can be placed at different levels for 

various desired data prefetching. For instance, it can be used to 



track all accesses to first level cache and to serve as a L1 cache 

prefetcher. It can also be placed at the second level cache and 

serves as a L2 cache prefetcher only. The straightforward design 

makes the implementation uncomplicated. The hardware 

implementation of the DAHC should be a specialized physical 

cache, like victim cache or trace cache. The PC index table and the 

address index table can be implemented with any associativity 

such as 2-way or 4-way. Since the index tables usually have less 

valid entries than the DAH table, it is unlikely that some entry is 

replaced due to a conflict miss. Even if a conflict miss occurs, it 

does not affect the correctness except discarding some access 

history. The DAH table can be implemented with a special 

structure where history information can be stored row by row and 

each row can be located by using its index. The logic to fill/update 

the DAHC comes from the cache controller. The cache controller 

traps data accesses at the monitored level and keeps a copy of the 

access information in the DAHC. If the DAH table is full, a victim 

entry will be selected and evicted out. The PC index table and the 

address index table are updated as well for consistency. The 

required DAHC size for normal applications’ working set is trivial. 

For instance, if we suppose a DAHC with 1024 entries is 

implemented, which is a reasonable window size for a regular 

working set, then the required DAHC size is about 22KB. Our 

experiments simulated DAHC functionalities, and the conclusion 

is that DAHC is feasible in terms of hardware implementation. 

3. SIMULATION AND PERFORMANCE 
ANALYSIS 
We have conducted simulation experiments to study the feasibility 

of our proposed generic prefetching-dedicated cache, DAHC, for 

various prefetching strategies. Stride prefetching, Markov 

prefetching and MLDT aggressive prefetching algorithms were 

selected for simulation. This section discusses simulation details of 

DAHC-based data prefetching and presents the analysis results. 

3.1 Simulation Methodology 
The SimpleScalar simulator [1] was enhanced with data prefetching 

functionality to demonstrate how different prefetching algorithms 

can be implemented with the DAHC. The SimpleScalar tool set 

provides a detailed and high-performance simulation of modern 

processors. It takes binaries compiled for SimpleScalar architecture 

as input and simulates their execution on provided processor 

simulators. It has several different execution-driven processor 

simulators, ranging from extremely fast functional simulator to a 

detailed and out-of-order issue simulator, called the sim-outorder 

simulator. 

We chose the sim-outorder simulator for our experiments. Figure 8 

shows our modified SimpleScalar simulator architecture. We 

introduced two new modules: DAHC module and Prefetcher 

module. The DAHC module simulated the functionality of the 

proposed DAHC. Monitored data accesses were stored in the 

DAHC. The DAHC cache controller is responsible for updating all 

three tables. The Prefetcher module implemented the prefetching 

logic and different prefetching algorithms. In this module, a 

prefetch queue, similar to the ready queue of the original 

sim-outorder simulator, was created to store prefetch instructions. 

Prefetch instructions are similar to load instructions with a few 

exceptions. The first exception is that the effective address of each 

prefetch instruction is computed based on a data access pattern and 

prefetching strategy instead of computing the address using an 

integer-add functional unit. Another exception is that when prefetch 

instructions proceed through the pipeline, it is not necessary to walk 

through writeback and commit stages, and prefetch instructions do 

not cause any exceptions (prefetch instructions are silent). These 

similarities and differences provide us the guidelines to handle 

prefetch instructions. The implementation of prefetching strategies 

based on the DAHC follows the discussion given in Section 2.2. 

 

Figure 8. Enhanced SimpleScalar simulator 

In addition to these two new modules, several existing modules 

were enhanced to incorporate the DAHC and data prefetching 

functionality. First, the simulator core module was revised to 

support the DAHC and Prefetcher modules. The pipeline was 

modified to have prefetching logic. The first improvement is each 

ready-to-issue load instruction is tracked to DAHC after the 

memory scheduler checks data dependencies. The prefetcher 

performs access pattern detection based on prefetching algorithms 



and makes prediction for future data accesses once a pattern is 

detected. Prefetch instructions are thus enqueued to prefetch queue. 

Another improvement is in instruction issue phase. During this 

phase, when we have available issue bandwidth, i.e. if there is idle 

bandwidth after issuing normal instructions, the prefetch queue is 

walked through and prefetch instructions are allocated with 

functional units to fetch the predicted data to data cache. Second, 

the memory module was modified to introduce a prefetch command 

to the memory component in addition to a load and a store 

command. The cache module was augmented with prefetch access 

handlers. Prefetch accesses can be handled similarly to load 

instructions except prefetch accesses do not cause any exceptions. 

Some additional statistics counters were added for measuring the 

effectiveness of prefetching. 

Table 1. Simulator configuration 

Issue width 4 way 

Load store queue 64 entries 

RUU size 256 entries 

L1 D-cache 32KB, 2-way set associative, 64 byte 

line, 2 cycle hit time 

L1 I-cache 32KB, 2-way set associative, 64 byte 

line, 1 cycle hit time 

L2 Unified-cache 1MB, 4-way set associative, 64 byte 

line, 12 cycle hit time 

Memory latency 120 cycles 

DAHC 1024 entries 

Prefetch queue  512 entries 

3.2 Experimental Setup 
We use the Alpha-ISA and configure the simulator as a 4-way issue 

and 256-entry RUU processor. The level one instruction cache and 

data cache are split. We configure L1 data cache as 32KB, 2-way 

with 64B cache line size. The latency is 2 cycles. L2 unified cache 

is configured as 1MB, 4-way with 64B cache line size. The latency 

of L2 cache is 12 CPU cycles. The DAHC is set as 1024 entries, and 

the replacement algorithm is FIFO. Both index tables are simulated 

with 4-way associative structures. We assume each DAHC access, 

such as a lookup within index tables, costs one CPU cycle. This 

should be a reasonable assumption for a small 4-way cache. We also 

assume a traversal within DAH table costs one cycle. If a 

prefetching algorithm needs to traverse multiple locations to make 

predictions, it consumes multiple cycles. The prefetch queue is set 

as 512 entries. Table 1 shows the configuration of our simulator. 

3.3 Experimental Results 

3.3.1 Matrix Multiplication Simulation 
We first set up experiments to test the enhanced SimpleScalar 

simulator with DAHC-based data prefetching functionality. The 

prefetching strategy was set as the MLDT algorithm. Matrix 

multiplication was selected as the application because it is widely 

used in scientific computing and the correctness of its output results 

is easy to verify. The size of matrices was set as 200 200× . We 

randomly generated the input, conducted simulation and then 

compared the output result with standard output to verify the 

correctness of the enhanced simulator. The correctness was also 

validated through checking the number of instructions (normal 

instructions) issued by the original and the enhanced version. The 

simulation results are shown in Table 2. The simulation time is the 

elapsed time for simulation (how much time the simulator spent in 

simulating). The results confirm that the enhanced SimpleScalar 

simulator worked correctly, and cache misses were reduced 

significantly through DAHC-based data prefetching. 

Table 2. Simulation results for matrix multiplication 

 
# of 

instructions

Simulation 

Time 

L1 cache 

misses 

L1 

replacements

Original 622140213 12633 1031047 1030023 

Enhanced 622140213 13469 28772 1084326 

3.3.2 SPEC CPU2000 Benchmark Simulation 
We conducted several sets of SPEC CPU2000 benchmark [24] 

simulation for performance evaluation. Twenty-one of the total 

twenty-six benchmarks were tested successfully in our 

experiments. The other five benchmarks (apsi, facerec, fma3d, 

perlbmk and wupwise) had problems working under the 

SimpleScalar simulator (even in the original simulator) and did not 

finish the test. 

The target of the first set of experiments was to compare the 

performance gain of traditional RPT-based stride prefetching 

approach and enhanced DAHC-based stride prefetching approach. 

Figure 9 shows the experimental results. The first bar in each test 

represents the level-one cache miss rate of the base case in which 

no prefetching was performed. The second and the third bar 



represent the miss rate in the case of RPT-based conventional 

stride prefetching and enhanced DAHC-based stride prefetching, 

respectively. As shown in Figure 9, the traditional approach 

reduced miss rates, and the enhanced approach reduced miss rates 

further. The rationale comes from that, with DAHC support, 

enhanced stride prefetching is able to detect complex structured 

patterns, and in addition, the prediction accuracy was improved 

through observing more histories. In contrast, many important and 

helpful histories were not considered and not fully utilized in 

traditional stride prefetching based on RPT. 
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Figure 9. Stride prefetching with RPT vs. stride prefetching 

with DAHC 

Figure 10 compares L1 cache miss rates of all tested SPEC 

CPU2000 benchmarks for the base case and three prefetching 

cases. This set of experiments showed that DAHC-based data 

prefetching worked well and the cache miss rates were reduced 

obviously in most cases. Among the three prefetching strategies, 

both stride and aggressive MLDT algorithms reduced a large ratio 

of miss rates. The MLDT algorithm was slightly better than stride 

prefetching because it searches more levels to find patterns among 

accesses. The Markov prefetching performed worse than stride and 

MLDT algorithms in most cases. One possible reason is that 

Markov prefetching requires a large set of states to characterize 

the probability of transition among accesses well. If the state 

diagram space is limited, it is hard for the Markov prefetching to 

guarantee the accuracy and coverage. Figure 11 illustrates L1 

cache replacement rate in these tests. Cache pollution is 

considered a side effect of prefetching. An incorrect prediction 

brings a useless data block to cache and might replace useful data. 

With DAHC support, the prefetching accuracy increases by taking 

advantage of all available history information. As we can see from 

Figure 11, the replacement rate only increased slightly in 

DAHC-supported data prefetching. 
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Figure 10. L1 cache miss rate of SPEC2000 benchmarks 
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Figure 11. L1 cache replacement rate of SPEC CPU2000 

benchmarks 

Figure 12 shows the overall IPC (Instructions Per Cycle) 

improvement brought by three prefetching strategies: stride, 

Markov and MLDT prefetching based on DAHC. The 

experimental results demonstrated that the IPC value was 

improved considerably in most cases. The figure also reveals that 

even though MLDT achieved the best cache miss rate reduction in 

almost all cases, the IPC improvement was not always best. The 

stride prefetching outperformed the MLDT in the applu, crafty, 

gcc, gzip, lucas, mcf, parser, swim, twolf and vpr benchmarks. 

This is because MLDT involves more prefetching overhead for its 

aggressiveness due to more DAHC accesses. When we measured 

the overall system performance gain in IPC value, it paid for its 



additional overhead compared to stride prefetching. Another 

interesting fact shown in Figure 12 is that Markov strategy 

outperformed the other two in the bzip2, eon and vortex 

benchmarks. These facts confirmed that different strategies are 

desired for different applications to obtain the best prefetching 

benefits. It is necessary to support diverse algorithms and adapt to 

them dynamically based on distinct application features, and our 

proposed DAHC provides the essential structure support for 

adaptive strategies. Algorithm designers can utilize DAHC 

functionalities to come up with and implement adaptive 

algorithms. 
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Figure 12. IPC value of SPEC CPU2000 benchmarks 

simulation 

4. RELATED WORK 
There are extensive research efforts in data prefetching area. Data 

prefetching is frequently classified as software prefetching and 

hardware prefetching [22]. Software prefetching instruments 

prefetch instructions to the source code either by a programmer or 

by a complier during the optimization phase. Recent work in helper 

threads [19], software-based speculative precomputation [12] [17] and 

data-driven multithreading [18] are such examples. The techniques 

include simple prefetching, unrolling the loop and software 

pipelining [22]. Software prefetching is usually used for large 

amount of loops. Such loops are very common in scientific 

computation, and these loops often exhibit poor cache utilization 

but have predictable memory-referencing patterns, and thus provide 

excellent prefetching opportunities. 

Hardware-based prefetching does not require modifications to 

binary or source code and can benefit directly existing binary code. 

There is no need for programmer or compiler’s intervention. 

Commonly used hardware prefetching techniques include 

sequential prefetching, stride prefetching and Markov prefetching. 

Sequential prefetching [4][5] fetches consecutive cache blocks by 

taking advantage of locality. The one-block-lookahead (OBL) 

approach automatically prefetches the next block when an access of 

a block is initiated. However, the limitation of this approach is that 

the prefetch may not be initiated early enough prior to processor’s 

demand for the data to avoid a processor stall. To solve this issue, a 

variation of OBL prefetching, which fetches k blocks (called 

prefetching degree) instead of one block, is proposed. Another 

variation is called adaptive sequential prefetching, which varies 

prefetching degree k based on the prefetching efficiency. The 

prefetching efficiency is a metric defined to characterize a 

program’s spatial locality at runtime. The stride prefetching 

approach [3] observes the pattern among strides of past accesses and 

thus predicts future accesses. Various strategies have been proposed 

based on stride prefetching, and these strategies maintain a 

reference prediction table (RPT) to keep track of recent data 

accesses. RPT provides a practical approach to implement stride 

prefetching, but the limitation is that only constant strides are 

recognizable. To capture repetitiveness in data reference addresses, 

Markov prefetching [10] was proposed. This strategy assumes the 

history might repeat itself among data accesses and build a state 

transition diagram with states denoting an accessed data block. The 

probability of each state transition is maintained so that the most 

probable predicted data are prefetched in advance and the least 

probable predicted data references can be dropped from prefetching. 

Other recent efforts in hardware prefetching include Zhou’s 

dual-core execution (DCE) approach [23], Ganusov et al’s future 

execution (FE) approach [8], Sun et al’s data push server 

architecture [21] and Solihin et al.’s memory-side prefetching [20]. 

DCE and FE were proposed specifically for multi-core architecture. 

They use idle cores to pre-execute future loop iterations to warm up 

cache (bring data to cache in advance). The data push server 

architecture utilizes a separate processing unit such as a separate 

core to conduct heuristic prefetching. The memory-side 

prefetching approach uses a memory processor residing within 

main memory to observe data access histories and prefetch data 



proactively upon prediction. It is usually distinguished as push 

based prefetching from traditional pull based prefetching.  

Without the benefit of programmer or compiler hints, the 

effectiveness of hardware prefetching largely relies on the accuracy 

of prediction strategies. Incorrect prediction brings useless blocks 

into cache, consumes memory bandwidth and might cause cache 

pollution. To increase prefetching accuracy and coverage, hardware 

prefetching strategies should be more aggressive. On the other hand, 

it is desired that data prefetching could support various algorithms 

and make dynamic selections because patterns are decided by 

application features and different prefetching algorithms are 

required for assorted applications. Our proposed generic and 

prefetching-dedicated DAHC cache was designed to resolve these 

issues. There are a few recent efforts in this area. Nesbit and Smith 

proposed a global history buffer for data prefetching in [14] and 

[15]. The similarity between their work and our work is that both 

attempt to facilitate data prefetching with a single structure. Their 

approach has demonstrated the feasibility of supporting different 

prefetching algorithms and achieved considerable performance 

gains. However, our work has substantial differences with theirs. 

First of all, we focus on providing a generic and dedicated cache for 

prefetching purposes and we argue that such a generic cache is a 

must to fully achieve prefetching benefits that hide access delay. 

Second, the global history buffer scheme is unable to support 

various algorithms simultaneously at runtime, and therefore, 

switching to different algorithms adaptively is impossible. Our 

work fully supports many history-based algorithms, as well as 

adaptive approaches, because we maintain two stream viewpoints 

concurrently. Third, we focus on supporting both algorithms’ 

adaptability and aggressiveness. We believe that this strategy will 

help researchers fully utilize prefetching advantages. To our best 

knowledge, there is no other work targeting these directions. 

Another work closely related to this study is the instruction pointer 

based prefetcher developed by Intel [7]. The IP prefetcher is a 

RPT-like prefetcher; thus, it suffers the limitation that it only works 

for constant stride prefetching. Nevertheless, the Intel IP prefetcher 

provides us helpful guidelines in implementing the DAHC in 

hardware. 

5. CONCLUSIONS AND FUTURE WORK 
As memory performance lags far behind processor speed, data 

access delay has a severe impact on overall system performance. 

This study targeted to resolve this issue through fully exploiting 

data prefetching benefits with a generic and prefetching-dedicated 

cache. Our main contributions in this study include: 1) introducing 

a novel concept of a prefetching-dedicated cache considering both 

hardware technologies and application feature trends; 2) providing 

the design of a prefetching cache structure DAHC, and simulating 

its functionalities with an enhanced SimpleScalar simulator; and 3) 

presenting DAHC-associated data prefetching methodologies and 

demonstrating its support for prefetching algorithms with three 

representative examples, stride prefetching, Markov prefetching 

and an aggressive prefetching algorithm, MLDT algorithm. Our 

simulation experiments showed that the DAHC is feasible and that 

DAHC-based data prefetching achieved considerable cache miss 

rate reductions and IPC improvements. 

We have demonstrated the power of the DAHC in supporting 

diverse prefetching algorithms in this study. In our future research, 

we plan to extend this work in various aspects. One of them is 

adapting to different prediction algorithms based on the data 

requirements of applications and making such decisions 

dynamically at runtime. We plan to define efficiency criteria for 

prefetching algorithms and to provide feedback for different 

algorithms and then to choose the best algorithm at runtime. 

Another of our future works will be to devise even more 

comprehensive prefetching strategies to further explore the 

DAHC’s potentials. 
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