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CHAPTER I

INTRODUCTION

1.1 An Overview

The goal of this research is the design and development

of an instructional planner that is responsible for

determining what to do next at each point during a tutorial

session. The planner is a central component of an intelligent

tutoring system (ITS) being developed as a joint project of

Rush Medical College and Illinois Institute of Technology.

The goal of this research is to develop an ITS, CIRCSIM-

TUTOR, that assists first year medical students to learn the

the behavior of the cardiovascular reflex system that

stabilizes blood pressure. Since the students have already

attended lectures about the domain, CIRCSIM-TUTOR assumes

prerequisite knowledge and assists them to correct their

misconceptions in the problem solving.

At any time in the tutoring session, the planner has to

decide what subject matter to focus on, how to present it to

the student and when to interrupt the student's problem-

solving activity [Dede, 1986; Kearsley, 1987]. For example,

the planner has to decide whether to ask a question,

introduce a new topic, remediate a misconception, etc.,

during the tutoring session. This pedagogical decision making

is very complex and there is no one correct choice due to the

dynamic changes in the student's learning state. Hence, the
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decision must be based on many different knowledge sources;

knowledge about the domain, knowledge about the student, and

pedagogical knowledge.

Recent approaches to designing tutoring systems view the

decision making process as a planning problem [Peachey and

McCalla, 1986; Macmillan et al., 1988; Brecht et al., 1989;

Murray, 1990]. Adaptive planning techniques in the tutoring

domain enable the generation of customized plans for

individualized instruction. Among the recent research

systems, MENO-TUTOR [Woolf, 1984] represents an important

attempt at planning the discourse strategies observed in

human tutors, but it lacks global lesson goals [Murray,

1988]. This lack of global lesson goals limits the ability of

a system to generate globally coherent and consistent

instruction during the tutoring session. IDE-INTERPRETER

[Russell, 1988] is another attempt at planning the lesson

goals at various levels of abstraction, but this system lacks

power at the local diagnostic level. Thus, there is a need to

build an instructional planner that combines globally

coherent lesson goals with flexible local discourse plans.

In this research, I am building a planner that

integrates opportunistic control with sophisticated planning

methods; combining capabilities of lesson planning with

discourse planning. This planner is a dynamic instructional

planner that supports customized, globally coherent planned
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instruction, supports mixed initiative strategy, and has the

capability for replanning. This has required the invention of

multi-level instructional planning.

1.2 Evolution of Computer-Based Instruction at Rush

Computer Aided Instruction (CAI) in the cardiovascular

domain at Rush Medical College has evolved from HEARTSIM

[Rovick and Brenner, 1983], to CIRCSIM [Rovick and Michael,

1986], to the CIRCSIM-TUTOR prototype [Kim et al., 1989] and

finally to CIRCSIM-TUTOR over the last ten years.

HEARTSIM was a Plato program and CIRCSIM is a stand-

alone Basic program. The CIRCSIM-TUTOR prototype is a Prolog

prototype of our ITS designed and implemented by Kim [1989].

Its design is based on major ITS architecture, which includes

an expert module, a student model, a planner, and a

communication module. However, the prototype system still

does not possess all of the capabilities needed for an ITS.

It lacks natural language capabilities, it does not analyze

the student's misconceptions, and the instructional planner

is very primitive; a discourse planner could not be

implemented since complete discourse strategies for all the

primitive actions had not been developed, planning knowledge

is not explicitly represented as a separate module, and there

was no replanning capability so that the system could not

respond to student initiatives.
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CIRCSIM-TUTOR uses the same architecture as Kim's

prototype but includes complete student modelling,

instructional planning, and natural language understanding

and generation facilities. The role of my research is to

design and build a sophisticated instructional planner for

CIRCSIM-TUTOR, which can support all of the limitations of

the earlier systems.

1.3 Goals of the Thesis

The instructional planner in CIRCSIM-TUTOR has several

novel features.

First, the planner employs two different kinds of

instructional planning mechanisms: lesson planning and

discourse planning. Lesson planning is further divided into

goal generation, planning of strategies, and planning of

tactics to refine the goal into subgoals. Discourse planning

is implemented using a two level approach: pedagogical

decision making at the upper level and tactical discourse

state-based planning at the lower level. By combining these

two planning mechanisms, the planner can provide both

globally coherent instruction and flexible discourse response

to the student throughout the tutoring session.

Second, the planner has a dynamic planning capability;

it can generate plans, monitor the execution of the plans,

and replan when the student interrupts with a question during
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the tutoring session. The planner is dynamic; it generates

new plans and replans when necessary. By planning instruction

dynamically based on the inferred student model, the planner

can provide more adaptive instruction than the unplanned

instruction produced by CAI systems.

Third, the pedagogic knowledge is represented explicitly

as a set of rules, which allow the planner to fine tune the

plans dynamically and to modify the plans easily, rather than

requiring the human author to anticipate the plans. These

rules are used to generate lesson goals, strategies, and

tactics, and discourse management. The system interprets the

rules and comes back with an appropriate response to interact

with the students.

Fourth, the planner plans at different levels of the

hierarchy. This hierarchical planning technique reduces the

complexity of the planning process. This top-down plan

expansion technique has been implemented in several ITS

systems [Murray, 1990; Russell, 1988].

Fifth, the planner supports a mixed-initiative strategy

by allowing student initiatives during the tutoring session.

The planner needs to do replanning after it carries out the

student's request. We are currently investigating strategies

for responding to the student's initiative, and implementing

somewhat primitive responses.
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Finally, the planner is based on cognitive science

research into transcripts of human tutoring interactions.

From these transcripts, we extracted some possible strategies

and tactics, which we employ as heuristics in generating the

content of lesson plans and discourse strategies.

This thesis describes the implementation of the above

features in detail. CIRCSIM-TUTOR is written in Procyon

Common Lisp and runs on a Macintosh IIci computer.

1.4 Organization of the Thesis

This thesis is divided into eight chapters. Chapter II

describes the background of the system. The subject area of

CIRCSIM-TUTOR is cardiovascular physiology and the system

assists students to understand the behavior of the complex

negative feedback system. Then the chapter explains the

overall organization of the system, some important

constraints, and the effect of simultaneous student inputs.

Chapter III begins with a brief introduction to ITS: the

general structure and the issues involved in each module of

the ITS. Then I describe each component of CIRCSIM-TUTOR

briefly introducing functions and data structures.

Chapter IV presents a survey of literature related to

the study of Artificial Intelligence planning techniques and

the application of planning techniques in ITSs. Teaching



7

strategies, control mechanisms and chronological progress are

the main foci of this discussion. I also review some well

known ITSs with their contributions and limitations from the

planner's point of view.

Chapter V presents design issues for building the

planner: levels of planning and tutoring strategies. A short

tutoring session is displayed, which came from a transcript

of human tutor and student interaction. And then a short

scenario is described to explain how the system works. The

chapter concludes with a discussion of the overall

organization of the planner: lesson planning, discourse

planning, and plan monitoring.

Chapter VI discusses the lesson planner. It first

discusses the main features of the planner: goal generation

and plan generation. Each phase uses its own lesson planning

rules: goal generation rules and plan expansion rules. The

results of applying the rules are saved in stacks: a goal

stack and a subgoal stack. This chapter explains the

generation of the content of lesson plans in detail.

Chapter VII discusses the discourse planner. The

discourse planner controls the interaction between the tutor

and the student. The structure of the planner is a two level

discourse management network, which consists of a set of

states that represent tutorial actions. The control mechanism
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is separated into default and meta-rule transitions. The

chapter ends with a short trace of discourse transitions.

The thesis concludes in Chapter VIII with a discussion

of the significance of the planner, describes some of its

limitations, and gives suggestions for future research.
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CHAPTER II

THE BACKGROUND

2.1 Qualitative Reasoning

Qualitative reasoning or simulation [deKleer and Brown,

1984; Forbus, 1984; Kuipers, 1984] is an approach to problem

solving that reasons about the causal relationships that

structure our world. Qualitative simulation is a kind of

qualitative reasoning and qualitative reasoning operates on a

qualitative model. Forbus [1984] explains qualitative

reasoning with a steam boiler example: If the input

temperature is increased, what happens to the output

temperature? Anderson [1988] argues that qualitative

reasoning is the most demanding approach and essential to

produce a high performance tutoring system. He states that

qualitative modelling can maximize the pedagogical

effectiveness since it is human-like reasoning, although the

implementation effort is much larger than that required for

the traditional black box models or glass box models.

Among the recent research efforts, deKleer and Brown's

approach is interesting because it evolved within the last

phase of the SOPHIE project [deKleer and Brown, 1984]. Their

approach is referred to as a component centered approach

[Cohn, 1987], where a system is modelled by instantiating

components from a library, which are then connected together

explicitly. The relationships between the components are
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called confluences, and the entire system is modeled by a set

of confluences; cause and effect relationships or constraints

among the components. For example, assume a system that

consists of a set of components, such as a valve, an amount

of water, and a pressure. The system is originally in an

equilibrium state, and a disturbance is introduced (water

flow), then constraints are propagated until a new

equilibrium is reached.

This causal process may construct reasonable causal

explanations of how the system works. These problems are

similar to those of CIRCSIM-TUTOR, where a perturbation

occurs in a component of the system and the qualitative

changes propagate until the system again reaches an

equilibrium state. Another similarity is in its qualitative

quantity space, where {-, 0, +} are used to represent the

qualitative values (- represents a drop in the parameter

value, 0 no change, + an increase).

2.2 Subject Area

CIRCSIM-TUTOR is an approach to qualitative simulation

in cardiovascular physiology [Michael et al., 1990]. It is

designed to teach first year medical students about the

negative feedback system that controls the blood pressure.

The cardiovascular system consists of many mutually

interacting components, and the student must understand the

cause and effect relationships for each individual component
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of the system. Figure 1 shows a causal model of CIRCSIM-

TUTOR, called the Concept Map, designed by Michael and Rovick

[Kim et al., 1989]. Each box in the map represents a

physiological variable, such as SV for Stroke Volume and RAP

for Right Atrial Pressure. An arrow with "+, -" sign between

two boxes tells the direction of the causal effects and

whether the causal relationship between the connected

variables is direct or inverse. For example, a qualitative

change in one component of the system, a decrease in RAP,

directly causes a decrease in SV. This qualitative change

propagates to other adjacent components of the system

according to the propagation rule.

RV PIT

BVCBVRAP

SV

CC

CO MAP

BR-CNS

HR TPR

+

++

+

+

+

+

+ +

-

-

- - -

+

Figure 1. The Concept Map
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There are three stages in the human body's response to a

perturbation in the system that controls blood pressure. The

first stage is the Direct Response (DR) in which a

perturbation in the system will physically affect many other

parameters. The second stage is the Reflex Response (RR), in

which other parameters are affected by the negative feedback

mechanism to stabilize the blood pressure. The final stage is

the Steady State (SS), which is achieved as a balance between

the changes directly caused by the initial perturbation and

the further changes induced by negative feedback.

2.3 Organization

CIRCSIM-TUTOR begins with a brief introductory message

and then asks the student to choose any procedure from the

curriculum list. The curriculum (Figure 2) is stored as a set

of seven different experimental procedures designed by our

expert human tutors (JAM and AAR). Each procedure begins by

describing a perturbation of the cardiovascular system, and

asking the student to predict how the system variables will

respond to the perturbation by making qualitative entries in

the Prediction Table (see Figure 3); using a "+" sign to

represent an increase, a "-" for a decrease, and "0" to

indicate no change. The first column of the table is used to

predict the Direct Response (DR) of each variable to the

perturbation, the second is used for the Reflex Responses

(RR), and the third for the Steady State (SS).



1 3

List of Available Procedures

1. Decrease Arterial Resistance (Ra) to 50% of Normal.

2. Denervate the Baroreceptors.

3. Decrease Ra to 50% of Normal in a Denervated Preparation.

4. Hemorrhage: Remove 1.0 Liter of Blood.

5. Decrease Cardiac Contractility (CC) to 50% of Normal.

6. Increase Venous Resistance (RV) to 200% of Normal.

7. Increase Intrathoracic Pressure (PIT) to 2 mmHg.

8. Quit.

Figure 2. List of Available Procedures

Parameters

Cardiac Contractility

Mean Arterial Pressure

Stroke Volume

Heart Rate

Cardiac Output

Total Peripheral Resistance

Right Atrial Pressure

DR RR SS

-

-

0

-

0

0

-

Figure 3.  The Prediction Table
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When the student finishes predicting all seven

parameters in one column of the table, for example the DR

stage, the student's answers are compared with the correct

answers. If the student has made any errors, a natural

language tutoring session will begin, based on the result of

this evaluation in order to correct the student's

misconceptions.

2.4 System Constraints

There are some system variables that need to be

described; the procedure variable is the variable changed by

the perturbation; the primary variable is the first variable

in the Prediction Table affected by the procedure variable,

(in some cases the procedure variable is the primary

variable); the neural variables are the variables directly

under nervous system control. The rest of the variables we

call physical variables. The students are not allowed to

predict the variables in any arbitrary order, since there are

some constraints that they must follow. For example, the

constraints for DR are fairly complex:

Constraint DR1: The student must predict the primary 

variable first, and the value must be correct.

Constraint DR2: The student must predict the physical 

variables in the correct causal sequence.

Constraint DR3: The student may predict the neural 

variables at any time and in any order.
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The student receives a canned error message, when either

of the first two constraints is violated, and is told what to

do next. The purpose of forcing the student into the correct

sequence is to make sure the causal behavior of the system is

followed correctly. Neural variables can be entered at any

time since neural variables do not change during the DR

period except when one is a primary variable. The constraints

for the RR stage are designed to teach the students about the

effect of the baroreceptor reflex:

Constraint RR1: The student must predict either the 

neural variables or MAP first.

Constraint RR2: The student must finish predicting all 

the neural variables before predicting other 

physical variables.

Constraint RR3: The student must predict the physical 

variables in the correct causal sequence.

Finally, when predicting the SS stage, the student is

allowed to enter predictions in any arbitrary order since

there are no specific constraints for this stage.

2.5 Multiple Simultaneous Inputs

In a mixed-initiative type of ITS, the tutor and the

student share control over what happens next during a

tutoring session. Generally, in these systems the tutor

begins by posing a question and the student either responds
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to the question or takes the initiative. Sometimes this style

of tutoring leaves students confused and frustrated if they

do not have enough background in the domain knowledge, even

though there exists some type of tutoring strategy that

prevents students from getting too far off the track [Reiser,

1989]. Rather than blindly walking through the domain, it is

much more effective if the tutor provides a simulated problem

situation in the domain for the student before the actual

interactive tutoring begins.

CIRCSIM-TUTOR begins with a Prediction Table, in which

the student is asked to make qualitative predictions about

the behavior of the system given a particular perturbation.

After the student finishes all the predictions, the tutor

analyzes the student's answers and shows what errors were

made if any. Based on a careful analysis of these errors, the

tutor can generate a global lesson plan, and interactive

tutoring begins by using a mixed-initiative Socratic strategy

in natural language. Thus, the Prediction Table provides a

qualitative simulation environment for the student by

requiring multiple simultaneous inputs (multiple responses to

different aspects of a problem provided by the student in a

single uninterrupted turn) before interactive tutoring

begins.

There are several benefits of adapting this kind of

design strategy. First, the tutor receives enough initial
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knowledge about the student so that it can narrow the focus

for tutoring. It can also detect some common student

misconceptions [Michael et al., 1991] or bugs. Second, the

students can see a simple mental model of the entire domain

at the start, which prevents the students from getting too

far off the track. Elsom-Cook [1988] argues that using

multiple pedagogic strategies can provide a very powerful

learning environment. CIRCSIM-TUTOR begins with a coach-like

environment during the Prediction Table entry, and then moves

to Socratic tutoring for the interactive tutoring session.

This flexibility in adapting to the student's needs at

different stages provides another benefit.
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CHAPTER III

ORGANIZATION OF CIRCSIM-TUTOR

The goal of constructing an Intelligent Computer Aided

Instruction (ICAI) system or an Intelligent Tutoring System

(ITS) is to develop an adaptive instructional system by

applying Artificial Intelligence principles and techniques.

Traditionally ICAI systems have been separated into four

major components: the domain knowledge base, a collection of

instructional strategies and an algorithm for applying them,

a student modeler, and an interface. Since a major goal of

CIRCSIM-TUTOR is to carry on a natural language dialogue, we

have divided the interface into three pieces, an input

understander, a text generator, and a screen manager. As a

result, CIRCSIM-TUTOR has seven submodules.

3.1  Intelligent Tutoring Systems

Computer Aided Instruction (CAI) systems were first

developed by educational researchers and widely used during

the 1950's and 1960's. Carbonell [1970] defined a second type

of CAI, Intelligent Computer Aided Instruction, initiated by

computer scientists (see Figure 4). It aims to teach the

individual student more effectively and adaptively than

traditional CAI systems, by applying AI principles and

techniques. Typical ICAI systems consist of four main

components. For each component of the system, various AI
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techniques have been applied to improve the performance of

the system.

Computer
Science (AI)

  Psychology
 (Cognition)

Education
(CAI)

ICAI

Cognitive Science

Figure 4. ICAI Domains (adapted from [Kearsley, 1987] p. 4)

3.1.1 Components of an ICAI. In the early form of CAI,

all he components were combined in a single structure. This

combined structure caused a number of problems when the

system was modified. It was sometimes necessary to

restructure the whole system. Thus, there was a need to

divide the system into separate components to represent the

way the tutor and the student act in a learning situation:

the knowledge to be taught, the instructional module, the

communication method, and a mechanism for modeling the

student. A number of researchers [Carr and Goldstein, 1977;

Sleeman and Brown, 1982; Barr and Feigenbaum, 1982] separated
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the system into four different modules: the domain expertise

module, the student model module, the tutoring module, and

the communication module.

As we designed CIRCSIM-TUTOR we adapted these four major

components of an ITS and divided the domain expertise into a

domain knowledge base and a problem solver. We also separated

the communication module into three interface submodules, so

that CIRCSIM-TUTOR consists of seven major modules: a domain

knowledge base, a problem solver, a student modeler, an

instructional planner, an input understander, a text

generator, and a screen manager. Figure 5 shows the overall

architecture of CIRCSIM-TUTOR. Details of each component will

be explained in the following sections.

3.1.2 Applying AI Techniques in ICAI. Early efforts to

apply AI techniques in ICAI systems focused on the

representation of the subject matter, which was implicitly

encoded in the program in early CAI systems. Various

knowledge representation techniques, such as semantic

networks, rules, and scripts, have been applied. But the most

important progress is to create an explicit and separate

domain knowledge base. This development allows easy

modification of the domain knowledge without reformulating

the whole system.
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Figure 5.  The Structure of our System

Another AI technique, natural language generation, plays

a very important role in ICAI systems. Users can communicate

with the system by asking a question and answering the
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question in a language they already know. SCHOLAR [Carbonell,

1970], SOPHIE [Brown et al., 1982], and WHY [Stevens et al.,

1982] adapted natural language interaction. In addition, it

can provide context-dependent tutoring [Woolf and McDonald,

1984].

From the mid-1970's, ICAI systems focused on the

analysis of the student's learning status. Generally well-

defined expertise does not guarantee an expert teacher.

Without exact knowledge about what the student knows and does

not know for a given problem, the system cannot provide

adaptive instruction. Hence, AI techniques were used to

evaluate the knowledge status of the student [Carr and

Goldstein, 1977; Brown and Burton, 1978]. This model can be

used effectively for deciding the next appropriate tutoring

strategy by the tutoring module.

Finally, AI techniques are applied to represent the

expert's pedagogical knowledge. In traditional CAI systems,

the tutoring strategy is procedurally hard-coded in the

program. It is structured as a branching program; if the

student answers A then go to this section, if the student

answers B then move to the next section. If the system needs

to contain all the possible answers from the student, the

system may become very complex. Hence, the system is

expensive to build and hard to modify, because the system is

greatly anticipated by the effort of a human author. Using AI
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techniques, such as instructional planning, the tutorial

strategies can be represented explicitly and automatically.

3.2 Domain Expertise

3.2.1 Domain Knowledge Base. The builder of a domain

knowledge base faces two very important issues; what

knowledge should it contain and how should that knowledge be

encoded [Wenger, 1987]. There are three different categories

of knowledge encoding [Anderson, 1988]: the black box model,

the glass box model, and the cognitive model. The cognitive

model is the approach that CIRCSIM-TUTOR is attempting to

implement. The domain knowledge is decomposed into

meaningful, human-like components and a causal reasoning

mechanism is applied to it, so that the system can teach the

student to solve problems in a human-like manner. For a

detailed discussion of this problem see Wielinga and Breuker

[1990].

 Domain knowledge can be divided into three different

types of knowledge to be tutored: declarative knowledge,

procedural knowledge, and knowledge of tutoring heuristics.

Declarative knowledge includes domain concepts and causal

relationships between them. Procedural knowledge involves the

rules for using the concepts in solving problems. For

example, in CIRCSIM-TUTOR, a rule that figures out the actual

determinant of SV is if the primary variable is RAP, then RAP

is the actual determinant of SV. Knowledge of tutoring
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heuristics must be extracted from the experience of domain

experts; it involves ways of teaching the student about the

particularly difficult points in the domain.

We have built a small domain knowledge base encoded as a

network of frames (see Figure 6). Each frame represents

domain concepts and how they relate to each other causally.

There are three conceptual levels in the domain knowledge;

level 0 consists of the definitions and static facts, level 1

consists of the cause-effect relationships between the

parameters of the cardiovascular system, and level 2 contains

a deeper knowledge of underlying physiology. The level 2

knowledge is used when the tutor needs to give a hint to the

student. Currently, the level 2 knowledge is under refinement

and development. Hence, in the present program the domain

knowledge base is constructed as a set of components that is

used for both problem solving and causal explanation.  This

is the most important and the basic knowledge that

constitutes the domain expertise.

3.2.2 Problem Solver. According to Clancey [1989],  the

intelligence of an ITS comes from its ability to solve the

problems. The problem solver solves the problems presented to

the student or asked by the student. If the problem solver

solves the problems but can not explain how it solves them,

it may just as well retrieve stored answers. The ability to

solve the problem, using the expert's problem solving
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behavior, can be used to identify the student's

misconceptions, to give an explanation, and to provide a

basis for tutoring strategies.

(frame SV

   (frame-type           variable
    var-type             physically-affected
    frame-name           SV
    class                instance
    instance-of          variable
    name                 Stroke Volume
    definition           volume of blood ejected each
                         heart beat
    part-of              heart
    anatomy              ventricle
    causal-relation-in   causal-RAP-SV causal-CC-SV
    causal-relation-out  causal-SV-CO)) 

Figure 6. A Frame from the Domain Knowledge Base

Problem solving in CIRCSIM-TUTOR is carried out by two

problem solvers: the main problem solver and the subproblem

solver. The main problem solver solves the problem, generates

correct answers, and produces the same problem solving path

as an expert in the domain. This solution path can be used to

monitor the student's problem solving behavior while the

student is making entries in the predictions table. The

subproblem solver solves current problems generated by the

planner, such as determinant of X, relationship between X and

Y, and also problems coming from the student questions. The

other modules of the system may consult these problem solvers
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to get any information they need. For instance, the student

modeler needs to consult the problem solver to evaluate the

student's answer.

3.3 Input Understander

The input understander is responsible for understanding

the student's natural language input. It handles not only

well-formed but also ill-formed student inputs [Lee et al.,

1990; Lee, 1990]. The student input may be either an answer

to the tutor's question, or a question from the student. If

the student's answer is The actual determinant of SV is RAP,

then the planner will pass the sentence to the understander

along with the current lesson topic in logical form, (actual-

determinant SV). Then the input understander parses the

sentence, checks its coherence with the current topic, and

returns the logic form, (answer (actual-determinant SV

(RAP)). Then the planner extracts the student answer, RAP,

and passes it to the student modeler to diagnose the student

answer.

The input understander must also understand student

initiatives; whether the student is asking for an

explanation, or referring to the previous remarks of the

tutor, or wants to stop the session. For example, if the

student initiative is I don't understand about SV, then the

input understander returns the logical form (question

(explain SV)). Then the planner suspends the current plan and
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carries out the student's request. This process needs to be

studied in detail in order to understand what the student

really wants. We are still investigating it by analyzing

transcripts, and it may require a richer knowledge structure,

like that used in the UNIX Consultant [Wilensky et al.,

1988].

3.4 Student Modeler

The student modeler is responsible for representing the

student's understanding of the subject by building a student

model [VanLehn, 1988]. The student model is a data structure

that represents the student's current state of knowledge;

what the student knows, what the student does not know, and

what misconceptions he or she may have. Based on this

information, the tutor can give individualized instruction to

the student. There are two major approaches for student

modeling. One approach, the overlay model [Carr and

Goldstein, 1977], is designed to represent the student's

knowledge state as a subset of an expert's knowledge state.

Another approach, the buggy model [Brown and Burton 1978],

represents the student's misconceptions not as subsets of the

expert's knowledge, but as variants of the expert's

knowledge. In CIRCSIM-TUTOR, the student modeler integrates

overlay and buggy strategies into one [Shim et al., 1991;

Shim, 1991].
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In CIRCSIM-TUTOR, the student modeler begins analyzing

the student's entries in the Prediction Table. Based on this

analysis, the planner generates a lesson plan and the natural

language tutoring session begins to correct the student's

misconceptions. During the tutoring session, the planner

sends the student's answer to the modeler and the modeler

analyzes it and returns the result. Based on this

information, the planner can decide what to do next.

Currently only the overlay information is used for choosing

the next tutoring strategy.

3.5  Instructional Planner

The instructional planner is responsible for determining

what to do next at each point during a tutoring session. The

planner also performs the system controller function. It

interacts with the input understander, the text generator,

the student modeler, and the screen manager, in order to

carry out tutorial activities. Although the design of the

planner may vary depending on the purpose of the ITS, several

researchers have recently proposed combining opportunistic

control with a plan-based approach [Derry et al., 1988;

Murray, 1990; Macmillan et al. 1987]. For instance, Murray

[1990] suggests that the way to provide opportunistic control

with global lesson plans is to implement a dynamic

instructional planner. For CIRCSIM-TUTOR, the planner needs

to generate the global lesson plan and take care of the

discourse control as well [Woo et al., 1991a]. Since this is
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the main topic of my research, it will be discussed in detail

in the later chapters.

3.6 Text Generator

The text generator is responsible for turning the

tutor's output into a natural language sentence. It receives

necessary information as a logical form from the planner and

generates a natural language sentence or sequence of

sentences [Zhang, 1990]. This information includes the

current topic and text styles: question, hint, answer, etc.

For example, the text generator is given a logic form from

the planner, (question (affected-by SV ?)), then it produces

the English sentence, "What are the determinants of SV?" The

text generator can handle this kind of simple question,

explanation, or acknowledgement. But giving a hint may

require more deep knowledge information, either from the

planner, student modeler, knowledge base, or from the input

understander. The current version of the text generator only

receives the necessary information from the planner, not from

all the other modules, so that its behavior is somewhat

passive.

3.7  Screen Manager

The screen manager takes care of the interaction between

the student and the system. The interaction is closely
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controlled by the planner; the planner tells the screen

manager what to display, and the screen manager sends back

the student's input to the planner. Thus, every interaction

passes through the planner. The screen manager may display

its own messages, such as help messages or warning messages.

First, the screen manager displays system messages

through the introductory windows. Then it displays the list

of procedures that the student can select. When the student

selects the problem, it displays the prediction table with

instructions about how to use the mouse and how to make

entries into the table. Then it receives qualitative answers,

(+, -, 0), from the prediction table one by one from the

clicking of the mouse and passes them to the planner. When

the student clicks outside the boundary, for example, if the

student clicks on the wrong column during Predictions Table

entry, the screen manager displays a warning message with a

beep. It also handles two other windows, the student window

and the tutor window. From the student window, it receives

the student's natural language input in English sentences. In

the tutor window, it displays natural language sentences

created and passed to it from the text generator.

3.8 Summary

This chapter began with a description of the basic ITS

components; a domain expertise module, a student modeler, a
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tutoring module, and a communication module. It continued

with a discussion of ways to apply Artificial Intelligence

techniques to each component of the system to improve its

performance. Then the chapter introduced the seven submodules

of CIRCSIM-TUTOR; explained the functions, data structures,

interactions, and the current development situation for each

submodule. During future development of the system, the basic

structure of the system may remain the same, but the

functions of the each module can be modified or extended with

different approaches. Figure 5 shows the overall structure of

the system.
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CHAPTER IV

SURVEY OF PLANNING IN TUTORING SYSTEMS

Planning is an approach to problem-solving that creates

a sequence of actions (i.e., a plan) to achieve a goal. If

the input to the planning system is a problem, specified with

its initial state, goal state, and a set of actions, then the

output to the system is a plan that satisfies the goal

(Figure 7). Early research on planning focused on the

physical actions of robots [Fikes and Nilsson, 1971; Sussman,

1975; Tate, 1975], in which planning and execution are

separated. Recent planning systems try to extend the earlier

classical planning systems, by integrating planning and

execution, so that they can monitor the execution of a plan

and revise the plan when it is necessary.

The application of planning techniques in the domain of

instruction, instructional planning, becomes a major issue in

an ITS [Woolf, 1984; Russell, 1988; Macmillan et al., 1988].

It functions as a control mechanism that decides what to do

next by creating a sequence of instructions; determining what

topics should be introduced, reviewed, explained, etc. This

control mechanism is the central component of the ITS, an

instructional planner, and alternative control strategies are

the basis of different tutorial approaches. By deciding what
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to do next, the planner is controlling the system's

interaction with the student.

Initial State
Specification

Goal State
Specification

Operator/Action

 PLANNER
Sequence of
Operator/Action

Figure 7. Planning System

4.1 Approaches to Planning

4.1.1  Classical Planning. Many real-world problems may

be explored by the planning system: robot control, automatic

programming, experiment design in molecular genetics,

aircraft carrier mission planning, and natural language

generation. The early research on planning focused on the

physical actions of robots. In this planning system, an

initial plan was generated, criticized, and then patched

before any of the actions were carried out (Figure 8).
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Sequence

Initial State
Specification

Goal State
Specification

Operator/
Action

of Plan

Planner Execution

Figure 8. Organization of a Classical Planning System

This arbitrary ordering of steps in the plan may cause

some problems during execution. In the example shown in

Figure 9, the initial goal is divided into two actions (i.e.,

subgoals) arbitrarily, before execution. Eventually the

initial ordering of actions will fail in this planning

system, because of the protection violation rule for the

first action (i.e., subgoal conflicts). Thus, the planner has

to backtrack, reorder the subgoals, and execute them again to

achieve a goal. The early planning systems, HACKER [Sussman,

1975], and INTERPLAN [Tate, 1975], applied a heuristic called

the linear assumption, which states that one ordering of

actions is as good as any other and fixes the interactions

when they arise. However, this kind of create and debug

strategy causes backtracking, which can be very expensive.

Successful ordering can involve a combinatorial explosion if

there is a huge number of possible orderings.

The early planning systems are classified as

nonhierarchical planning systems or linear planning systems,
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since they assume linearity in solving problems. Hierarchical

planning or nonlinear (partial-order) planning systems arose

out of dissatisfaction with these linear systems.

Hierarchical systems do not commit to an arbitrary order,

instead they postpone the commitment until the order can be

executed. The difference between hierarchical and

nonhierarchical planning will be explained in detail in the

next section.

Initial Goal: (ACHIEVE (ON A B))  (ACHIEVE (ON B C))

Initial Status: Goal Status:

ACHIEVE (ON A B)

(CLEAR A)

PUTON (A B)

ACHIEVE (ON B C)

(CLEAR B)

** Protection violation: REORDER (backtracking)

(ACHIEVE (ON B C))  (ACHIEVE (ON A B))

C

A B

C

A

B

C A B1.

C

A

B2.

CA B3.

Figure 9.  INTERPLAN [Tate, 1975] Backtracking Problem

4.1.2  Hierarchical vs. Nonhierarchical Planning. 

Hierarchical planning came out of dissatisfaction with

nonhierarchical planning such as that done by STRIPS [Fikes

and Nilsson, 1971] and HACKER [Sussman, 1975]. Hierarchical

planning is concerned with the relation between tasks and
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subtasks [Charniak and McDermott, 1986]. The planner can

decide to perform a task A, and later decide to carry out A

by performing its subtasks. It generates a hierarchical

representation of a plan, in which the highest level is a

simplification or abstraction of the plan and the lowest is a

detailed plan, sufficient to solve the problem.

Nonhierarchical planning has only one representation of a

plan. A major disadvantage of nonhierarchical planning is

that it does not distinguish between problem-solving actions

that are critical to the success of a plan and those that are

simply details. Thus, it needs to backtrack when an action

fails. The advantage of a hierarchical planning system is

that the plan is first developed at a higher level and the

details are developed later; this prevents development of

unnecessary plans in advance.

A well-known example is the comparison of STRIPS and

ABSTRIPS [Sacerdoti, 1974] in the same coffee domain by Cohen

and Feigenbaum [1982a]; the goal is to drink coffee with two

subgoal actions of buying coffee and making coffee. In this

example, ABSTRIPS, an extension of STRIPS, solves the problem

with much less searching and backtracking than STRIPS. STRIPS

generated many steps that were not necessary to solve the

problem; on the other hand, ABSTRIPS uses a strategy that

separates the subgoals into levels of priority, with the

abstract and general subgoals being developed first and

detailed levels developed later. ABSTRIPS finds a solution at
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the most abstract level and does less backtracking than

STRIPS. This example shows the efficiency of hierarchical

planning over nonhierarchical planning.

NOAH [Sacerdoti, 1977] is a hierarchical planning

system, which uses a least-commitment strategy that involves

partial-ordering of problem-solving operators by considering

their preconditions. MOLGEN [Stefik, 1981] and NONLIN [Tate,

1977] are based on NOAH but use other methods for deciding

what to postpone.

4.1.3 Recent Planning Systems. Most of the classical

planning systems assume that the planner possesses complete

information about the problem, and the generated plans will

be carried out successfully (i.e., plan and execution are

separated). But there is no guarantee that the execution will

always be successful. Hence, this approach needs to be

changed when separate execution cannot be guaranteed to

succeed. Recently, a number of researchers have been working

on this problem [Hendler et al., 1990].

More recent planning systems have extended classical

planning approaches by integrating planning and execution

(Figure 10): Opportunistic Planning [Hayes-Roth, 1985],

Incremental Planning [Durfee and Lesser, 1986], Replanning

[Wilkins, 1988], and Case-Based Planning [Hammond, 1989].

Most of these ideas were originally discussed on a
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theoretical level, but the concepts can be generalized and

applied to instructional planning systems, since

instructional planning involves a complex interleaving of a

plan and its execution. An instructional planner has to be

dynamic because during instruction, the student's cognitive

status changes dynamically. It must be able to replan because

the plan may need to be revised during instruction.

 

Planner

Execution

Changing
World Partial Plan

Figure 10. Organization of a Dynamic Planning System

4.1.4 Replanning. In real-world domains, like control of

robot actions, things do not always proceed as planned. Thus,

it is necessary to monitor the results of current plan

execution to the expected results at each step. Plan revision

is necessary when new information invalidates the old plan

[Wilkins, 1988; Swartout, 1988]. However, finding an optimal

plan, in order to revise the old plan, may take time and

effort. Thus, there is always a trade-off between speed and

optimality. If time is crucial, it may be better to replan

than to revise the old plan.
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Plan monitoring can be done by inserting monitoring

steps in the plan, which must have a model of what the plan

monitor can detect. This plan monitor generates the necessary

monitoring information, and the planner checks this

information after every step. This plan monitoring step acts

like a student model in instructional planning.

4.2  Approaches to Instructional Planning

Any ITS must have a mechanism for determining what to do

next in the tutoring session. This instructional planning

component decides what subject material to focus on next, how

to deliver the selected topic, and when to interrupt the

student's problem-solving. These pedagogical decisions were

hard-coded in early CAI systems, which made the systems hard

to modify and hard to adapt to other domains. In this regard,

the ideal system needs to represent this pedagogical

knowledge explicitly as a form of rules or similar

structures, so that it is expressed declaratively and

interpreted into actual decisions automatically, whenever it

is referenced.

Conceptually, these pedagogical decisions can be divided

into two different levels [Wenger, 1987]: a global level and

a local level. Global level decisions affect the sequences of

subject matter being taught. Based on the information from

the student model, the system is capable of providing

different instructional content to different students
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(adaptive instruction). Knowledge about when to interrupt the

student's problem solving, what to say and how to say it,

belongs to the local level decision making process.

Making such decisions is very complex, since the order

of instruction and the method of communicating with the

student may produce different learning experiences [Cohen and

Feigenbaum, 1982b; Wenger, 1987]. Successful learning may

depend on many factors, but the first priority is that it

should not destroy the interest of the student. Thus, it is

important to determine the degrees of control over the

interaction between the system and the student. For example,

in a mixed-initiative strategy, the system and the student

share the control and in a Coaching system, the student is in

full control of the activity.

4.2.1 Teaching Strategies. Most existing ITSs base their

teaching strategies on a diagnostic method, in which the

tutor tries to estimate the student's knowledge by asking

questions and evaluating his responses. From the tutor's

feedback (by explanation or answer), the student is expected

to learn about his mistakes. BUGGY [Burton and Brown, 1982]

used this method.

Another method is the Socratic method. In the Socratic

method, as in SCHOLAR [Carbonell, 1970] and WHY [Stevens et

al., 1977], the tutor provides an environment and encourages
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the students to debug his own misconceptions (that is, the

tutor does not teach a subject directly, but asks questions

in a way that will encourage the student to reason about what

he knows and what he does not know, to find the

contradictions, and thereby to modify his misconceptions).

 Another approach is the Coaching method, as in SOPHIE

[Brown et al., 1982], WUMPUS [Carr and Goldstein, 1977], and

WEST [Burton and Brown, 1982]. The Coach watches the

student's behavior and does not interfere constantly.

Instead, when the student asks for help, the Coach interrupts

the process and gives an important lesson. The goal of the

Coaching method is to encourage students in skill acquisition

and problem-solving abilities like a computer game. The basic

philosophy of the Coaching method is learning by doing.

The early ITSs explored the representation of these

tutoring strategies explicitly, which led to the development

of instructional planning. GUIDON [Clancey, 1982] uses

Production Rules to represent its tutorial strategies. These

early ITSs, WUSOR [Glodstein, 1977], WEST [Burton and Brown,

1982], and GUIDON, are the first to explicitly represent the

discourse knowledge as rules, including rules for introducing

a topic, asking a question, etc. However, the disadvantage is

that if the domain is complex, a large number of rules are

required. They also lack a global context.
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More recent ITSs turned their research toward an

explicit control mechanism, such as determining what to do

next. Among a number of researchers, Woolf [1984] organized

the discourse procedures of GUIDON into a discourse

management network in her system (MENO-TUTOR). In this system

the control mechanism and hierarchical representation of

tutorial discourse strategies are represented explicitly in

the network.

4.2.2 Plan-Based vs. Opportunistic Control. The ITS has

goals for the student to achieve. Goals can be achieved by

planning instructional activities (i.e., plan-based control),

or by recognizing diagnostic opportunities from the

interaction with the student (i.e., opportunistic control).

In recent systems the opportunistic control approach has

been dominant over the plan-based approach. Opportunistic

control uses diagnostic information to recognize

opportunities for intervention, to introduce new material or

remediate a misconception during the tutoring session. It is

good for coaching in learning environments or guiding

problem-solving activities (e.g., WEST or GUIDON). The

disadvantage is that it provides very little control over the

organization of tutoring sessions. On the other hand, the

plan-based approach uses diagnostic information to monitor

the progress and appropriateness of the current instructional

plan. It provides a well-organized hierarchical structure,
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but the student's behavior tends to be less important. For

example, student requests are ignored or not possible.

Wenger [1987, p. 400] argues that goals are best

achieved by an appropriate combination of both control

styles. Also studies of human tutors show a complex

interleaving of these two styles [Leinhardt and Greeno,

1986]. Ideally, the design of the planner combines the plan-

based and the opportunistic control approaches [Wenger, 1987;

Derry et al., 1988; Murray, 1990].

4.3  Review of ITSs

Instructional planning began from the early 1960's as

human-authored planning in a CAI system. As CAI evolved

toward ITS, instructional planning has been approached in a

number of different ways. The traditional CAI systems do not

generate plans at all. Instead they follow a single

conditional plan designed by the author. Although the

decisions were made dynamically, plans were prespecified and

fixed. These systems are well-organized and motivating, but

they are inflexible and expensive to build, and the design is

heavily dependent on the skill of the human author.

More recent approaches to instructional planning have

explored ways to overcome the limitations, such as the high

cost, the inability to generate plans, the lack of global

context for planning of the earlier planners. For example,
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MENO-TUTOR is a sophisticated discourse planning system with

explicit control mechanism and discourse strategies. COACH

[Winkels et al., 1988] is an intelligent help system with the

capability of handling local user needs opportunistically.

TAPS, a plan-based opportunistic planning system [Derry et

al., 1988], is the first system to raise the issue of the

curriculum planning in an ITS and integrate curriculum

planning with the discourse planning paradigm. A content

planning system [Brecht et al., 1989], which is based on the

SCENT system [McCalla et al., 1988], emphasizes the

importance of content planning over discourse planning. SIIP

[Macmillan and Sleeman, 1987] is a generic instructional

planning architecture to support a dynamic instructional

planning capability. A BB1-based dynamic instructional

planning system [Murray, 1990] is a first step towards a

dynamic instructional planner that can generate, monitor, and

revise plans during the instructional sessions. SIIP and a

BB1-based Dynamic Instructional Planner used a blackboard

architecture for building their system. The system requires

two blackboards: a domain blackboard and a control

blackboard. A domain blackboard contains the lesson plan, and

a control blackboard provides a control mechanism that

decides how to construct and modify the lesson plan. It is

capable of global context planning; it can plan, replan, and

modify the plan.
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In the next section, I will describe three well-known

ITSs with different planning paradigms that I considered in

building my planner. The contributions and the limitations

are discussed.

4.3.1 MENO-TUTOR. MENO-TUTOR [Woolf, 1984] uses a

discourse management network (DMN) to control a Socratic

question and answer dialogue with a student by teaching new

information or correcting misconceptions. Discourse planning

in the DMN uses two mechanisms: a planning module and a

language generator. The planning module makes decisions about

what discourse actions to make and what information to convey

or query. The language generator produces natural language

output using templates. My concern is the planning module of

the system.

The planning module contains a multi-level planner,

tutoring states, and a knowledge base. The multi-level

planner consists of three levels: the pedagogical, strategic,

and tactical levels. The pedagogical level establishes an

expository style of tutoring, for instance, introduce a new

topic or tutor a misconception. It is further refined into a

strategic level that determines the style of discourse, such

as, question the student or describe the concept. The node at

the strategic level is refined down to the tactical level to

implement the strategy. The tactical states determine the

form and content of the utterance. The control mechanism of
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MENO-TUTOR consists of two phases: a default transition and

meta-rule transitions. The default transitions are preplanned

and are overridden by meta-rule transitions.

A. Contributions. First, MENO-TUTOR is an attempt

at a generic tutor; it has been applied to reasoning about

rainfall and about looping constructs in the PASCAL language.

Second, it attempts to capture the discourse strategies

observed in human tutors. Finally, this system supports

Context-Dependent tutoring; output is different in different

contexts.

B. Limitations.  MENO-TUTOR lacks a lesson planning

ability, so that it cannot generate customized, and globally

coherent instruction. It is only concerned with planning the

delivery of an already chosen topic. And there is no explicit

mechanism to select the topic.

4.3.2 IDE-INTERPRETER. IDE-INTERPRETER [Russell, 1988]

is a planner-based adaptive tutoring system that allows

explicit representation of strategy, and shows the

consequences of the strategy by synthesizing and delivering

instruction accordingly. IDE-INTERPRETER delivers instruction

for IDE [Russell et al., 1988]. The planner interprets a set

of rules to expand instructional goals into subgoals. The

planning approach is top-down plan expansion, in such a way

that explicit plan representation is incrementally refined by
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applying rules. During each cycle of execution, it selects

and executes an instructional unit (IU) as a primitive

action. Student interaction with the IU is recorded and

analyzed to update the student model. Then the planner uses

the student model to modify the plan, constantly updating its

plans to achieve the goals.

A. Tutoring Rules. There are three sets of rules,

strategic, pedagogic, and tactical rules. Each of the rules

represents tutoring knowledge. A strategic rule represents

shifting instructional strategy, merging similar goals into

one, controlling when and how to remediate. Pedagogic rules

represent domain-specific tutorial information, for example,

to teach definitions, first define the process, then the

components. Tactical rules represent methods of presenting

particular material (e.g., choose an IU that hasn't been used

before).

B. Contributions. First, an explicit plan

representation is refined by the rules, which enables

customized instruction. The plan is represented as a tree

that is refined top-down. Second, the use of rules, explicit

plan representation, and an agenda control provides a dynamic

instructional planning environment. Finally, it supports

incremental planning since it does not select an IU before it

begins execution.
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C. Limitations. IDE-INTERPRETER emphasizes lesson

planning over discourse planning since discourse actions are

procedurally encoded in the IU and not reasoned by the

planner, with the result that it cannot handle student

requests between goals; it cannot make adjustments even if

the student's performance is too low.

 4.3.3 UNIX CONSULTANT (UC). UNIX CONSULTANT [Wilensky et

al., 1988] is an intelligent, natural language interface that

helps naive users to learn about the UNIX system. It consists

of the following components: a language analyzer (ALANA), a

goal analyzer (PAGAN), a domain planner (KIP), an expression

mechanism (UCExpress), a language production mechanism

(UCgen), a user's knowledge model (KNOME), a knowledge

acquisition mechanism (UCTeacher), and a knowledge

representation system (KODIAK). My interest is in the

planning component (KIP) of the system.

KIP is a domain planner. It is given a task from a

controller (UCEgo) and determines how to accomplish the

user's goal based on knowledge of the user and knowledge of

UNIX. It returns a plan, represented in KODIAK. Another

planner, UCEgo, reacts to the user's request by forming goals

and acting on them. It also acts as a controller for the

whole system. The following are examples generated by UC.
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A. Simple Examples. The first student is diagnosed

as a novice user, so UC provides an answer with an example.

The second student is a sophisticated user, so the UC answers

without an example.

     Student 1: How can I delete a file ?

     UC:        Use rm.  For example, to delete the file

                named foo, type 'rm foo'

     Student 2: How can I find out the inode of a file?

     UC:        Use ls -i.

B. More Complex Examples. Underlying goals are not

addressed by a short answer. UC attempts to answer them using

an extended answer.

  Student: Is rn used to rename files?

  UC:     No, rn is used to read news. To rename a file 

    to another file, use mv. For example, to rename

    file named foo to the file named fool,

    type 'mv foo fool'.

C. Contributions. UC addresses many AI research

issues in planning, reasoning, natural language processing,

and knowledge representation. It is an attempt to simulate a

human consultant. And it has a very rich knowledge

representation system (KODIAK).
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D. Limitations. For efficiency, UC's control

structure is overly simplistic; the planner does not do much

work. The planner simply ends up retrieving the stored plan,

making an instance of it, and passing it on. Since UC is a

help facility, it is not capable of handling every task put

to it to serve a useful function; it may discourage the

student when UC cannot process a request correctly.

4.4 Summary

This chapter began with brief introduction to AI

planning systems, including both classical and recent

approaches. It continued with a discussion of the application

of planning techniques in the domain of instruction,

instructional planning, which is a control mechanism that

decides what to do next by creating a sequence of

instructions. Then the chapter discussed some design issues

for building the instructional planner, and concluded with a

review of well-known ITSs with different planning paradigms,

contributions and limitations of the systems.
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CHAPTER V

PLANNING INSTRUCTION

The instructional planner is the central component of

the ITS; it is responsible for selecting or generating

instructional goals, deciding how to teach the selected

goals, monitoring and critiquing the student's behavior, and

determining what to do next at each point during a tutoring

session. That is, the planner makes two different types of

important decisions during the tutoring session, decisions

about the content of the lesson and decisions about its

presentation strategy. Although the early ITSs largely

focused on the delivery strategy of the planner, some recent

planning research shows the integration of both aspects in

building the planner [Macmillan et al., 1988; Derry et al.,

1988; Murray, 1990].

The planning component of CIRCSIM-TUTOR must carry out

both functions, since it needs to provide a global lesson

plan, and it needs to carry on a natural language exchange

with the student. For this reason, I developed the planner in

two parts: a lesson planner and a discourse planner. This

chapter discusses general design issues of the planner with

the goal of providing most effective instruction to the

student, a sample dialogue extracted from the transcript of

an actual human tutor-student interaction and a scenario
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implementing that dialogue, and a description of the overall

organization of the planner.

5.1  Design Issues

5.1.1 Capabilities of the Planner. Most machine planning

systems, like STRIPS, HACKER, and NOAH, deal with the

observable physical world, whereas instructional planning

systems deal with unpredictable dynamic changes in the

student's knowledge. The student's current learning status

can never be observed directly. It can be only guessed; the

results of this guesswork are stored in the form of the

student model [VanLehn, 1988]. Thus, the instructional

planner must possess unique capabilities for handling

unpredictable situations as an expert human tutor does.

The planner must plan at different levels of the

hierarchy; a hierarchical planning technique can reduce the

complexity of the planning process. The plan is first

developed at a higher level and the details are developed

later; this technique prevents development of unnecessary

plans in advance. The planner must plan at a global level;

when the planner generates the next instruction, it must

consider the past plan and the student's responses to provide

continuity of instruction. The planner must replan when the

current plan fails or a request is made by the student. The

planner should be able to monitor the plan to identify the
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need for replanning. The planner of CIRCSIM-TUTOR provides

all these capabilities.

5.1.2 Levels of Planning. Research by Leinhardt and

Greeno [1986, cited in Derry et al., 1988] has shown that

experienced teachers employ levels of planning in

accomplishing their goals; planning instructional goals

occurs at the most global level, planning actions and

decision-making occur at a less global level. Inspired by

this research, Derry et al. [1988] designed their TAPS system

with three levels of instructional activity: curriculum

planning (the agenda), lesson planning (instructional

actions), and on-line tutorial intervention. Murray [1988]

also distinguished three levels of instructional planning;

curriculum planning (planning a sequence of lessons), lesson

planning (determining the subject matter in a single lesson),

and discourse planning (planning communicative actions

between the tutor and the student). He argues that at least

two levels of planning, lesson planning and discourse

planning, must exist in an ITS to deliver more effective and

flexible instruction, although these three levels cannot be

cleanly separated and often the curriculum planning and the

lesson planning interwine, as well as the lesson planning and

the discourse planning.

CIRCSIM-TUTOR is capable of both lesson planning and

discourse planning. It can be set up so that the student can
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select a problem from a list of seven experimental procedures

or it can do complex curriculum planning. The number and

types of procedures will be extended further in future

versions of the system.

5.1.3 Mixed-initiative Strategy. Carbonell [1970]

presented a mixed-initiative paradigm in SCHOLAR, where both

the tutor and the student can initiate conversation by asking

questions. This strategy best fits conceptual or procedural

learning tasks [Kearsley, 1987]. SOPHIE [Brown et al., 1982]

is an another system that used this strategy. The following

dialogue shows a part of an interaction in SCHOLAR that

illustrates a mixed-initiative form.

Tutor>   What is the language of Argentina?

Student> Probably Spanish.

Tutor>   Very good. Approximately what is the area of

              Argentina?

Student> Tell me something about Peru.

From the last line of the dialogue, we can see that the

student is taking the initiative, rather than answering the

question to the tutor. Human tutors allow the student to ask

a question during the tutoring session, but responding to

student initiatives increases system complexity a great deal,

because it is hard to satisfy unexpected student questions

and decide what to do in all circumstances. CIRCSIM-TUTOR is
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aiming to adapt this mixed-initiative strategy. At the

present, we are analyzing student initiatives in transcripts

of human tutoring sessions and implementing responses to a

couple of simple and frequent types of student initiative.

5.2 Scenario

5.2.1 A Sample Tutoring Session. We have recorded a

number of tutoring sessions with our experts, Joel Michael

and Allen Rovick, who are Professors of Physiology at Rush

Medical College, and some of their first year medical

students. After careful studies of the recorded transcripts,

we extracted some possible tutorial strategies and tactics

that provided us with the framework for building the

instructional planner and the overall system. It is assumed

that students have already learned much of the domain

knowledge, hence the system will mainly assist the students

to correct their misconceptions and to solve problems. Our

current  system can handle dialogues like the following.

Example 1:

     Tutor>   What are the determinants of SV?

     Student> SV is determined by RAP and CO.

     Tutor>   RAP is correct, but CO is not a determinant of

              SV. Remember. SV is the amount of blood pumped

              per beat. What is the other determinant of SV?
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 One important point about the above tutor-student

interaction is the content of the questions posed by the

tutor. For example, on the first line of the excerpt, the

tutor is asking the student about the determinants of stroke

volume. Asking a question about determinants is the first

part of the plan that the tutor is using to teach the student

about the causal relationships between two variables, RAP and

SV. Thus the content of the question has to be generated by

the lesson planner before the tutoring begins. Another

important aspect is how to present the selected topic. From

the above short excerpt, we can see four different kinds of

delivery modes: a direct question (line 1), positive and

negative acknowledgements (line 3), hints (line 4), and

follow up questions after hints (line 5). Thus, the planner

(discourse planner) needs to plan how to present the selected

content to the student effectively.

Example 2:

     Tutor>   By what mechanism is TPR controlled?

     Student> Nervous System.

     Tutor>   Correct, TPR is controlled by the nervous

              system. Then what is the correct prediction of

              TPR?

     Student> No change.

Example 2 is an another tutoring situation that focusses

on one of the neurally controlled variables, TPR. The tutor
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first asks the student about its control mechanism in line 1.

This control mechanism is the first strategy to teach the

student about the neurally controlled variables. Since the

student answered correctly, the tutor gives a positive

acknowledgement and then uses its second strategy, asking for

a prediction, in line 4. We have extracted this kind of

tutoring strategy from the transcripts and designed explicit

lesson planning rules.

 From the above examples of tutor-student interaction,

we can distinguish between the subject matter and its

presentation formats. Ohlsson [1986, p. 217] argues that an

effective ITS should be able to generate different

presentations of each piece of subject matter in order to

provide adaptive instruction to the student. The content of

the questions posed by the tutor and its delivery modes lead

to the development of two different kinds of instructional

planning, lesson planning and discourse planning, because the

subject to be taught has to be generated adaptively, and also

its presentation form can vary according to the situation.

5.2.2 Implementation of the Scenario. I am building an

instructional planner based on observations of expert human

tutors like those shown above. For example, assume that the

current lesson goal is to tutor the causal relationships

between two parameters, RAP and SV. This goal gets refined

into a set of hierarchical subgoals by using strategic and
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tactical rules. The subgoals generated at the tactical level,

such as determinants, actual determinant, relation, and

value, are kept in a stack, which is used by the discourse

planner to pick the next topic.

The following scenario describes what each component of

the system does, what kind of information it needs, and what

is the result after each step. The steps are numbered to show

the execution sequence. This tutorial interaction begins

after the lesson planning is done. So that the discourse

planner begins with the first topic in the stack, the

determinants, and when that topic is completed, continues

with the next topic, the actual determinant, and so on.

1. Planner:  Picks the current topic from the stack,

selects the discourse tactic, and passes it to the

text generator as an internal logical form.

current topic:    (determinant SV),

discourse tactic: question.

call Text Generator:  (question (determinant SV))

2. Text Generator:  Generates a sentence,

"What are the determinants of SV?"

3. Screen Manager: Displays the sentence in the window.

4. STUDENT:    "SV is determined by RAP and CO."
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5. Planner: Passes the student's input with the current

lesson topic to the input understander.

(question (determinant SV)

  (SV is determined by RAP and CO))

6. Input Understander: Parses the student's answer, 

checks its coherence with the dialog history, and 

returns the answer to the planner in logic form.

call planner: (answer ((determinant SV)(RAP CO)))

7. Planner: Passes the current topic and student answer

to the the student modeler in logic form.

current topic: (determinant SV),

student answer:  (RAP, CO),

call Student Modeler: ((determinant SV) (RAP, CO))

8. Student Modeler: Calls the problem solver, gets the 

correct answer: (RAP, CC), compares the correct 

answer with the student answer, and updates the 

student model.

In step 1, the discourse planner picks the topic,

determinant SV from the subgoal stack, selects the discourse

tactic, question, binds these two together into a logical
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form, (question (determinant SV)), which is passed to the text

generator to generate a natural language sentence. After

receiving the logical form from the planner, the text

generator generates a sentence like the one in step 2. In step

3, the screen manager displays the sentence on the student

window, and the student responds with the answer in step 4. So

the current dialogue is:

 Tutor>   What are the determinants of SV?

 Student> RAP and CO.

In step 5, the planner passes the student's input along

with the current topic. The input understander has to

recognize the student's answer; parse the answer, check its

coherence with the dialogue history, and return the answer to

the planner in its logical form. Then the planner sends the

current topic with the student's answer to the student

modeler in step 7. Finally, the student modeler analyzes the

student's answer, and records the result in the student

model. The next step will start with the planner checking the

student model, and then deciding what to do. Since one of the

student's answers is wrong, the planner consults its tutoring

rules and decides to give some acknowledgement first:

 Tutor> RAP is correct, but CO is not a determinant of 

  SV.
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At this point the tutor has two choices, either give a

hint or just give an answer and continue with the next topic.

Since this is the first trial, the tutor decides to "give a

hint" and then ask a question to complete the previous

answer. So a possible response would be:

Tutor> Remember. SV is the amount of blood pumped per 

  beat. What is the other determinant of SV?

A different tutoring rule will be applied if the student

again makes an error after receiving a hint; the student will

be given a direct answer for the second question. Our current

tutoring rules vary according to the topic and the student's

responses (i.e., the tutor gives different responses in

different situations). The question may be about neural

variables or causal relationships; in each case the tutoring

rules are different. Also we have different rules for each

stage, DR, RR and SS.

5.3 Organization of the Instructional Planner

The instructional planner of CIRCSIM-TUTOR consists of

two parts (Figure 11); the lesson planner and the discourse

planner. The plan controller monitors the execution of the

current plan. The planner can be thought of as a small expert

system, which consists of two main parts: a knowledge base

and an inference engine [Harmon, 1987]. Thus, I designed the

lesson planner to consist of three sets of lesson planning
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rules, and an inference engine. Also the discourse planner

consists of four sets of discourse planning rules and an

inference mechanism (discourse network). This section

introduces the organization and the main features of the

instructional planner briefly.

5.3.1 Lesson Planning. Lesson planning determines the

content and sequence of the subject matter to be taught in a

single lesson [Murray, 1988; Brecht, 1989; Russell, 1988].

The lesson planning in CIRCSIM-TUTOR consists of two phases:

goal generation and plan generation. The generation of the

lesson goals is guided by a set of explicit domain-dependent

heuristics (goal generation rules), and the lesson plans are

determined by applying two set of rules, rules for selecting

strategies and rules for selecting tactics. As a result the

lesson planner does hierarchical lesson planning with its

three sets of rules; at the topmost level it generates lesson

goals, and then it expands one of the goals into a set of

subgoals (a plan) at the next level.

The generated goals will be saved in the goal stack and

the subgoals in the subgoal stack. The lesson planner must

update the goals dynamically as the student model changes.

The details of the lesson planning process will be explained

in Chapter 6.
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INSTRUCTIONAL PLANNER
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Figure 11.  Instructional Planner
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5.3.2 Discourse Planning. Discourse planning is a

mechanism for planning communicative actions between the

tutor and the student within a lesson [Woolf, 1984; Winkel et

al., 1988]. CIRCSIM-TUTOR communicates with the student in

natural language. Thus, the discourse planner must interact

with the student modeler, the screen manager, the input

understander, and the text generator using a flexible control

mechanism. This control mechanism resides in its discourse

network.

The network consists of two levels; the top level of the

network specifies pedagogic decisions and the lower level

consists of  a set of discourse tactical states, the

execution of which causes text generation, student model

updates, and moves to the other states. It represents the

discourse planning rules and the control mechanism in

explicit form. The rules include all the necessary

information to carry out the discourse with the student, and

the control mechanism is also specified within the rules; two

sets of default rules manage the fixed control flow, and two

sets of meta rules handle dynamic control flow. The discourse

planning will be explained in detail in Chapter 7.

5.3.3 Plan Monitoring. AI research on planning

emphasizes that execution of a plan requires some monitoring

[Charniak and McDermott, 1986]. In the recent robot planning

systems [Wilkins, 1988; Swartout, 1988], the plan monitoring
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can be done by inserting monitoring steps in the plan, which

behaves like a student model in instructional planning. In an

ITS, since the student's learning status is unpredictable,

the planner also needs to monitor the execution of the plan

and revise the plan if necessary. As a result, plan

monitoring should occur whenever there is a change in the

student model. Plan revision may occur when the current plan

is completed or when the student takes the initiative.

For the current version of CIRCSIM-TUTOR, the planner

monitors the student problem solving in two different places.

First, when  the student enters predictions in the prediction

table, the planner monitors the student's entries in the

table and interrupts with some warning messages if the

student violates the system constraints. The messages are

designed by the experts, to help the students in their

problem solving. The system gives different messages

depending on the procedure, the variables, and the stages.

Second, the planner monitors the student answer at each step

during the tutoring session, by referring to the student

model, and then decides what to say next; give a hint, give

an answer, or continue with the next topic, etc. When the

student takes control by asking a question during the

tutoring session, the planner suspends the current plan,

carries out the student's request and then simply resumes the

suspended plan by asking the previous question again.
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5.4 Summary

This chapter first discussed the design issues for

building an instructional planner, the capabilities, the

levels of planning, and the mixed-initiative strategy. Then

it displayed a sample dialogue extracted from the transcript

of actual tutoring session, and described a scenario, which

is an important tool for building the planner and the other

components of the system. The chapter concludes with a brief

introduction to the planner. The overall architecture of the

planner and its main mechanisms, lesson planning, discourse

planning, and plan monitoring, are introduced. Figure 11

shows the five levels of the planning process; the three

levels of the lesson planner and the two levels of the

discourse planner.
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CHAPTER VI

THE LESSON PLANNER

The lesson planner decides on the contents of a lesson,

based on the student's current knowledge about the domain.

The planner has to generate lesson goals, sequence the goals,

and select the appropriate planning strategies to create a

plan for the current lesson goal. Figure 12 shows the

architecture of the lesson planner including the necessary

planning steps, student model, and lesson planning rules. The

result of the lesson planning is a set of subgoals (a plan),

each of which will be the topic for a dialogue with the

student. This chapter describes the lesson planner:

implementation goals, an architecture, two main mechanisms

(i.e., goal generation and plan generation), an example and

an algorithm for lesson planning.

LESSON  PLANNER

Lesson Plan

Goal Generation
Plan Generation

Student Model

Goal Generation
Rules Goal

Student Model

Strategic Rules

Strategy

Tactics Tactical Rules

Figure 12. Structure of the Lesson Planner
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6.1 Implementation Goals

CIRCSIM-TUTOR begins by asking the student to fill in

the Prediction Table and uses the analysis of this

information stored in the student model, to generate global

lesson plans. In order to generate the plans, the lesson

planner must have some capabilities: hierarchical planning,

dynamic planning, and rule-based tutoring knowledge.

For example, the planner generates the instructional

goals at the top level of abstraction, and then expands one

of the goals into a set of smaller subgoals at the next

level. So the planner expands the lesson plan hierarchically

in a top-down manner, as in IDE-INTERPRETER [Russell, 1988].

Second, the planner can generate different lesson plans for

different students, by referring to the student model. In

this way, the planner generates plans dynamically and

adaptively. Third, the planner must replan when it is

necessary. Finally, the planning knowledge is expressed as a

set of explicit rules, and a rule interpreter interprets the

rules and selects an appropriate one. This gives a

flexibility to the modification of the rules.

The lesson planning mechanism is an essential component

of the instructional planner, since the system must generate

globally coherent and consistent instruction for the student

[Macmillan et al., 1988; Murray, 1990], in such a way that

the topics are logically connected with each other, and
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sequenced and presented in a manner sensitive to the tutorial

goals and the student's needs. These are the main

implementation goals of the lesson planner.

6.2 Lesson Planning Rules

The contents of the tutoring strategies are extracted

from the transcripts of the human tutor and student

interaction, and we need to encode them explicitly in the

program as rules. The prototype tutor was written in Prolog

which has a built-in inference capability, but in our Lisp

implementation I had to design an interpreter to understand

rules. I designed this part as a production system, which

consists of a rule interpreter and a set of rules. This is

the most common approach used in expert systems [Hasemer and

Dominque, 1989]. In this section, I will describe in detail

how I designed the rule formal, and then implemented the rule

interpreter to parse the rules.

6.2.2 The Rule Interpreter. The rule interpreter

consists of three main parts: its main loop, its working

memory, and its pattern matcher. The working memory is

crucial to the operation of the rule interpreter, because the

working memory holds an initial representation of the problem

that the system is trying to solve. Each time around the

loop, the contents of the working memory will be compared to

the antecedent of the rules, and then will fire only one rule

if it matches. If an antecedent matches with the working
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memory, the consequent will be executed, and the content of

the working memory will be changed for the next inference.

The matching cycle will continue until no rules match. At

this point the interpreter halts, and the content of the

working memory is the desired result for the given problem.

The interpreter is built using LISP macro functions,

which understand and interpret the rules for the system. As a

result the rules can be written, not as Lisp code, but in any

free format as long as the rule interpreter can understand

them. I designed the rules with three parts: the name part of

the rule, the antecedent part, and the consequent part. For

example, (Rule_name: (antecedent) => (consequent)). My

motivation was to make the system efficient in writing source

code, and also make it possible for our expert tutors to read

the rules and make modifications easily. If we want to change

the format of the rules, then we need to change the

interpreter to recognize that specific form. The next

subsection will describe how to actually encode the rules.

6.2.2 How to Encode the Lesson Planning Rules. The

lesson planner uses three sets of lesson planning rules (goal

generation rules, strategy rules, and tactical rules). I

designed the rules in an if then format, in a separate file

to avoid hard coding them in the program. Therefore, it is

easy to add, delete, and modify rules without restructuring

the whole program. The general form in which the rules are
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written is if X then Y. Here X is the antecedent or left-hand

side of the rule and Y the consequent part or right-hand side

of the rule. Both the antecedent and the consequent may

contain one or more terms.

For example, assume that the student made an error in

predicting the variable TPR. One of the goal generation rules

applies; if the student does not know TPR, then build the

lesson goal, tutor TPR about the neural control. This rule

can be expressed as (G_Rule1: ((do-not-know TPR) => (neural-

control TPR))). If the current lesson goal is teach the

causal relationship between RAP and SV, and the student does

not know the direction, then this rule can be written as

(S_Rule1: ((causal-relation)(do-not-know direction)) =>

(tutor-causality))). This is the strategy rule for dealing

with non-neural variables. Assume that if the strategy rule

is tutor-causality, then the corresponding tactical rule is

to teach determinants, actual-determinant, relation, and

value. This rule can be written as (T_Rule1: ((tutor-

causality) => (determinants) (actual-determinant) (relation)

(value))).

Currently, there are about 50 goal generation rules, 20

strategy rules, and 20 tactical rules that handle DR, RR and

SS phases, and for procedures 4, 6 and 7. The rules may need

to be extended to handle the other procedures.
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6.3 Lesson Planning

Instructional planning centers around instructional

goals. There are two kinds of goals in the system: lesson

goals and discourse goals. The lesson planning generates the

lesson goals, the knowledge that the system intends the

student to acquire through the tutoring session. This section

describes how to generate the lesson goals, and how to

develop a lesson plan for the each of the goals. The two main

mechanisms of the lesson planning process, goal generation

and plan generation, are explained below.

6.3.1 Goal Generation. CIRCSIM-TUTOR generates

instructional goals based on the student's knowledge

demonstrated as entries in the Prediction Table. The

generation of the goals is guided by a set of explicit goal

generation rules designed by our experts (Joel Michael and

Allen Rovick), which ensures that the most serious

misconception is selected and tutored first. For example,

suppose the student made wrong predictions in the table for

the variables, TPR and SV. The student modeler has

determined, from its analysis, that the student is confused

about the mechanism controlling TPR and the causal

relationships between RAP and SV and SV and CO. So the lesson

planner retrieves the information from the student model,

applies the goal generation rules (see Figure 13), and

generates the lesson goals dynamically. The result is a set

of lesson goals in the goal stack (see Figure 14).
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Then Build Lesson Goal (NEURAL-CONTROL (TPR))

IF   Current Primary Variable is RAP and

Student does not know the CAUSAL-RELATIONSHIP

between RAP and SV

Goal Generation Rules

1.

2.

Student Answer is not NOCHANGE for TPR

IF   Current Primary Variable is CC and

Then Build Lesson Goal (CAUSAL-RELATION (RAP, SV))

IF   Current Primary Variable is RAP and

Student does not know the CAUSAL-RELATIONSHIP

between SV and CO

3.

Then Build Lesson Goal (CAUSAL-RELATION (SV, CO))

Figure 13. Goal Generation Rules

NEURAL-CONTROL  (TPR)

CAUSAL-RELATION (RAP,SV)

CAUSAL-RELATION (SV, CO)

1.

2.

3.

Lesson GoalsOrder

Figure 14. Generated Lesson Goals in the Goalstack

The goal generation is significant in many ways; the

goals are generated dynamically and adaptively; the goals are

sequenced in the order that the experts tutors this material;
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the goals provide a global context that remains coherent and

consistent throughout the tutoring session, unless the goals

are revised. New goals can also be generated, which tutor the

student about a common misconception (a bug), if the student

modeler detects such a misconception. The goals remain in

force until they are changed by the planner dynamically

(because of changes in the student model). 

6.3.2 Plan Generation. The second stage of the lesson

planning is the plan generation mechanism, which creates the

instructional plan by applying two sets of rules, rules for

selecting tutorial strategies to achieve the selected goal

and rules for selecting pedagogic tactics to execute those

strategies. Strategy rules (Figure 15) describe the tutorial

approach from a domain-independent point of view. These

include tutoring prerequisites before the material they

underlie, reminding the student about relations between two

parameters, explaining the definition before tutoring about

it, and so on. Tactical rules (Figure 16) also represent a

domain-independent tutorial approach; they involve asking

about concepts and relations between the concepts.

For instance, if the goal is teach the causal

relationship between the two parameters, then the fired

strategy rule is tutor the causality, and this then fires the

pedagogic tactical rule: ask about: determinants, actual

determinant, relationship, and correct value. The result is a
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hierarchical goal tree (Figure 17). Thus the current goal is

ultimately refined into four subgoals by two-step goal

transformations. In order to solve the current goal, all the

subgoals must be solved. This is the well-known AI problem-

reduction technique, which transforms a goal into a set of

immediate subproblems by a sequence of transformations [Barr

and Feigenbaum, 1982]. The four subgoals generated at the

tactical level are the current plan for the goal. These are

kept in a subgoal stack (Figure 18), which is used by the

discourse planner to pick the next topic.

Strategic Rule

If the Goal = CAUSAL-RELATION  and

Student does not know       and

Then Strategy = TUTOR-CAUSALITY

If the Goal = CAUSAL-RELATION  and

direction is correct

Then Strategy = REMIND-RELATION

direction is incorrect

Student does not know       and

If the Goal = NEURAL-CONTROL  and

this is the first procedure

Then Strategy = DEFINE-TUTOR-NEURAL

1.

2.

3.

Figure 15. The Strategy Rules



7 6

If Strategy  = TUTOR-CAUSALITY

Then Tactic  = DETERMINANTS,
               ACTUAL-DETERMINANT,
               RELATIONSHIP,
               VALUE

If Strategy  = TUTOR-NEURAL-CONTROL

Then Tactic  = MECHANISM,
               VALUE

1.

2.

3. If Strategy  = TUTOR-SS-PHYSICAL-VARIABLE

Then Tactic  = VALUE-DR,
               VALUE-RR,
               VALUE-SS 

Tactical Rule

Figure 16. The Tactical Rules

   CAUSAL-RELATION (RAP, SV)

Tutor Causality

Actual
Determinant

Relationship ValueDeterminants

1 2 43

Goal:

Strategy:

Tactic:

Figure 17. Generated Plan for "causal_relation(RAP,SV)"
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1.    Determinants

2.    Actual-determinant
 
3.    Relation

4.    Value

Order Subgoals

Figure 18. The Subgoal Stack

6.4 An Example

This section presents one lesson planning cycle as an

example. It gives a top level algorithm along with its pseudo

code, in order to clarify the functioning of the lesson

planner. Figure 19 shows an example of the lesson planning

process for the causal-relationship between RAP and SV. From

the top of the Figure, the goal generation step is described

with its other information: student model, rules used, goal

stack, and current goal. Then the plan generation step is

described in two steps, the strategic and the tactical steps.

Since the lesson plan is carried by the discourse planner,

the lesson planner suspends after generating a plan. It waits

for the discourse planner to be activated and to interact

with the student. When the plan controller sends a wake-up

signal, then the lesson planner gets reactivated and

continues with the next goal in the goal stack, if there is

any. Plan monitoring begins when the discourse planner starts

to plan the topic for the student.
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Goal Generation

Student Model:

Goal Stack:

Rules Used:

Discourse Planner

Plan Generation

do-not-know (SV)

Causal-relation (RAP, SV)
Causal-relation (SV, CO)

Current Goal: Causal-relation (RAP, SV)

Rules Used:

DR_G_Rule8

Strategy:

Tactics:

Tutor-causality DR_S_Rule1

(determinants)
(actual-determinant)
(relation)(value)

DR_T_Rule6

executes "determinants of SV"

Subgoal Stack: (determinants)
(actual-determinant)
(relation)(value)(Plan)

Plan Monitoring:  Waits for the student response

Figure 19. An Example of Lesson Planning
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The lesson planning cycle can be summarized as the

following top level algorithm (Figure 20 contains the Lisp

pseudo code for the algorithm). In this algorithm, the

function Main calls the screen manager, which displays some

introductory messages first, and then draws the Prediction

Table, the tutor window and the student window. Then, Main

calls the controller which repeats the problem solving and

the student evaluation cycle, until all the phases are done

(DR/RR/SS). If the the student answers to a given phase are

all correct, then it continues with the next phase. If not,

then it calls the lesson planner to begin the tutoring

session. The lesson planner generates the goals first, and

then repeats the planning cycle until there are no more goals

in the stack. Step 3.2.3 is carried out by the discourse

planner, and it will be explained in detail in the next

chapter.

Top Level Algorithm:

1. Main:

   1.1 Call the screen manager to set up environments.

   1.2 Call the controller.

2. Controller:

   2.1 Repeat until all phases are complete (DR/RR/SS).

      2.1.1 Ask the problem solver to solve the problem.

      2.1.2 Get the student inputs from the Prediction

                 Table.

      2.1.3 Check the student model.
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      2.1.4 If there is any error, go to step 3.

   End-Repeat.

3. Lesson planner:

   3.1 Generate lesson goals.

   3.2 Repeat until no more goals in the stack.

      3.2.1 Take one goal and build lesson plan.

      3.2.2 Call the discourse planner.

      3.2.3 Remove the current goal from the stack.

   End-Repeat.

(defun lesson-planner ()

  (generate-goals)
    (check-lesson-goals))

(defun check-lesson-goals ()

  (build-lesson-plan   (car *lesson-goals*))
  (call-discourse-planner  *subgoals*)
  (check-lesson-goals  (cdr *lesson-goals*))) 

(defun controller ()

   (repeat-until-all-phases-done       ; DR/RR/SS
      (problem-solver  procedure-number 'stage)
      (get-student-input-from-prediction-table)
      (check-student-model)
      (if (any-error) lesson-planner)))

(defun main ()

   (screen-manager set-up-environments)
   (controller))

Figure 20. Pseudo Code for Lesson Planning
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6.5 Summary

This chapter has discussed the implementation goals of

the lesson planner that provides globally coherent and

adaptive instruction to the student. The design of the rule

interpreter and its usage is described with an example. The

three levels of the lesson planning process are explained in

detail with the rules and tutorial strategies. Finally, the

top level lesson planning algorithm is explained along with

its Lisp pseudo code to clarify the functioning of the lesson

planner.

The system can run in two different modes: a tutor

version and a student version. The tutor version displays

necessary information about the current lesson planning

situation on the screen: the current goal, subgoals,

strategies, tactics, and rules used. The display of this

internal process may be useful in order to understand the

lesson planning mechanism better.
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CHAPTER VII

THE DISCOURSE PLANNER

The discourse planner is responsible for controlling

interactions between the tutor and the student. It needs to

decide how the tutor should respond to a student with a given

problem [Woolf, 1984; Winkels et al., 1988]. This discourse

strategy must be planned explicitly by the discourse planner,

so that the system can enter into flexible and coherent

interactions. GUIDON [Clancey, 1982] and MENO-TUTOR [Woolf,

1984] provide sophisticated dialogue management by selecting

pre-stored discourse plans, but they lack globally controlled

plans and cannot allow student initiatives.

In CIRCSIM-TUTOR, the discourse planner is combined with

the lesson planner, so that the discourse planner receives a

global lesson plan from the lesson planner. The plan

controller monitors the execution of the plan and forces the

discourse planner to suspend or resume the current plan when

the student takes control. The planner consists of sets of

discourse planning rules and a two level discourse network,

which is similar to MENO-TUTOR in its control structures, but

with more functional differentiation (see section 7.2.2).

7.1 Implementation Goals

The main function of the discourse planner is to receive

a lesson plan from the lesson planner and decide how to
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present it to the student using its discourse strategy rules.

How to present the generated lesson plan requires

sophisticated discourse management and flexible interactions

with the other components of the system. The following are

the main goals of building the discourse planner.

First, one of the main functions of the planner is to

decide how to present the selected lesson to the student

using natural language. Thus it needs to interact with other

components of the system: the student modeler, the text

generator, the input understander, and the screen manager.

Second, the system must correct the student's misconceptions

about the given problem. Thus, it must give immediate

feedback on all the student's answers throughout the tutoring

session, although it can be argued that sometimes alternative

responses should be given instead of complete feedback

[Galdes et al., 1991]. Third, if the student fails to give a

correct answer to the tutor, the planner must provide an

alternative learning path to the student, such as a hint. So

the planner needs to decide what to do next at each point

during the tutoring session. Fourth, the discourse strategies

need to be explicitly expressed, rather than procedurally

encoded in the program, such as in IDE-INTERPRETER [Russell,

1988], which procedurally encodes most discourse actions in

its instructional units. The explicit representation provides

an easy way of modifying the strategies. In CIRCSIM-TUTOR,

these strategies are expressed as explicit discourse planning
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rules. Fifth, the planner should accept the student's

questions and comments, and respond with an appropriate

answer. CIRCSIM-TUTOR can respond to some kinds of student

initiative at the moment.

7.2 Architecture of the Discourse Planner

The discourse planner interfaces with many other

components of the system to control the question and answer

dialogue. For instance, the input understander passes the

student input to the planner, then the planner decides what

to do next according to its tutoring strategy, and returns a

response through the text generator in natural language.

Therefore, the planner needs some knowledge of how to tutor

the student at each point of tutoring sessions. In CIRCSIM-

TUTOR this tutoring knowledge is expressed as the discourse

planning rules, which has been extracted from the experts.

The rules are organized as a two level discourse network.

This section explains how I designed the rules and the

overall structure of the network in detail.

7.2.1 Flow Chart Approach. Meta knowledge is knowledge

about knowledge [Davis and Buchanan, 1987]; what you know and

don't know (operational meta knowledge), and how you do

things (control meta knowledge). The operational meta

knowledge is needed to recognize a question outside the

limits of the system. It can be ignored in the discourse

planner, since the input understander receives such a



8 5

question or answer and responds with I don't understand,

please rephrase. The control meta knowledge controls how the

system interacts with the student; it is based on our

observations about how the human expert tutors the student.

The integration of this knowledge into the system ensures

that it appears to ask questions in a logical order.

The basic representation of the control meta knowledge

in CIRCSIM-TUTOR is the flow chart. This is a model of what

the expert does and when he does it. For our system, Allen

Rovick designed several flow charts (see Figure 21), each of

which is used for tutoring the student in a different

situation. We need different tutoring strategies for handling

neural variables, causal relationships, the regulated

variable, logical relationships, and so on. The strategies

dealing with the neural variables are different in all three

phases (DR/RR/SS), as are those for the other variables.

Figure 21 is the one that tutors the non-neural variables in

DR. The content of the questions is determined by the lesson

planner and passed on to the discourse planner, which must

then decide how to express this content, determining whether

to ask a question, give an answer, and so on. After the chart

was created, I, the knowledge engineer, encoded this

information as discourse planning rules. The next step was to

create a sophisticated inference mechanism that can utilize

these rules.



8 6

Tutoring DR-Non-Neural Variables

What are the
determinants

(1 determinant)

(2 determinants)

N Give hint from level 2

2nd N Give answer

1Y, 1N answer Give hint from
level 2

2N answers Give answer
Yes

What is 
relationship

N

N If equation, state in words

2nd N Give relationship

If no equation, give hint
from level 2

Yes

Predict again

Next error

N Give entire level 2

Still N     send to textbook

Yes

Figure 21. The Flow Chart for Tutoring Non-Neural Variables
            in DR
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7.2.2 Discourse Network. The network is the main

knowledge structure of the discourse planner. It consists of

states, links, and arcs (see Figure 22). The states represent

tutorial actions, the arcs imply state transitions, and the

links indicate hierarchical dependencies; a state at the

tactical level represents the refinements of the level above.

Three important mechanisms need to be discussed: levels of

planning, representation of the tutorial states, and control

structures. The network cannot be considered without the

control structure, since it integrates the other two

mechanisms.

Begin Finish

INTRODUCE TUTOR COMPLETE

Ask_Question

Remind Complete_Topic

Give_Ans

Give_Hint

Evaluate_Input

Give_Correct_Ack

Give_Incorrect_Ack

Give_Half_Correct_Ack

Explanation

Requestion

Figure 22.  The Discourse Network
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A. Levels of Planning. The discourse planner is

divided into two planning levels: pedagogical and tactical.

The pedagogical level makes decisions about the style of

tutoring; introduces a topic, remediates the student's

misconceptions, and completes a topic. The discourse action

begins with the pedagogical level, introduce state, and then

it traverses the network and finishes one topic as it reaches

the complete state. The tactical level chooses an expository

style to implement the pedagogy; question the student, give

acknowledgement, or give an answer. The states at this level

are refinements of the states at the pedagogic level.

B. Representation of Discourse Strategies. The

second important mechanism is the representation of the

tutorial strategies in the form of states. The discourse

strategies were then extracted from the flow chart and

expressed as discourse rules. The rules are written as a

frame-like structure using Lisp macro functions, which

represent the states in the network (see Figure 23, Figure

24, Figure 25, Figure 26). The states are divided into

default states and meta states, and each state is further

divided into pedagogic and tactical states. Each state

consists of a state name and slots. The slots contain

necessary information to perform text generation or explicit

control mechanisms; the slots in the meta states contain

preconditions and indicate the next state to move to, and the

default tactical states contain text style and content to
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generate a natural language sentence. In Figure 25, the

execution of Ask_Question state will cause the text generator

to generate a question, and then move on to the next default

state, Eval_Input. The slots also contain a register to keep

track of the completion of the topic, and a flag to update

the student model.

Pedagogic Default Rule

(Pedagogic_default   *introduce*
    (subgoal          current-task
     update           topic-completed
     next-state      *tutor*))

(Pedagogic_default   *tutor*
    (subgoal          current-task
     update           topic-completed
     next-state      *complete*))

Figure 23. The Pedagogic Default Rule

Pedagogic Meta Rule

(Pedagogic_meta      *m_tutor*
    (precondition     topic-completed
     prior-state     *tutor*
     next-state      *introduce*))

(Pedagogic_meta      *m_complete*
    (precondition     no-more-topics
     prior-state     (*introduce*  *complete*)
     next-state      *stop*))

Figure 24.  Some Pedagogical Meta Rules
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Tactical Default Rule

(Tactical_default    *ask_question*
    (text-style       question
     content          current-task
     update           nil
     next-state      *eval-input*)) 

(Tactical_default    *give_answer*
    (text-style       give-answer
     content         (current-task correct-answer)
     update           student-model
     next-state      *complete-topic*))

Figure 25. Tactical Default Rules

Tactical Meta Rule

(Tactical_meta       *m_correct*
    (precondition     correct-response
     prior-state     *eval-input*
     next-state      *correct-ack*))

(Tactical_meta       *m_incorrect*
    (precondition     incorrect-response
     prior-state     *eval-input*
     next-state      *incorrect-ack*))

Figure 26. Tactical Meta Rules

C. Control Structure. The discourse control in the

network can be divided into a default control structure and a

meta control structure. The default control is specified in

the default states, so that the tutor moves from one state to
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another according to a pre-determined path. The meta control

abandons the default path and moves to the state that is

specified in the meta-rule. The system checks the meta-rules

first and if none of the meta-rules fire, then the control

flow will follow the default path. This control path is

hidden in Figure 22, because the exceptional behavior by the

meta-rules can not be predicted in advance. For example, the

Eval_Input state will be selected right after the

Ask_Question state as a default path, but the next state is

unpredictable, since the student answer could be correct,

wrong, or partially correct. This mechanism enables the

dynamic behavior of the discourse planner.

The main disadvantage of earlier discourse management

networks [Woolf, 1984; Clancey, 1982] is that they needed to

be coupled with some other control mechanism, such as an

agenda and an external memory to provide a topic. In CIRCSIM-

TUTOR, since the lesson planner provides a globally coherent

lesson plan, the network itself can function solely for

delivery purposes while keeping all the advantages of the

discourse management network, such as flexible discourse

control and explicit representation of discourse strategies.

7.3 Discourse Planning

Discourse planning in CIRCSIM-TUTOR is managed by a

simple algorithm. It iterates through the states until a

topic becomes complete. Either the student responds with a
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correct answer or the tutor gives the answer. This section

describes important features of the discourse planning: the

discourse goals, a discourse planning algorithm, an example

of text generation, and an example of a student initiative.

7.3.1 The Discourse Goal. The discourse planner needs a

goal to tutor the student. This goal can be found in the

subgoal stack, which the lesson planner has produced. In

Figure 18, the subgoals are sequenced by number, so that the

discourse planner can carry them out in that order. When the

planner finishes carrying out one of the subgoals, it will be

removed from the stack, and the planner picks the next one.

This cycle continues until the stack is empty, or is

suspended by the plan controller in favor of a student

initiative.

7.3.2 The Discourse Planning Algorithm. The discourse

planning algorithm is a simple iteration. It receives a

subgoal stack from the lesson planner, picks one of the

subgoals, and iterates through the states in the network

until the goal is completed. The cycle is repeated with each

subgoal in turn until the stack is empty. The most important

feature of the algorithm is flexible transition between the

two level planning process; if the current level is a default

or meta strategy then process the upper level function, else

process the lower level function; if the next state is not

specified in a tactical state then pop up to the upper level
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and check meta rules, and so on. The following is the top

level discourse planning algorithm and Figure 27 shows the

pseudo code for the discourse planning algorithm.

The Top Level Discourse Planning Algorithm:

1. Repeat until the subgoal stack is empty.

      Pick one subgoal and call execute-one-subgoal.

   End-Repeat.

2. Execute-one-subgoal:

      Repeat until topic completed

           if strategy then process-upper-level

           if tactical then process-lower-level

      End-Repeat.

 7.3.3 Generating Natural Language Sentence. The

tactical default states have slots containing information for

the text generator. When the planner processes the states,

the text-style and content slots will be extracted from the

current state. For example, assume that the planner is

processing the *ask_question* state (Figure 25), while the

text-style slot contains question and the content slot

contains the current-task, such as determinant (SV). Binding

these two slot values provides us with a logic form,

(question (determinant (SV))), which will be passed to the

text generator, which generates the sentence, What are the
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determinants of SV? Then the screen manager will display the

sentence in the tutor window.

The logic form may need to be extended to generate

richer sentences, since this kind of the logic form only

contains information about a particular task or the solution

of a problem. The text generator may need to collect more

information from many other sources, the domain knowledge

base, the student model, the dialog history, and so on.

(defun discourse-planner ()
   (repeat until no-more-subgoals
          (execute-one-subgoal)))

(defun execute-one-subgoal ()
   (repeat-until (STOP)
      (case (get-level (level))
          ((strategy)      (process-upper-level))
          ((meta-strategy) (process-upper-level))
          ((tactical)      (process-lower-level))
          ((meta-tactical) (process-lower-level)))))

(defun process-upper-level ()
   (check-start)
   (cond  ((current-state = meta-strategy) 
           (get-next-state))
          ((topic-completed) (STOP)
           (get-next-state)

(defun process-lower-level ()
     (cond ((current-state = meta-tactical) 
            (get-next-state)
           ((topic-completed) (get-next-state)
            (call-text-gen)   (get-next-state)))
     (if (next-state = nil) (pop-level-up))) 

Figure 27. The Pseudo Code for Discourse Planning
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7.3.4 How to Recognize a Student Initiative. CIRCSIM-

TUTOR allows student initiatives during the tutoring session.

So the planner must understand whether the student response

is a question or an answer by checking the input logic form,

which is being passed from the input understander. For

example, if the input understander passes a logic form,

(answer (determinant SV)(RAP CO)), the first item of the

list, answer, indicates that this is an answer. The second

item of the list, (determinant SV), is the current topic, and

the third item, (RAP CO), is the student answer. Let's assume

that the tutor asks the question, What are the determinants

of SV? and the student responds with I don't know about SV.

Then the input understander recognizes this as an implicit

question and returns a logic form, (question (do-not-know)

(SV)). The planner receives the logic form and recognizes

that this is a student initiative, so it suspends the current

plan and carries out the student request; asks the problem

solver to get the definition of SV from the knowledge base,

and then asks the screen manager to display it.

Student initiatives can involve a broad range of

questions. It requires efforts from many components of the

system to give helpful responses; the input understander must

understand the question, the problem solver must get an

answer, and the planner must keep track of the current plan

and carry out the student request.
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7.4 Trace of Discourse Transition

Figure 28 shows a short trace of a sequence of discourse

transitions. The short arrows represent the pedagogic level

transitions; the long arrows represent the tactical level

transitions; and the double arrows represent the meta level

transitions. The left side of the figure shows the processing

of states, and the right side of the figure shows the

discourse actions resulting from visiting the states.

The tutor begins by asking a question, then it moves to

the evaluate state by the default control rule. At this time,

the student responds with a half correct answer, which is

recognized by the meta tactical rule3, which forces a move to

the h a l f - c o r r e c t  state. This state produces an

acknowledgement and then another meta rule fires, which

recognizes that this is the first try. So the meta rule

forces a move to the give-hint state, which produces a hint.

Since there is no default and a meta rule applies, the

control pops up to the upper level and checks whether the

topic has been completed. If not, then control goes back to

the introduce state again, and moves down to the tactical

level. This time the requestion state is selected, since this

is the second try on the same topic.

One of the default paths is ask-question then eval-

input. This can be considered as a partial discourse plan,

because this plan will be overriden by the meta rules. Thus
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the overall discourse planning mixes fixed partial planning

with dynamic meta planning.

 

Current Topic: Determinants of SV

Discourse States Discourse Action

->,=>:    Pedagogic Level

-->, ==>: Tactical Level

->  INTRODUCE

--> Ask-question  Tutor: What are the determinants
        of SV?

==> Meta-tactic3 
    (Incorrect-one)

--> Eval-input  Student: RAP and CO

--> Half-Correct  Tutor: RAP is correct, but CO is
        not a determinant of SV.

==> Meta-tactic6
    (First-try)

--> Give-hint  Tutor: Remember. SV is the amount
        of blood pumped per beat.

->  TUTOR

=>  Meta-pedagogic
    (Not-completed)

 Tutor: What is the other 
        determinant of SV?

->  INTRODUCE

--> Requestion

( -> Default , => Meta )

Figure 28. Trace of the Discourse Transition Process

7.5 Summary
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This chapter began by introducing the  discourse rules

and the discourse network. The discourse rules originated in

the flow chart as a tutorial strategy, and I have transformed

them into rules and expressed them as frame-like structures

using Lisp macro functions. The rules include all the

necessary information to generate a natural language

sentence, and the control mechanism is also specified within

the rules.

The network consists of two levels: the pedagogy level

and the tactical level. The pedagogy level makes decisions

about the style of tutoring and the tactical level decides on

the expository style to implement the pedagogy. The execution

of the tactical states causes text to be generated, updates

the student model, and moves to the other states. The states

represent explicit discourse planning rules and an explicit

control mechanism.

Some of the important discourse planning features are

introduced in the third section; discourse goals, the

discourse planning algorithm, communication with the text

generator, recognizing the student initiative. A short trace

of example discourse state transitions is displayed in the

fourth section.

The system provides two different running modes: a tutor

version and a student version. The tutor version displays the
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subgoal stack, the current topic, and the discourse

transition. As the dialogue proceeds, the subgoal stack gets

updated, and displays all the states that have been visited

including the current one.
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CHAPTER VIII

CONCLUSION

8.1 Significance of this Research

This thesis describes the design and development of an

instructional planner for a Physiology ITS, CIRCSIM-TUTOR.

The planner has several significant features.

First, the planner combines two different instructional

planning approaches: lesson planning and discourse planning.

Lesson planning produces global lesson plans, which will be

carried out during the discourse planning stage. This

approach provides us with many advantages over other

instructional planning systems, such as MENO-TUTOR [Woolf,

1984] and IDE-INTERPRETER [Russell, 1988].

Second, the planner plans dynamically based on the

inferred student model; it generates plans, monitors the

execution of the plans, and replans when the student

interrupts with a question during the tutoring session. This

approach provides adaptive instruction, so that it is better

suited for tutoring individual students than CAI systems

which produce fixed instruction.

Third, the pedagogical knowledge is extracted from the

experts and represented explicitly as rules, lesson planning

rules and discourse planning rules, in separate files. This
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way it is possible to add, delete, and modify the rules

easily without restructuring the whole system. The rules are

used to generate lesson plans and to control discourse

strategies. The system interprets the rules and builds the

lesson plans or returns an appropriate discourse action.

Fourth, the planner plans at different levels of the

hierarchy; the higher level is a simplification or

abstraction of the plan (lesson goals) and the lower is a

detailed plan (subgoals), sufficient to solve the problem.

This planning technique prevents development of unnecessary

plans in advance and has been implemented successfully in

several ITS systems [Murray, 1988; Russell, 1988].

Fifth, the planner allows student initiatives during the

tutoring session. If the student asks a question the planner

suspends the current plan, carries out the student request,

and then resumes the suspended plan. This is another

advantage of CIRCSIM-TUTOR over earlier dialogue management

systems, such as MENO-TUTOR [Woolf, 1984], which does not

allow student questions during the tutoring session.

Finally, the planner acts as a controller for the

system, so that it controls all the other components of the

system. Since one of the main goals of CIRCSIM-TUTOR is to

provide a natural language interface, the discourse planner

is designed not only to provide sophisticated discourse
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control, but also to create the internal logic forms for the

text generator to generate the sentence. A short tutoring

scenario is introduced, which came from a transcript of human

tutor and student interaction, to explain the internal

process of the system.

8.2 Future Research

Since the student modeler was not fully implemented by

its designer (only DR in procedure 4), I had to implement a

temporary student model for the planner. This model is

limited to the overlay strategy, so the planner can support

tutoring on the overlay errors only, not the bugs. The

tutoring strategy for the bug library has not been developed

yet, so the system cannot tutor the student about bugs at the

moment.

Another very important tutoring strategy is giving a

level 2 (more detailed knowledge) hint during the tutoring

session. Giving a hint generally involves many different

knowledge sources. In CIRCSIM-TUTOR, the domain knowledge

base needs to but does not contain all the knowledge at the

detailed level. The input understander and the text generator

need to expand their lexicon and logic forms to contain all

the variables at the detailed level. The problem solver needs

to be able to access the knowledge base and extract a hint,

and the planner needs to have a general strategy for deciding
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the content of the hint for every situation during the

tutoring session.

We are currently analyzing student initiatives in

transcripts of human tutoring sessions and starting with a

couple of simple examples, such as I don't know, and I don't

understand about X. The planner needs to develop its tutoring

strategy to support more sophisticated student initiatives.

Also the input understander needs to recognize student

initiatives, and the problem solver must provide a correct

answer.

CIRCSIM-TUTOR supports seven pre-determined problems as

a curriculum, so that it does not really require curriculum

planning. Our expert tutors are developing many more

procedures for the system, which may require sophisticated

curriculum planning in future versions of the system.
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APPENDIX A

TUTORING RULES IN ENGLISH AND IN LISP CODE
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Tutoring rules in CIRCSIM-TUTOR consists of lesson

planning rules and discourse planning rules. The lesson

planning rules are further divided into the three kinds of

rules: goal generation rules, strategic rules, and tactical

rules. The discourse planning rules are divided into

pedagogic rules and tactical rules. In this section, the

complete rules are displayed in both English and Lisp source

code.

LESSON PLANNING RULES

1.1 Goal Generation Rules in English

DR Goal Generation Rules

(SYMBOL: X, Y --> Z; X and Y are determinants of Z

            X ==> Y; X is the determinant of Y

     X = Y * Z; equation )

1. If primary variable is neural variable
   and all other neural variables are not zero
   Then tutor other neural variables are zero in DR

2. If primary variable is not neural variable
   and all neural variables are not zero
   Then tutor neural variables are zero in DR

3. If RA is primary variable and MAP /= RA
   Then tutor TPR, CO --> MAP and MAP = TPR * CO
   and TPR ==> MAP

4. If RA is primary variable and CO is wrong
   Then tutor HR, SV --> CO and CO = HR * SV
   and HR is zero (neural variable), so CO can change
   only if SV changes

5. If RA is primary variable and SV is wrong
   Then tutor CC, RAP --> SV and CC is zero (neural
   variable), so CO can change only if SV changes

6. If RA is primary variable and RAP is wrong
   Then tutor CO --> RAP and 1/CO ==> RAP
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   and CO = 0, RAP = 0

     7. If CC is primary variable and SV /= CC
   Then tutor CC, RAP --> SV and CC ==> SV

     8. If HR is primary variable and CO /= HR
   Then tutor HR, SV --> CO and CO = HR * SV and
   HR ==> CO

     9. If HR is primary variable and RAP /= 1/CO
   Then tutor 1/CO ==> RAP

    10. If HR is primary variable and RAP = 1/CO and CO is
   wrong
   Then remind_update (RAP = 1/CO, CO, RAP)

    11. If (RAP is primary variable or if CC is not primary
   variable)
   Then tutor RAP, CC --> SV and RAP ==> SV

    12. If HR and RA is not primary variables and CO /= SV
   Then tutor SV, HR --> CO and CO = SV * HR and
   SV ==> CO

    13. If HR and TPR is not primary variables and CO = SV
   and SV is wrong
   Then remind_update (CO = SV, SV, CO)

    14. If RA is not primary variable MAP /= CO
   Then tutor CO, TPR --> MAP and MAP = CO * TPR
   and CO ==> MAP

    15. If RA is not primary variable and MAP = CO and CO is
   wrong
   Then remind_update (MAP = CO, CO, MAP)

    16. If CC is primary variable and RAP /= 1/CO
   Then tutor CO --> RAP and CO ==> 1/RAP

    17. If CC is primary variable and RAP = 1/CO and CO is
   wrong
   Then remind_update (RAP = 1/CO, CO, RAP)

RR Goal Generation Rules

1. If baroreceptor already denervated
   and all entries in RR are not zero
   Then tutor all variables in RR is zero
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2. If procedure /= denervate baroreceptors
   and neural variables /= 1/MAP in DR
   Then tutor neural variables
   and neural variables in RR = 1/MAP in DR

3. If procedure = denervate baroreceptors
   and neural variable(s) /= increase
   Then tutor baroreceptor denervation decreases
   afferent input to CNS
   and denervation is equivalent to decreased MAP
   and denervation causes RR which increases neural
   variables

4. If procedure /= denervate baroreceptors
   and CO /= 1/MAP in DR
   Then tutor CO = HR * SV and HR and CC in RR equals
   1/MAP in DR and HR ==> CO in RR

5. If procedure = denervate baroreceptors
   and CO /= increase
   Then tutor CO = HR * SV
   and HR and CC = increase and HR ==> CO in RR

6. If RAP /= 1/CO
   Then tutor CO = 1/RAP

7. If CO is wrong and RAP = 1/CO
   Then remind_update (RAP = 1/CO, CO, RAP)

8. If SV /=RAP
   Then tutor RAP, CC --> SV
   and RAP ==> CO

9. If RAP is wrong and SV = RAP
   Then remind_update (SV = RAP, RAP, SV)

    10. If procedure /= denervate baroreceptor
   and MAP in RR /= MAP in DR
   Then tutor effects of reflexes in general
   and MAP = TPR * CO
   and TPR, HR and CC in RR = 1/MAP in DR

    11. If procedure /= denervate baroreceptor
   and MAP in RR = 1/MAP in DR and CO is wrong
   Then remind_update (MAP = CO * TPR, CO, MAP)

    12. If procedure = denervate baroreceptor and MAP /=
   increase then tutor
   denervation --> increase HR, CC --> increase CO
   and increase TPR and MAP = CO * TPR
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SS Goal Generation Rules

1. If procedure = denervate baroreceptors
   and variable in SS /= variable in RR
   Then tutor all variables in DR = 0
   and variable in SS = variable in RR

2. If baroreceptor already denervated
   and variable in SS /= variable in DR
   Then tutor all variables in RR = 0
   and variable in SS = variable in DR

3. If MAP in SS /= MAP in DR
   Then tutor effects of reflexes on regulated variable

4. If variable in DR /= 0
   and variable in SS /= variable in DR
   Then tutor reflex only partially reverses direct
   effects of procedure

5. If variable in DR = 0
   and variable in SS /= variable in RR
   Then tutor variables that are unaffected in DR have
   same value in SS as in RR

1.2 Strategic Rules in English

1. If the goal = tutor causal-relationship
   and direction is incorrect
   Then strategy = tutor causality

2. If the goal = tutor causal-relationship
   and direction is correct
   Then strategy = remind relation

3. If the goal = tutor causal-relationship
   between CO and RAP
   Then strategy = tutor causality for one determinant

4. If the goal = tutor neural control
   Then strategy = tutor neural control

5. If the goal = tutor neural variable and this is
   the first procedure
   Then strategy = remind neural variable

6. If the goal = tutor MAP in RR
   Then strategy = define MAP in RR
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7. If the goal = tutor neural variables in RR
   The strategy = define neural variables

8. If the goal = tutor reflex in RR
   Then strategy = tutor effect of reflex

9. If the goal = tutor logic relation in SS
   Then strategy = tutor logic relation

    10. If the goal = tutor neural variable in SS
   Then strategy = define neural variable in SS

    11. If the goal = tutor reflex in SS
   Then strategy = tutor reflex in SS

    12. If the goal = tutor MAP in SS
   Then strategy = tutor compensate

1.3 Tactical Rules in English

1. If the strategy = tutor causality
   Then tactic = ask (determinants, actual-determinant,
        relation, value)

2. If the strategy = tutor causality for one determinant
   Then tactic = ask (determinants, relation, value)

3. If the strategy = remind-relation
   Then tactic = remind-relation

4. If the strategy = tutor neural control
   Then tactic = ask (mechanism, value)

5. If the strategy = remind neural variable
   Then tactic = redefine DR

6. If the strategy = tutor effect of reflex
   Then the tactic = ask (baroreceptor-reflex, value)

7. If the strategy = tutor neural variable in RR
   Then the tactic = ask (reflex, value)

8. If the strategy = tutor compensate in SS
   Then the tactic = ask (compensate, value)

9. If the strategy = tutor logic relation
   Then the tactic = ask (follow, value)

    10. If the strategy = tutor neural variable in SS
   Then the tactic = ask (value-dr, value-rr, value-ss)
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2.1 Goal Generation Rules in Lisp Code

DR Goal Generation Rules

1. (G_ruleD1 (cc-sm) => ((neural-control *cc*)))

2. (G_ruleD2 (hr-sm) => ((neural-control *hr*)))

3. (G_ruleD3 (tpr-sm)=> ((neural-control *tpr*)))

4. (G_ruleD4 (cc-sm tpr-sm) =>
((redefine-dr)(neural-control *cc*)
 (give-dr-neural)(neural-control *tpr*)))

5. (G_ruleD5 (hr-sm tpr-sm) =>
((redefine-dr)(neural-control *hr*)
 (give-dr-neural)(neural-control *tpr*)))

6. (G_ruleD6 (cc-sm hr-sm) =>
((redefine-dr)(neural-control *cc*)
 (give-dr-neural)(neural-control *hr*)))

7. (G_ruleD7 (cc-sm hr-sm tpr-sm) =>
((redefine-dr)(neural-control *cc*)
 (give-dr-neural)(neural-control *hr*)
 (neural-control *tpr)))

8. (G_ruleD8 (sv-sm rap-sv sv-co) =>
((causal-relation (*rap* *sv*))
 (causal-relation (*sv* *co*))))

9. (G_ruleD9 (sv-sm cc-sv sv-co) =>
((causal-relation (*cc* *sv*))
 (causal-relation (*sv* *co*))))

    10. (G_ruleD10 (rap-sm co-rap rap-sv) =>
((causal-relation (*co* *rap*))
 (causal-relation (*sv* *co*))))

    11. (G_ruleD11 (co-sm sv-co co-rap co-map) =>
((causal-relation (*sv* *co*))
 (causal-relation (*co* *rap*))
 (causal-relation (*co* *map*))))

    12. (G_ruleD12 (co-sm sv-co co-map) =>
((causal-relation (*sv* *co*))
 (causal-relation (*co* *map*))))

    13. (G_ruleD13 (map-sm co-map) =>
((causal-relation (*co* *map*))))
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    14. (G_ruleD14 (sv-sm co-sm cc-sv sv-co co-map co-rap) 
=> ((causal-relation (*cc* *sv*))

 (causal-relation (*sv* *co*))
 (causal-relation (*co* *map*))
 (causal-relation (*co* *rap*))))

    15. (G_ruleD15 (sv-sm co-sm rap-sv sv-co co-map)
=> ((causal-relation (*rap* *sv*))

 (remind (*sv* *co*))
 (causal-relation (*sv* *co*))
 (causal-relation (*co* *map*))))

    16. (G_ruleD16 (sv-sm co-sm cc-sv co-map co-rap)
=> ((causal-relation (*cc* *sv*))

 (remind (*sv* *co*))
 (causal-relation (*co* *map*))
 (causal-relation (*co* *rap*))))

    17. (G_ruleD17 (sv-sm co-sm rap-sv co-map)
=> ((causal-relation (*rap* *sv*))

 (causal-relation (*co* *map*))))

    18. (G_ruleD18 (co-sm map-sm sv-co co-map co-rap)
=> ((causal-relation (*sv* *co*))

 (causal-relation (*co* *map*))
 (causal-relation (*co* *rap*))))

    19. (G_ruleD19 (co-sm map-sm sv-co co-map)
=> ((causal-relation (*sv* *co*))

 (causal-relation (*co* *map*))))

    20. (G_ruleD20 (co-sm map-sm co-map)
=> ((causal-relation (*sv* *co*))))

 (remind (*co* *map*))

    21. (G_ruleD21 (co-sm map-sm sv-co co-rap)
=> ((causal-relation (*sv* *co*))

 (causal-relation (*co* *rap*))
 (remind (*co* *map*))))

    22. (G_ruleD22 (sv-sm map-sm cc-sv sv-co co-map)
=> ((causal-relation (*cc* *sv*))

 (causal-relation (*sv* *co*))
 (causal-relation (*co* *map*))))

    23. (G_ruleD23 (sv-sm map-sm rap-sv sv-co co-map)
=> ((causal-relation (*rap* *sv*))

 (causal-relation (*sv* *co*))
 (causal-relation (*co* *map*))))

    24. (G_ruleD24 (sv-sm co-sm cc-sv co-map co-rap)
=> ((causal-relation (*cc* *sv*))

 (causal-relation (*co* *map*))
 (causal-relation (*co* *rap*))))
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    25. (G_ruleD25 (sv-sm co-sm map-sm cc-sv sv-co co-map 
 co-rap)

=> ((causal-relation (*cc* *sv*))
 (causal-relation (*sv* *co*))
 (causal-relation (*co* *map*))
 (causal-relation (*co* *rap*))))

    26. (G_ruleD26 (sv-sm co-sm map-sm rap-sv co-map)
=> ((causal-relation (*rap* *sv*))

 (remind (*sv* *co*))
 (causal-relation (*co* *map*))))

    27. (G_ruleD27 (sv-sm co-sm map-sm cc-sv co-map co-rap)
=> ((causal-relation (*cc* *sv*))

 (remind (*sv* *co*))
 (causal-relation (*co* *map*))
 (causal-relation (*co* *rap*))))

    28. (G_ruleD28 (sv-sm co-sm map-sm rap-sv sv-co)
=> ((causal-relation (*rap* *sv*))

 (causal-relation (*sv* *co*))
 (remind (*co* *map*))))

    29. (G_ruleD29 (sv-sm co-sm map-sm cc-sv sv-co co-rap)
=> ((causal-relation (*cc* *sv*))

 (causal-relation (*sv* *co*))
 (causal-relation (*co* *rap*))
 (remind (*co* *map*))))

    30. (G_ruleD30 (sv-sm co-sm map-sm rap-sv)
=> ((causal-relation (*rap* *sv*))

 (remind (*sv* *co*))
 (remind (*co* *map*))))

    31. (G_ruleD31 (sv-sm co-sm map-sm cc-sv co-rap)
=> ((causal-relation (*cc* *sv*))

 (remind (*sv* *co*))
 (causal-relation (*co* *rap*))
 (remind (*co* *map*))))

RR Goal Generation Rules

1. (G_ruleR1 (map-sm) => (rr-reflex *map*))

2. (G_ruleR2 (cc-sm)  => (neural-rr *cc*))

3. (G_ruleR3 (hr-sm)  => (neural-rr *hr*))

4. (G_ruleR4 (tpr-sm) => (neural-rr *tpr*))
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5. (G_ruleR5 (co-sm rap-sm sv-sm) =>
((causal-relation (*hr* *co*))
 (causal-relation-one (*co* *rap*))
 (causal-relation (*rap* *sv*))))

6. (G_ruleR6 (rap-sm sv-sm) =>
((causal-relation-one (*co* *rap*))
 (causal-relation (*rap* *sv*))))

7. (G_ruleR7 (co-sm rap-sm) =>
((causal-relation (*hr* *co*))
 (causal-relation-one (*co* *rap*))))

8. (G_ruleR8 (rap-sm) =>
((causal-relation-one (*rap* *sv*))))

9. (G_ruleR9 (co-sm) =>
((causal-relation (*hr* *co*))
 (causal-relation-one (*co* *rap*))))

SS Goal Generation Rules

1. (G_ruleS1 (map-sm) => ((give-ssmap)
   (ss-reflex (*map*)))

2. (G_ruleS2 (cc-sm)  => ((give-ssneural)
   (neural-ss (*cc*)))

3. (G_ruleS3 (hr-sm)  => (neural-ss (*hr*)))

4. (G_ruleS4 (tpr-sm) => (neural-ss (*tpr*)))

5. (G_ruleS5 (rap-sm) => (logic-relation (*rap*)))

6. (G_ruleS6 (sv-sm)  => (logic-relation (*sv*)))

7. (G_ruleS7 (co-sm)  => (logic-relation (*co*)))

2.2 Strategy Rules in Lisp Code

1. (S_ruleD1 (causal-relation direction-correct) =>
(tutor-causality))

2. (S_ruleD2 (causal-relation direction-incorrect) =>
(remind-relation))

3. (S_ruleD3 (neural-control) =>
(tutor-neural control))
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4. (S_ruleD4 (redefine-dr first-procedure) =>
(tutor-remind))

5. (S_ruleR1 (neural-rr) => (tutor-neural-rr))

6. (S_ruleR3 (causal-relation-one) =>
(tutor-causality-one))

7. (S_ruleR4 (rr-reflex) => (tutor-effect-reflex))

     8. (S_ruleS1 (logic-relation) =>
(tutor-logic-relation))

     9. (S_ruleS2 (ss-reflex) => (tutor-ss-reflex))

    10. (S_ruleS3 (neural-ss) => (tutor-neural-ss))

    11. (S_ruleS4 (give-ss-map) => (define-ssmap))

    12. (S_ruleS5 (give-ss-neural) => (define-ss-neural))

2.3 Tactical Rules in Lisp Code

1. (T_ruleD1 (remind-relation) => (remind-relation))

2. (T_ruleD2 (tutor-remind)  => (remind-dr))

3. (T_ruleD3 (tutor-neural-control)=>
(mechanism)(value))

4. (T_ruleD6 (tutor-causality) =>  (determinants) 
(actual-determinant) (relation) (value))

5. (T_ruleR1 (tutor-effect-reflex) =>
(baroreceptor-reflex)(value))

6. (T_ruleR2 (tutor-neural-rr) => (reflex)(value))

7. (T_ruleR3 (tutor-causality-one) =>
(determinants)(relation)(value))

8. (T_ruleS1 (tutor-logic-relation) =>
(remind-nv)(follow)(value))

     9. (T_ruleS2 (tutor-neural-ss) =>
(value-dr)(value-rr)(value-ss))

    10. (T_ruleS3 (tutor-ss-reflex) =>
(reflex-change)(value))
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DISCOURSE PLANNING RULES

1.1 Pedagogic Rules in English

Pedagogic Default Rules

1. If the current state is introduce
   Then select tactical state or move to tutor.

2. If the current state is tutor
   Then check the topic is completed and move to either
   introduce or complete state

3. If the current state is complete
   Then check the subgoal stack for the next topic
   and move to introduce state

Pedagogic Meta Rules

1. If the prior state is tutor and topic is
   not completed
   Then move to introduce state

2. If the prior state is either introduce or complete
   state and there is no more topic in the stack
   Then exit from the discourse planning

1.2 Tactical Rules in English

Tactical Default Rules

1. If the current state is remind-relation
   Then discourse strategy is remind,
   content is current task, update student model
   and move to compete-topic state

2. If the current state is explain
   Then discourse strategy is explanation,
   content is current task, update student model
   and move to complete-topic state

3. If the current state is ask-question
   Then discourse strategy is question
   content is current task,
   and move to eval-input state
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4. If the current state is requestion
   Then discourse strategy is requestion
   content is current task,
   and move to eval-input state

5. If the current state is give-answer
   Then discourse strategy is give answer
   content is (current task and correct answer),
   and update student model, move to complete-topic

6. If the current state is correct-ack
   Then discourse strategy is positive-ack
   content is (current task and student answer),
   update student model, move to complete-topic

7. If the current state is incorrect-ack
   Then discourse strategy is negative-ack
   content is (current task and student answer),
   update student model.

8. If the current state is incorrect-ack-one
   Then discourse strategy is negative-ack-one
   content is (current task and correct student answer,
   incorrect student answer), update student model.

9. If the current state is incorrect-ack-one
   Then discourse strategy is negative-ack-one
   content is (current task and incorrect student
   answers), update student model, move to give-answer

    10. If the current state is give-hint
   Then discourse strategy is hint
   content is current task, update student model.

    11. If the current state is complete-topic
   Then discourse strategy is complete-topic
   content is current task, update student model,
   update topic-completed.

Tactical Meta Rules

1. If the prior state is eval-input, and
   student response is correct
   Then move to correct-ack state

2. If the prior state is eval-input, and
   student response is incorrect
   Then move to incorrect-ack state

3. If the prior state is eval-input, and
   student response is half correct and first try,
   Then move to incorrect-one-ack state
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4. If the prior state is eval-input, and
   student response is both wrong, and first try
   Then move to incorrect-both-ack state

5. If the prior state is incorrect-ack and topic is
   neural control,
   Then move to give-answer state

6. If the prior state is
   (incorrect-ack, incorrect-one-ack), topic
   is causal-relation, and first try,
   Then move to give-hint state

7. If the prior state is incorrect-ack,
   topic is causal-relation, and second try,
   Then move to give-answer state

2.1 Pedagogic Rules in Lisp Code

Pedagogic Default Rules

1. (Pedagogic_default *introduce*
(subgoal *current_task*
 update *topic-completed*
 next_state *tutor*))

2. (Pedagogic_default *tutor*
(subgoal *current_task*
 update *topic-completed*
 next_state *complete*))

3. (Pedagogic_default *complete*
(subgoal *current_task*
 update *one_topic*
 next_state *introduce*))

Pedagogic Meta Rules

1. (Pedagogic_meta *m_tutor*
(prior-state *tutor*
 precondition   *topic-completed*
 next_state *introduce*))

2. (Pedagogic_meta *m_complete*
(prior-state (*introduce* *complete*)
 precondition   *no_more_topic*
 next_state *stop*))
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2.2 Tactical Rules in Lisp Code

Tactical Default Rules

1. (Tactical_default *remind-relation*
(text-style remind
 content *current_task*
 update *sm*
 next_state *complete_topic*))

2. (Tactical_default *explain*
(text-style explanation
 content *current_task*
 update *sm*
 next_state *complete_topic*))

3. (Tactical_default *ask_question*
(text-style question
 content *current_task*
 update *sm*
 next_state *eval-input*))

4. (Tactical_default *requestion*
(text-style requestion
 content *current_task*
 update *sm*
 next_state *eval-input*))

5. (Tactical_default *eval-input*
(text-style nil
 content nil
 update *sm*
 next_state nil))

6. (Tactical_default *give-answer*
(text-style give-answer
 content (*current_task* *correct_ans*)
 update *sm*
 next_state *complete_topic*))

7. (Tactical_default *correct-ack*
(text-style positive-ack
 content (*current_task* *student_ans*)
 update (*sm*, *topic-completed*)
 next_state *complete_topic*))

8. (Tactical_default *incorrect-ack*
(text-style negative-ack
 content (*current_task* *student-ans*)
 update *sm*
 next_state nil))
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9. (Tactical_default *incorrect-ack-one*
(text-style negative-ack-one
 content (*current_task*

 *correct-one* *wrong-one*)
 update *sm*
 next_state nil))

    10. (Tactical_default *give-hint*
(text-style hint
 content *current_task*
 update *sm*
 next_state nil))

    11. (Tactical_default *complete-topic*
(text-style complete-topic
 content *current_task*
 update (*sm* *topic-completed*)
 next_state nil))

Tactical Meta Rules

1. (Tactical_meta *m_correct*
(precondition response-is-correct
 prior-state *eval-input*
 next-state *correct-ack*))

2. (Tactical_meta *m_incorrect*
(precondition response_is_incorrect
 prior-state *eval-input*
 next-state *incorrect-ack*))

3. (Tactical_meta *m_incorrect_one*
(precondition response_is_incorrect
 prior-state *eval-input*
 next-state *incorrect-ack-one*))

4. (Tactical_meta *m_incorrect_both*
(precondition response_is_incorrect
 prior-state *eval-input*
 next-state *incorrect-both-ack*))

5. (Tactical_meta *m_first*
(precondition (causal first-try)
 prior-state (*incorrect-ack*

 *incorrect-ack-one*)
 next-state *give-hint*))

6. (Tactical_meta *m_second*
(precondition (causal second-try)
 prior-state *incorrect-ack*
 next-state *give-answer*))
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APPENDIX B

TRACE OF A TUTORING SESSION
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This section displays a short example of the system in

operation that describes what each component of the system

does, what kind of information it needs, and what is the

result after each step during the tutoring session. This

tutorial interaction begins after the lesson planning is

done, so that there are already lesson goals in the

goalstack. The discourse planner begins with the first topic

in the stack and when that topic is completed, continues with

the next topic. Let us assume that the current goalstack

contains the lesson goal, "CAUSAL-RELATION (RAP,SV)."

The lesson planner picks the goal and expand it into a

set of subgoals: "determinants, actual-determinant, relation,

value." Then the discourse planner picks the first subgoal,

"determinants," and the tutoring session begins as follows.

Planner:  Picks first discourse plan,  (ask: determinants)

          text-style = question, topic = (determinants SV)

Calls text-gen: (question (determinants SV))

Text-Gen: Generates a natural language sentence,

 "What are the determinants of Stroke Volume?"

     and returns it to the Planner.

Planner : Calls Screen Manager to display the sentence.

Screen Manager: Displays the sentence in the TUTOR window.

Planner: Passes the current topic to the Input-Understander,

"(question (determinants SV)"

STUDENT: "HR, RAP"
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Screen Manager: Passes the student's answer to Input

Understander.

Input-Understander:

Evaluates the student's answer, (HR, RAP).

If the answer is inconsistent with the question, 

then it replies to the student "Please rephrase," 

otherwise return the answer to the planner in logic

form,  "(answer (determinants SV (HR, RAP)))"

Planner: Passes the current topic with student's answer to 

the Student Modeller,

"((determinants SV) (HR, RAP))"

Student Modeller:

Calls problem_solver, get correct_ans, 

(RAP,CC), compares (correct_ans with student_ans),

updates student model.

Planner: Checks student model, picks the discourse plan,

"(give: Positive-ack, Negative-ack)"

 text-style = Positive-ack,

 topic = (determinants SV (RAP))

 text-style = Negative-ack,

 topic = (determinants SV (HR))

Calls Text_Gen:

"((Positive-ack (determinants SV (RAP)), 

Negative-ack (determinants SV (HR)))"

Text-Gen: Generates a sentence,

     "Right Atrial Pressure is the correct answer. Heart

Rate is not the correct answer."

Planner : Calls Screen Manager to display the sentence.

Screen Manager: Displays the sentence in the TUTOR window.



1 2 3

Planner: Picks the next discourse plan, "(give: hint)"

 text-style = hint,  topic = (definition SV)

Calls the Text_Gen: "(hint (definition SV))"

Text-Gen: Generates a sentence, "Remember. Stroke volume is 

the amount of blood pumped per beat."

and return it to the planner.

Planner : Calls Screen Manager to display the sentence.

Screen Manager: Displays the sentence in the TUTOR window.

Planner: Picks the next discourse plan, "(ask: determinant)"

text_style = requestion, topic = (determinant SV)

Calls the Text-Gen:

"(requestion (determinants SV))"

Text-Gen: Generates a sentence,

 "What is the other determinant of Stroke Volume?"

Screen Manager: Displays the sentence in the TUTOR window.

Planner: passes the current topic to the Input-Understander,

"(requestion (determinant SV)"

STUDENT: "Cardiac Output"

Screen Manager: Passes the student's answer to  Input 

Understander.

Input-Understander:

Evaluates the student's answer, (CO).

return the answer to the planner in logic form,

"(answer (determinant SV (CO))"
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Planner: Passes the current topic with student's answer to 

the Student Modeller:  "((determinant SV) (CO))"

Student Modeller:

Calls problem_solver, get correct_ans: 

compares (correct_ans with student_ans),

updates student model.

Planner: Checks student model,

picks the next discourse plan,

"(give: Negative-ack)"

 text-style = Negative-ack,

 topic = (determinant SV (CO)),

calls Text_Gen:

"(Negative-ack (determinant SV (CO)))"

Text-Gen: Generates a sentence,

     "Cardiac Output is the wrong answer."

Screen Manager: Displays the sentence in the TUTOR window.

Planner: Picks the next discourse plan, "(give: answer)"

 text-style = answer,  topic = (determinants SV)

Call Text_Gen: "(answer (determinants SV))"

Text-Gen: Generates a sentence,

"Stroke Volume is determined by Right Atrial 

 Pressure and Cardiac Contractility."

Screen Manager: Displays the sentence in the TUTOR window.

* The next step for the discourse planner is to pick the next

subgoal, "actual-determinant", and process as above. A real

dialogue produced by the system can be found in the Appendix

C.
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APPENDIX C

DIALOGUE PRODUCED BY THE SYSTEM
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This section shows an extended sample of real dialogue

produced by CIRCSIM-TUTOR. Two examples will be displayed for

each stage (DR, RR, and SS).

Example 1 for DR: The lesson goal of the following

dialogue is to tutor the student about the "causal

relationship between Right Atrial Pressure and Stroke

Volume," which is the same example as in Appendix B.

TUTOR> What are the determinants of Stroke Volume?

STUDENT> RAP and HR

TUTOR> Right atrial pressure is the correct answer. Heart

rate is not the correct answer.

Remember. Stroke Volume is the amount of blood 

pumped per beat.

What is the other determinant of Stroke Volume?

STUDENT> Cardiac Output

TUTOR> Cardiac Output is the wrong answer.

Stroke Volume is determined by the Right Atrial 

Pressure and the Cardiac Contractility.

What is the actual determinant in this case?

STUDENT> CC

TUTOR> Wrong, the actual determinant of Stroke Volume in 

this case is not the Cardiac Contractility.

The actual determinant of Stroke Volume in this 

case is Right Atrial Pressure.
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What is the relationship between Right Atrial 

Pressure and Stroke Volume?

STUDENT> negative

TUTOR> Wrong, Stroke Volume is not inversely proportional

to Right Atrial Pressure. Stroke Volume is directly

proportional to Right Atrial Pressure.

What is the correct value of Stroke Volume?

STUDENT> increase

TUTOR> Wrong, the value of Stroke Volume is not increased.

Consider the value of Right Atrial Pressure.

What is the correct value of Stroke Volume?

STUDENT> decreased

TUTOR> Correct, the value of Stroke Volume is decreased.

Example 2 for DR: The lesson goal of the following

dialogue is to tutor the student about the "neural control

variable" in the DR stage.

TUTOR> Remember the direct response occurs immediately and

produces physical changes in the system before any

reflex is activated.

By what mechanism is Heart Rate controlled?

STUDENT> neural

TUTOR> Correct, Heart Rate is controlled by the nervous 

system.  What is the correct value of Heart Rate?

STUDENT> decreased



1 2 8

TUTOR> Wrong, the value of Heart Rate is not decreased.

Remember. Heart Rate is neurally controlled.

What is the correct value of Heart Rate?

STUDENT> nochange.

TUTOR> Correct, the value of Heart Rate is unchanged.

Example 1 for RR: The lesson goal of the following

dialogue is to tutor the student about the "regulated

variable (Mean Arterial Pressure)" in the RR stage.

TUTOR> Remember the reflex corrects the regulated 

variable.  What variable is regulated by the 

baroreceptor reflex?

STUDENT> Heart Rate

TUTOR> Wrong, Heart Rate is not the regulated variable. 

How is the baroreceptor measured?

Again, what variable is regulated by the 

baroreceptor reflex?

STUDENT> MAP

TUTOR> Correct, the baroreceptor reflex regulates Mean 

Arterial Pressure.

What is the correct value of Mean Arterial 

Pressure?

STUDENT> decreased

TUTOR> Wrong, the value of mean arterial pressure is not 

decreased.
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Consider the value of Mean Arterial Pressure in DR.

What is the correct value of Mean Arterial 

Pressure?

STUDENT> increased

TUTOR> Correct, the value of Mean Arterial Pressure is 

increased.

Example 2 for RR: The lesson goal of the following

dialogue is to tutor the student about the "neural control

variable" in the RR stage.

TUTOR> Remember that the reflex changes the value of all 

neurally controlled variables first, in order to 

correct the change in arterial pressure.

Which variables are changed by the reflex?

STUDENT> CC, HR, and TPR

TUTOR> Correct, Cardiac Contractility, Heart Rate, and 

Total Peripheral Resistance are changed by the 

reflex.

What is the correct value of Heart Rate?

STUDENT> decreased

TUTOR> Wrong, the value of Heart Rate is not decreased.

The value of Heart Rate is increased.
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Example 1 for SS: The lesson goal of the following

dialogue is to tutor the student about the "logic relation"

in the SS stage.

TUTOR> The value of a neural variable is SS is the same as

its value in RR, because neural variables do not 

change in DR except when one is a primary variable.

What is the correct value of Heart Rate in DR?

STUDENT> nochange

TUTOR> Correct, the value of Heart Rate is unchanged in 

DR. What is the correct value of Heart Rate in RR?

STUDENT> increased

TUTOR> Correct, the value of Heart Rate is increased in 

RR. What is the correct value of Heart Rate in SS?

STUDENT> increased

TUTOR> Correct, the value of Heart Rate is increased in 

SS.

Example 2 for SS: The lesson goal of the following

dialogue is to tutor the student about the "physical

variable" in the SS stage.

TUTOR> Remember cardiac output decreased in DR, it 

increased in RR.

What must the value of Cardiac Output follow in SS?

STUDENT> rr



1 3 1

TUTOR> Wrong, the value of Cardiac Output doesn't follow 

the value of Cardiac Output in RR. The value of 

Cardiac Output must follow the value of Cardiac 

Output in DR.

What is the correct value of Cardiac Output?

STUDENT> decreased

TUTOR> Correct, the value of Cardiac Output is decreased.
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