
NORTHWESTERN UNIVERSITY

INTERACTION OF DISCOURSE PLANNING, INSTRUCTIONAL

PLANNING AND DIALOGUE MANAGEMENT IN AN

INTERACTIVE TUTORING SYSTEM

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

REVA K. FREEDMAN

EVANSTON, ILLINOIS

December 1996

ii

© Copyright by Reva K. Freedman 1996

All Rights Reserved

iii

Abstract

We demonstrate the utility of natural language generation as the underlying model

for an intelligent tutoring system (ITS) in cardiovascular physiology. We have achieved

this goal by dividing it into three subgoals, each of which builds on its predecessor: (a)

developing a model of the tutorial dialogue of human tutors based on current research in

natural language generation, with emphasis on text planning and the Conversation

Analysis school, (b) analyzing a corpus of human-to-human tutoring sessions in

cardiovascular physiology in terms of this model, and (c) designing an ITS which

implements the model. We develop an abstract model of tutorial dialogue in order to put

text generation for ITSs on solid theoretical footing. We give a detailed analysis of our

corpus using this model, including a discussion of how tutors sequence their corrections,

begin and end phases of the discourse, acknowledge responses, reply to student errors,

teach different kinds of information, provide hints, conduct interactive explanations and

choose between domain models. We present a detailed design for an ITS which uses this

model to show that it can be implemented with current technology. The system is divided

into two routines running in parallel, a global tutorial planner, which makes discourse

decisions for units larger than a turn, and a turn planner, which assembles individual turns.

The tutorial planner does not generate text directly, but generates a series of semantic

forms. The turn planner collects the semantic forms for a turn, which may include

information from multiple tutorial and/or conversational goals, and generates text for them

as a unit. This architecture promotes coherent dialogue while permitting the tutor to use

multi-turn discourse plans and change plans in response to student input. We expect this

model to produce longer, more complex, and more varied dialogues than previous work.

iv

Acknowledgments

When I began graduate school, I did not understand why dissertations always have

long acknowledgments. Now I do. During my long career as a graduate student, many

people have gone out of their way to be helpful. Several of them deserve special mention

here. My advisor, Professor Gilbert K. Krulee, was always ready with the right mixture of

advice, support, and action. Professor Martha W. Evens provided light at the end of the

tunnel at a crucial moment. Leah Miller provided moral support on many occasions during

our shared time at Northwestern. My parents, Eli and Miriam Freedman, have had

unwavering faith in me. Finally, Michael Glass has supported this effort in every way

possible, both personal and professional, from the beginning.

I benefited greatly from the opportunity to test my theories about text generation in

the context of a real application. I am grateful to Professor Martha W. Evens of the

Illinois Institute of Technology for making this opportunity available to me as part of the

CIRCSIM-Tutor project. This portion of the work could not have been completed without

the assistance of Professors Allen A. Rovick and Joel A. Michael of Rush Medical

College, co-investigators and domain experts. The CIRCSIM-Tutor project came into being

because they are dedicated teachers who really care that their students learn the

fundamentals of cardiovascular physiology. This dedication led them to become interested

in CAI systems long before most of their colleagues. They also designed the data

collection experiments and served as tutors in those experiments. I would also like to

thank all of the students, past and present, who have worked on the CIRCSIM-Tutor project

for providing a rich environment for further research.

R. Michael Young generously permitted the CIRCSIM-Tutor project to use an early

version of the LONGBOW discourse planner. Michael Elhadad not only built the FUF text

v

realization system, along with the SURGE grammar which accompanies it, but has

continued to improve it and make it available to the text generation community.

Tom Dibble, Jay Freedman (no relation) and Chris Rickman, three people whom I

have only met online, provided software to coerce a well-known word-processing

package, whose name will not be mentioned here, into formatting a dissertation. Michael

Glass also contributed software for this purpose.

Part of this work was supported by the Cognitive Science Program of the Office of

Naval Research under Grant No. N00014�94�1�0338. The content does not reflect the

position or policy of the government and no official endorsement should be inferred.

vi

In memory of my beloved sister

SARA ELLEN FREEDMAN

May her memory serve as a blessing

vii

Table of Contents

ABSTRACT... iii

ACKNOWLEDGMENTS .. iv

LIST OF FIGURES ... xiii

INTRODUCTION ... 1

CHAPTER 1: ISSUES IN THE DESIGN OF TEXT-BASED INTELLIGENT

TUTORING SYSTEMS ... 9

1.1 Relation of domain, tutorial and discourse knowledge in ITSs...................... 10

1.1.1 Criteria for classifying ITSs 10

1.1.2 ITSs vs. traditional CAI systems 12

1.1.3 Carbonell: Using AI in the domain model in SCHOLAR 14

1.1.4 Collins & Stevens: Modeling Socratic dialogues 15

1.1.5 Clancey: Rule-based representation of tutorial knowledge in

GUIDON 19

1.1.6 Woolf: Procedural representation of tutorial knowledge in

MENO-TUTOR 21

1.1.7 Tutorial goals in plan-based systems 22

1.2 Text planning: intentional and decompositional approaches.......................... 24

1.2.1 Architecture of text generation systems 24

1.2.2 Using a global planner for discourse planning 26

1.2.3 Two approaches to planning 29

1.2.4 McKeown: Schemata 30

1.2.5 Paris: Multiple strategies for describing a concept 31

1.2.6 Moore: Intention-based planning 32

1.2.7 Hovy: Using discourse structure relations for generation 32

1.2.8 Rösner & Stede: Combining schemata and DSRs 34

1.3 From plan to text... 34

1.3.1 Turn planning as an instance of paragraph planning 35

1.3.2 Levels of semantic forms 35

1.3.3 Systemic grammar as an approach to text realization 37

1.3.4 Sinclair & Coulthard: Conversation Analysis 38

1.4 Planning and replanning in an ITS.. 38

1.4.1 Using global planning with replanning for dialogue generation 38

1.4.2 Wilkins: Replanning in SIPE 39

1.4.3 McCalla: Replanning in a simple domain 40

viii

1.4.4 Jullien & Marty: Replanning in a dialogue system 41

1.5 Plan-based explanation systems ... 42

1.5.1 Cawsey: EDGE, a dialogue-based explanation system 43

1.5.2 Maybury: The TEXPLAN system 44

1.5.3 Moore: Using intention-based planning to generate follow-up

questions 44

1.6 Causal and functional models... 45

1.6.1 Brown, Burton and Zdybel: Causal and functional modeling in a

meteorology tutor 45

1.6.2 Stevens, Collins and Goldin: Classifying students� misconceptions in

meteorology 47

1.6.3 STEAMER: Modeling via graphical simulation 49

CHAPTER 2: INTRODUCTION TO THE BARORECEPTOR REFLEX DOMAIN. 51

2.1 Teaching cardiovascular physiology... 51

2.2 A layperson�s guide to the baroreceptor reflex... 52

2.2.1 Defining the baroreceptor reflex 52

2.2.2 Basic anatomical structures and physiological parameters 54

2.2.3 The role of the nervous system 58

2.2.4 Three stages: DR, RR, SS 59

2.2.5 Determinants and the concept map 61

2.3 Defining the problem space.. 62

2.3.1 Defining the perturbations 62

2.3.2 Enumerating the simple problems 66

2.3.3 Different ways of wording the problem for the student 68

2.4 Solving the problems ... 68

2.4.1 The language used in the rules 68

2.4.2 Rules for the DR stage 69

2.4.3 Rules for the RR stage 75

2.4.4 Rules for the SS stage 76

2.4.5 Multiple primary variables, multiple perturbations, and other special

cases 79

CHAPTER 3: INTRODUCTION TO THE CIRCSIM-TUTOR PROJECT 83

3.1 Computer-assisted instruction (CAI) systems for the baroreceptor reflex 83

3.1.1 MACMAN: A quantitative simulation 83

3.1.2 HEARTSIM: Adding a didactic component 84

3.1.3 CIRCSIM: CAI program using qualitative reasoning 86

ix

3.2 Comparison of v. 3 of CIRCSIM-Tutor to v. 2 ... 86

3.2.1 Motivation for the development of CIRCSIM-Tutor 86

3.2.2 Features and shortcomings of CIRCSIM-Tutor v. 2 88

3.2.3 Sample texts from CIRCSIM-Tutor v. 2 91

3.3 User view of CIRCSIM-Tutor v. 3.. 96

3.3.1 User interface for CIRCSIM-Tutor v. 3 96

3.3.2 Protocols for interleaving predictions and dialogue 97

CHAPTER 4: A MODEL OF INSTRUCTIONAL DISCOURSE FOR

CARDIOVASCULAR PHYSIOLOGY... 99

4.1 Developing a model from naturalistic data ... 100

4.1.1 The keyboard-to-keyboard data collection sessions 100

4.1.2 From tutoring session to transcript 101

4.1.3 Simplifying human discourse 102

4.1.4 Typographical conventions used in this chapter 103

4.2 Principal aspects of the model.. 104

4.2.1 Modeling tutorial planning 104

4.2.2 Modeling dialogue handling 106

4.2.3 Examples showing multiple attempts and turns 109

4.2.4 Realizing a semantic form in multiple ways 110

4.2.5 Naming convention for schemata 112

4.3 Discourse mechanisms used in high-level planning 114

4.3.1 Top level: interleaving data acquisition and correction 114

4.3.2 Introducing a stage 114

4.3.3 Correcting a stage 115

4.3.4 Concluding a stage 116

4.4 Discourse mechanisms used in correcting a variable 116

4.4.1 Second level: division into variables 116

4.4.2 Introducing a variable to correct 117

4.4.3 Transition between attempts to correct a variable 118

4.4.4 Concluding an attempt: Asking for a new value for a variable 120

4.5 Responding to the student�s turn ... 120

4.5.1 Acknowledgments: Positive, negative and mixed 120

4.5.2 Negative content-oriented responses 123

4.5.3 Pseudo-diagnostic questions 126

4.5.4 Pointing out a contradiction 127

4.5.5 Positive content-oriented responses 128

4.5.6 Responses to student initiatives 129

x

4.6 Correcting neural variables .. 131

4.6.1 Schema for correcting the first neural variable 131

4.6.2 Instantiation as interactive explanation 132

4.6.3 Instantiation as explanation 133

4.6.4 Instantiation as hint 134

4.6.5 Another schema for correcting the first neural variable 135

4.6.6 Building complex corrections 136

4.6.7 Correcting subsequent neural variables 138

4.7 Correcting non-neural variables ... 139

4.7.1 Getting a value via the use of determinants 139

4.7.2 Moving forward along an arrow in the concept map 142

4.8 Other methods for correcting variables .. 144

4.8.1 Primary variable tutoring 144

4.8.2 Pointing to the answer 145

4.8.3 Giving the student the answer 146

4.9 Conveying and eliciting information... 146

4.9.1 Conveying a definition 147

4.9.2 Conveying a fact 149

4.9.3 Conveying a rule 149

4.10 Switching between domain models .. 150

4.10.1 Temporarily switching to a deeper domain model 150

4.10.2 Moving to a higher-level model 154

4.11 Generation of previously observed phenomena .. 155

4.11.1 Summaries 156

4.11.2 Explanations 157

4.11.3 �Directed lines of reasoning� (DLRs) 158

4.11.4 Hints 159

4.11.5 Negative acknowledgments 160

4.12 Problems with cooperative conversation .. 162

CHAPTER 5: ARCHITECTURE OF THE DISCOURSE PLANNER 166

5.1 Representation of tutorial knowledge... 167

5.1.1 Conceptual overview of the planning process 167

5.1.2 Motivation for the use of schemata 169

5.1.3 Categories of schemata 171

5.2 The initial set of semantic forms and their realization 172

5.2.1 Major domain-independent semantic primitives 172

5.2.2 Domain-dependent semantic forms 174

xi

5.2.3 Independence of semantic primitives and surface structure 175

5.3 Tutorial planning: Generation of semantic forms.. 176

5.3.1 Architecture of the discourse planner 176

5.3.2 Knowledge sources used in text generation 179

5.3.3 Goals of the input processing phase 180

5.3.4 Knowledge used for making instructional planning decisions 182

5.3.5 Generating material for a turn: the replanning operators 183

5.3.6 Replying to student initiatives 186

5.3.7 Pragmatic restrictions on turn design 186

5.3.8 Syntax and semantics of the tutorial planning operators 187

5.4 Turn planning: Realization of semantic forms as surface structure................ 190

5.4.1 Functions of the turn planner 190

5.4.2 Accumulation of semantic forms into sentences 192

5.4.3 Lexical insertion 193

5.4.4 Intra-turn coherence 195

5.4.5 Inter-turn coherence 197

5.4.6 Text realization and post-linearization editing 198

5.4.7 Building the discourse tree 198

5.5 Examples of the dynamic behavior of the discourse planner 199

5.5.1 Example showing options in the planning process 199

5.5.2 Example showing dialogues which can be generated 204

5.5.3 Example showing the replanning algorithm 205

CHAPTER 6: CONCLUSIONS ... 212

6.1 Summary... 212

6.1.1 Conclusions about the hierarchical structure of tutoring discourse 213

6.1.2 Conclusions about dialogue-related aspects of tutoring discourse 214

6.1.3 Summary of proposed architecture for a text-based ITS 215

6.2 Contributions of this work... 216

6.3 Feasible enhancements using the current architecture 218

6.3.1 Creating realistic tutorial and linguistic knowledge bases 218

6.3.2 Using CIRCSIM-Tutor to study discourse rules 218

6.3.3 Implementing opportunistic planning 218

6.3.4 Adding functional knowledge to the domain knowledge base 219

6.3.5 Improving error handling through increased use of intention-based

planning 219

6.4 Evaluating potential long-term research directions 220

6.4.1 Free-text input, student initiatives and plan recognition 220

xii

6.4.2 Application to other genres and other languages 222

6.5 Conclusions... 222

REFERENCES .. 224

APPENDIX A: SOLUTIONS TO THE CARDIOVASCULAR PROBLEMS 236

A.1 Table of variables.. 236

A.2 Table of procedure variables and primary variables 236

A.3 Summary of rules.. 237

A.4 Solutions for the DR stage.. 241

A.4.1 DR: HR is the primary variable 241

A.4.2 DR: TPR is the primary variable 242

A.4.3 DR: IS is the primary variable 243

A.4.4 DR: CVP is the primary variable 243

A.5 Solutions for the RR stage .. 244

A.5.1 RR: No clamped variables 244

A.5.2 RR: HR is clamped 245

A.5.3 RR: TPR is clamped 246

A.5.4 RR: IS is clamped 246

A.6 Solutions for the SS stage... 247

A.6.1 SS: HR is the primary variable 247

A.6.2 SS: TPR is the primary variable 248

A.6.3 SS: IS is the primary variable 249

A.6.4 SS: CVP is the primary variable 249

A.7 Prediction tables for the simple cases .. 251

A.7.1 HR is primary, non-clamped 251

A.7.2 HR is primary, clamped 251

A.7.3 TPR is primary, non-clamped 252

A.7.4 TPR is primary, clamped 252

A.7.5 IS is primary, non-clamped 252

A.7.6 IS is primary, clamped 253

A.7.7 CVP is primary 253

A.8 Special cases... 253

A.8.1 Beta-blockers 253

A.8.2 Changing intrathoracic pressure (Pit) 255

A.8.3 Denervating the baroreceptors 257

A.8.4 Compound case: Beta-blocker, then broken pacemaker 259

A.8.5 Compound case: Denervate the baroreceptors, then beta-blocker 262

xiii

List of Figures

Figure 1.1: Factors affecting rice growing (from Collins [1977], fig. 1) 16

Figure 2.1: A version of the concept map.. 60

Figure 2.2: Prediction table... 63

Figure 2.3: A more detailed concept map.. 65

Figure 3.1: CIRCSIM-Tutor screen interface ... 97

Figure 5.1: Derivation of the value of a neural variable ... 171

Figure 5.2: Derivation of the value of a non-neural variable .. 173

Figure 5.3: CIRCSIM-Tutor v. 3 from the point of view of text generation 176

Figure 5.4: Dialogues which CIRCSIM-Tutor can generate.. 203

Figure 5.5: Conceptual tutoring agenda .. 205

Figure 5.6: Initial tutoring agenda... 206

Figure 5.7: Initial discourse tree.. 208

Figure 5.8: Tutoring agenda with rebuttal ... 210

Figure 5.9: Final discourse tree ... 211

1

Introduction

It is impossible to dissociate language from

science or science from language, because every

natural science always involves three things: the

sequence of phenomena on which the science is

based; the abstract concepts which call these

phenomena to mind; and the words in which the

concepts are expressed. To call forth a concept

a word is needed; to portray a phenomenon, a

concept is needed. All three mirror one and the

same reality.
�Antoine Lavoisier

The purpose of this dissertation is to demonstrate the utility of text generation as the

underlying model for an intelligent tutoring system (ITS).

Our approach to this goal encompasses three subgoals:

• To develop a model of the dialogue of human tutors based on current

research in natural language generation, with emphasis on text

planning and the Conversation Analysis school.

• To analyze a corpus of human-to-human tutoring sessions in

cardiovascular physiology in terms of this model.

• To design a large-scale, practical ITS which implements the model.

In addition to demonstrating the importance of text generation in the design of intelligent

tutoring systems, we hope that the system described here will prove useful to students

beginning the study of cardiovascular physiology.

The result of this research is a design for a new planner called TIPS
1
which

1
TIPS stands for �Text generation Interactively, a Planning System.� We chose this acronym because of
the pun involved: one of the system�s primary pedagogical goals is to generate hints for the student,
i.e. tips.

2

incorporates both discourse planning and instructional planning. TIPS uses text planning

as an underlying model, rather than the more common approach of considering text

generation as an afterthought to pedagogical planning. As all decisions, even pedagogical

ones, must eventually be expressed as text, TIPS views responding to the student in an

ITS as a text planning problem. Instead of a top-level goal of �guide the student to the

correct value of X,� our top-level goal is �generate text in which the tutor guides the

student to the correct value of X.�

TIPS will be used as the planner for v. 3 of CIRCSIM-Tutor, an ITS currently under

development at the Illinois Institute of Technology and Rush Medical College. CIRCSIM-

Tutor
2
tutors students on the baroreceptor reflex, the negative feedback system which

maintains a steady blood pressure in the human body. The baroreceptor reflex is one of the

more difficult topics in the first-year medical curriculum. The goal of CIRCSIM-Tutor is to

help students integrate the material which they have learned so that they can use it

effectively.

The term �intelligent tutoring system� has been applied to a wide variety of systems

with goals including coaching, teaching, testing, assisting student exploration, and

providing after-the-fact analysis. User interfaces vary from simulation-based graphics to

systems which are largely text-based. Although the optimal choice of output medium for

an ITS depends on the subject matter and goals of the system, the use of natural language

usually permits the tutor to present more detailed information to the student than other

modalities.

Generating text from a knowledge base has several potential advantages over the

use of canned text:

2
Unless otherwise specified, the term CIRCSIM-Tutor refers to v. 3.

3

• It frees us from dependency on a small list of precomputed problems.

• It allows us to have a variety of ways to say the same thing without

having to code each one explicitly.

• It increases the coherence of the dialogue by allowing us to plan text

as a unit.

• It lets us respond specifically to issues which the student brings up.

However, these potential advantages have often not been realized for both theoretical and

practical reasons. Designers of text-based ITSs have faced a difficult choice from the

inception of the genre by J. R. Carbonell [1970]. Since the ability to generate text from

concepts has not developed as rapidly as the set of concepts which need to be expressed,

authors have had to choose between natural-sounding text which has been largely hand-

crafted and the simplified, mechanical-sounding text which can be generated by methods

such as the use of surface-structure templates. Using hand-crafted text restricts the

practical size of a tutoring system by reducing or eliminating the benefits which come from

economy of scale. On the other hand, the use of superficial methods of text generation

reduces the cohesiveness and precision of the resulting text, an equally undesirable result.

The emphasis in CIRCSIM-Tutor is on tutoring students on material which they have

already studied, not on teaching new material. This orientation leads us to place greater

emphasis on the interactive aspects of the conversation, rather than on elaborate ways to

present material. Thus the following criteria are important to us:

• Generated text must be organized into cohesive turns containing text

of appropriate complexity for the material.

• Text must flow in natural conversation patterns. In other words, the

transitions between turns must approximate human patterns.

• A variety of pedagogical methods must be used.

4

• Syntactic structures and lexical items must not be repeated overly

often.

We believe that the quality of the language directly affects students� interest,

understanding and retention. Variety and coherence are two of the most important factors

influencing students� perception of the quality of the language. When each sentence

generated by an ITS makes sense but the resulting text is difficult to follow, coherence is

generally the issue. At the pedagogical level, a variety of methods must be available if the

tutor is to be able to help the greatest number of students. At the linguistic level, variety is

important to ensure that students continue to read the tutor�s output and do not resort to

solving the problems by rote.

These considerations have led us to choose the following goals for the TIPS system:

Planning:

1) To maintain a dialogue, including appropriate responses to student

initiatives and errors, while carrying out a global tutoring plan.

2) To provide the ability to use multi-turn plans and drop or amend

them if the student does not respond as expected.

Tutorial:

3) To provide the ability to teach the same concept in multiple ways.

4) To provide the ability to provide specific content-based responses to

common student errors.

5) To generate tutorial discourse phenomena similar to the hints,

explanations and interactive sequences generated by expert human

tutors.

Discourse:

6) To produce natural-sounding dialogue over a dialogue of arbitrary

length, i.e. inter-turn coherence.

5

7) To produce natural-sounding turns, i.e. intra-turn coherence, and

appropriate use of pronouns and subordinate clauses.

8) To provide the ability to say the same thing in more than one way.

Practical:

9) To allow for principled expansion at all levels, including discourse

schemata, semantic concepts, surface structures and lexical items.

10) To maintain a separation of functions enabling the easy addition of

multi-lingual output in the future.

11) To provide sufficiently fast response time for regular student use.

The fundamental division of labor in the TIPS system is between the tutorial

planner, which makes discourse decisions for units larger than a turn, and the turn

planner, which assembles individual turns. These modules run in parallel to keep track of

pedagogical goals and the evolving conversation. The tutorial planner develops a global,

top-down plan for a tutoring session, which it can update at every turn. For efficiency, this

plan is maintained at a high level and expanded only when necessary. The tutorial planner

uses tutoring goals stored in a schema-based format, which it augments on a turn-by-turn

basis in order to respond to student utterances. Plan operators in the TIPS library cover

pieces of text which range in size from the whole conversation down to primitive speech

acts. Constraints on the plan operators can be used to take other knowledge sources into

account, such as the domain knowledge base, the pedagogical knowledge base, and the

student model. Although TIPS uses multi-turn schemata, it is responsive to the student

because it is capable of replanning at every turn, dropping an unproductive schema in

favor of a different one.

The turn planner is responsible for combining semantic forms emitted by the tutorial

planner into turns, and ensuring intra-turn and inter-turn cohesion. It accumulates

6

semantic forms until it receives a goal which requires a response from the student. At that

point it combines the semantic forms into a cohesive turn, attaches that turn to the

discourse tree which it maintains, and issues the text to the student.

We believe that this design will permit the generation of longer and more complex

dialogues than previous work. This dissertation concentrates on three aspects of the

design: demonstrating the feasibility of the architecture, illustrating how it can be used to

satisfy our pedagogical goals, and outlining the tutorial knowledge base needed for

tutoring real problems. In order to provide broad coverage of the subject matter and of the

methods used by our expert tutors, we have omitted some of the details necessary for a

working system.

CIRCSIM-Tutor is an ITS which generates text about solving problems. To describe

such a system, it is necessary to describe the following aspects:

• How to solve the problem and represent the solution (Chapter 2)
• How to teach the solution and represent the pedagogy (Chapters 3

and 4)
• How to plan a conversation and generate text (Chapter 5)

This dissertation is organized as follows:

Chapter 1 takes a critical look at the ITS literature to identify relevant factors in the

design of an ITS. We analyze the relation of tutorial, discourse and linguistic knowledge in

a selection of well-known ITSs. Then we review some key systems from the planning and

text generation literature. We compare CIRCSIM-Tutor to the best examples of natural-

language based explanation systems. Finally, we study some ITSs which have made

creative use of causal models.

Chapter 2 gives an overview of the baroreceptor reflex domain. It describes the

domain model and presents rule-based methods for solving problems in the domain.

7

Appendix A contains a complete solution trace for every simple problem in the domain as

well as a representative sample of more complex problems.

Chapter 3 introduces the CIRCSIM-Tutor project. In addition to a description of the

user interface and the student protocol, it contains a brief history of earlier versions of

CIRCSIM-Tutor and of previous CAI systems for this domain.

Chapter 4 describes a model of tutoring discourse derived from the study of

naturalistic data from expert tutors. We develop an abstract model of tutorial dialogue.

We give a detailed analysis of our corpus using this model, including a discussion of how

tutors sequence their corrections, begin and end phases of the discourse, acknowledge

responses, reply to student errors, teach different kinds of information, provide hints,

conduct interactive explanations and choose between domain models. Although we have

tried to make the examples comprehensible without any previous knowledge of

physiology, this has not always been possible. We close with a look at some of the

problems of cooperative conversation illustrated in the transcripts.

Chapter 5 describes the design of the TIPS planner. We describe the design of the

tutorial planner, its relation to the turn planner, and the motivation for the use of schemata

as the central form of representation for tutorial knowledge. We illustrate the dynamic

behavior of the planner, showing its behavior both in normal and exceptional conditions.

Then we briefly describe the functions of the turn planner, including the combination of

semantic forms into sentences, the lexicalization and linearization processes, and the

building of the discourse tree.

Chapter 6 contains our conclusions. We describe some advantages of the system

proposed here. We outline some proposed enhancements to the current architecture,

including the derivation of more sophisticated explanations through the use of a functional

8

model of the domain. We explain why other proposed enhancements are not feasible using

this architecture. Finally, we describe potential applications of the TIPS planner to text

generation outside of ITSs.

9

Chapter 1
Issues in the Design of Text-Based Intelligent
Tutoring Systems

Education is not the filling of a pail, but the

lighting of a fire. �W. B. Yeats

The term �intelligent tutoring system� (ITS) has been applied to a wide variety of

systems with goals ranging from teaching and testing to providing after-the-fact analysis,

coaching, and assisting student exploration. User interfaces vary from simulation-based

graphics to systems which are largely text-based. As a natural-language based ITS,

CIRCSIM-Tutor draws from several areas of computer science, including planning, text

generation and knowledge representation. In this chapter we situate CIRCSIM-Tutor in its

theoretical and historical context in order to motivate the design goals given in the

Introduction.

We start by defining a set of axes for classifying ITSs to show how CIRCSIM-Tutor

fits into the ITS world. Then, since a key fact about CIRCSIM-Tutor is that it separates

domain knowledge (what to teach) from tutorial knowledge (how to teach it), and tutorial

knowledge from discourse knowledge (how we express pedagogical ideas in words), we

describe several historical ITSs to survey the evolution of interest in these concepts.

A second key fact about CIRCSIM-Tutor is that it uses a global planner and text

generation methodology in order to generate more cohesive conversations. So we survey

some of the fundamental research in planning and text generation. We review some of the

more important historical systems and some current large-scale explanation systems in

order to show how CIRCSIM-Tutor fits in with respect to other natural-language based

10

systems.

Finally, CIRCSIM-Tutor domain knowledge includes causal reasoning. Following

Stevens, Collins and Goldin [1979], we use the term causal for relationships which

involve causation in the physical world and functional for dependencies which involve

only a logical notion of causation, such as those involving a definition or role relationship.

We end this chapter with a description of some important ITSs which made innovative use

of the ideas of causal and functional modeling.

1.1 Relation of domain, tutorial and discourse knowledge in ITSs

1.1.1 Criteria for classifying ITSs

Different researchers have studied widely different parts of ITSs. The following

chart shows some of the categories which earlier researchers have found relevant, along

with a number of options for each. Many of these issues are related. In this dissertation we

will touch on each of these issues except for input understanding and the student model,

which are outside the scope of this research. In the remainder of this section, we will show

how problems in some of these areas have led later researchers toward more sophisticated

designs.

1. Representation of domain knowledge

a) Facts only

b) Quantitative model

c) Qualitative model for script-style causal reasoning

c) Causal reasoning including functional model

2. Separation of types of knowledge

a) No separation of types of knowledge

b) Separation of domain and pedagogical/discourse knowledge

c) Separation of discourse and pedagogical/domain knowledge

d) Separation of domain, pedagogical and discourse knowledge

11

3. Representation of student model

a) Same representation as knowledge to be taught, e.g. like the CIRCSIM-

Tutor prediction table

b) More abstract derived representation, e.g. including student�s

underlying misconceptions

c) Personalized student model, i.e. including answers to questions asked

for diagnosis or confirmation of diagnosis

4. Making sense of student input

a) Keyword matching

b) Parsing (any form)

c) Parsing with recognition of ill-formed input

d) Goal recognition

e) Plan recognition

5. Type of tutoring transactions

a) Teacher-led

1) Expository teaching

2) Socratic teaching (indirect)

3) Problem-solving guidance

b) Student-led

1) Free discovery: tutor provides answers only

2) Tutor provides intermittent feedback

3) Tutor provides after-the-fact feedback

6. Inter-turn text planning

a) Planning each turn separately

b) Multi-turn plans

c) Planning a turn with reference to previous turns

7. Intra-turn text planning and realization

a) Neither pedagogical nor linguistic abstraction (template filling)

b) Pedagogical abstraction only (multiple potential templates)

c) Linguistic abstraction, e.g. intermediate semantic layer

8. Coherence of the conversation

a) Coherence not explicitly considered

b) Coherence from nature of task

c) Local coherence from low-level planning

d) Coherence from precompiled plan

e) High-level planning isomorphic to pedagogical tasks

f) High-level planning of general conversation

12

1.1.2 ITSs vs. traditional CAI systems

Traditional computer-aided instruction (CAI) systems usually consist of instructional

units, often called frames, which contain text and questions. Usually the text is stored in

surface form, and the domain knowledge is hard-coded as part of the text. Each frame

contains pointers to all possible successors; the one to be used is a function of the

student�s input. Such systems are tedious to write because every possible student response

must be accounted for at each step. In other words, there is no way to reason about

answers in a general way. There is usually no way to reason about pedagogical knowledge

either. In other words, there is no way to choose between multiple ways to teach a

concept without hard-coding the choice. Finally, since the text is hard-coded, there is no

way to provide multiple rhetorical patterns for expressing a teaching method or multiple

syntactic forms for expressing a concept without coding new frames for each set of

choices.

Such systems are effectively large finite-state machines which resemble the

programmed textbooks popular in the 1950�s and 1960�s. It is this aspect which is

essential to the characterization of CAI systems. For example, CIRCSIM (Section 3.1.3)

tutors students on material they have studied earlier. As a result it does not alternate

between text and questions in the way many people associate with frame-based CAI. Yet

CIRCSIM is undoubtedly a CAI system: it can be viewed as a finite-state machine with over

200 states, each of which explains something to the student under a given set of

conditions.

The characteristics of traditional CAI systems described above can be summarized

as follows:

13

• Domain knowledge, including both knowledge about the solution to

a problem and knowledge about how to solve the problem, is

combined with pedagogical knowledge.

• Pedagogical knowledge�what to teach the student under which

conditions�is not represented in a form which can be used for

reasoning.

• Discourse knowledge, or how to choose a linguistic form for a

pedagogical concept, is not represented separately from pedagogical

knowledge.

• Linguistic knowledge, or how to express discourse knowledge as

surface text, is not represented separately from discourse knowledge.

Since these issues are similar to the issues which motivated the development of other types

of knowledge-based systems, it is natural to consider the use of artificial intelligence

techniques to simplify the writing of instructional software. Artificial intelligence

techniques can be used to reduce the amount of knowledge which must be specified

through the use of suitable knowledge representations and mechanisms to manipulate

them. For example, domain knowledge can be represented using as a semantic net, as a set

of clauses with an inference mechanism, or using a variety of other mechanisms.

Representing pedagogical knowledge as a set of plan operators with preconditions is one

method for expressing the underlying concepts without needing to write out each case.

Language is a special case. Since extensive work has been done in the area of natural

language processing, many well-defined techniques are available which do not necessarily

show their origins in AI.

Tutoring systems which use artificial intelligence techniques are called intelligent

computer-aided instruction (ICAI) or intelligent tutoring systems (ITS). From this

definition it can be seen that there is no clear-cut distinction between traditional CAI

systems and ITSs, as there are several parts of a CAI system where AI techniques might

14

be useful and a variety of AI techniques which can be used.

1.1.3 Carbonell: Using AI in the domain model in SCHOLAR

SCHOLAR, developed by J. R. Carbonell [1970], is often considered in the United

States to be the first ITS. It changed the paradigm for CAI by incorporating AI techniques

into a tutoring system. SCHOLAR is a question-answering system based on a semantic

network, using mainly the relations is-a and is-part-of. The knowledge covered includes

declarative knowledge about rainfall; SCHOLAR does not teach any causal or procedural

knowledge.

Parsing is simplified by restricting student answers to numbers, place names, and

other types specified in the question. Errors are classified, so that, for example, a

misspelled answer generates a different response than a completely wrong answer.

Carbonell called SCHOLAR a mixed-initiative system because it had two modes of

operation: the teacher could ask the student questions or vice versa. Carbonell�s purpose

in doing this was to make the point that a more flexible program could meet the needs of a

greater number of students. However, SCHOLAR could not hold a continuous conversation

which required cooperative dialogue behavior. In fact, SCHOLAR does not attempt to create

a coherent conversation.

SCHOLAR does not use global plans at either the tutorial or discourse levels. It had a

prioritized list of topics to cover. In addition, it preferred previously-mentioned topics

over new ones. SCHOLAR used several tutorial plans, including true/false questions,

multiple-choice questions and short-answer questions. It chooses randomly among these

plans. Text is generated from semantic forms using a simplified grammar without

embedded clauses. Some concepts can be realized by a variety of surface forms. For

example, the system can ask the student to answer �true or false� or �correct or

15

incorrect.� The following short excerpt is typical of the SCHOLAR. system.

(1) T: The capital of Chile is Santiago. Correct or incorrect?

S: Correct.

T: That�s right. Approx. what is the area of Brazil?

S: 2,500,000 square miles.

T: Wrong. Please indicate if the following statement is correct or incorrect:

The area of Paraguay is approx. 47432 square miles.

(excerpted from Carbonell [1970, fig. 1])

In order to improve the output of SCHOLAR, Collins, Warnock and Passafiume

[1975] studied dialogues with human teachers teaching geography. To create a structure

for the conversation, their version used a depth-first search to determine the fact to be

taught instead of a priority scheme. This change greatly increased the coherence of the

generated dialogues. More importantly, this paper is the first of a series analyzing the

productions of human tutors.

1.1.4 Collins & Stevens: Modeling Socratic dialogues

Since SCHOLAR used a semantic net to represent its domain knowledge, it could only

handle factual knowledge. Carbonell and some of his colleagues, particularly Allan Collins,

were interested in adding the capability to handle causal reasoning, especially the ability to

do functional analysis. Functional analysis means the capacity to analyze the factors on

which a hypothesis depends, e.g. the ability to infer a region�s climate from its location.

This ability would allow the tutor to teach the student not only the facts but the reasoning

behind them. Collins et al. [1975] show how a desire to teach functional inference leads

naturally to the study of the Socratic method.

In the Socratic method, also called the case, inquiry or discovery method, the

teacher leads students to infer generalizations about the subject matter by asking a series

of questions. Collins [1977] notes that the Socratic method is usually taught by example,

16

so that it is difficult to find a precise description of the method. To remedy that deficit,

Collins did extensive research on dialogues conducted by himself and other teachers with

the goal of identifying pedagogical strategies and the discourse strategies used to

implement them.

Collins [1977] describes Socratic dialogues about causal factors affecting the

growing of rice. These factors can be summarized in Figure 1.1. This chart shows four

variables which can be combined to yield necessary and sufficient conditions for the

growing of rice. Intermediate variables are shown along causal chains. For example, heavy

rainfall is not necessary for the growing of rice because fresh water can be supplied by a

river or lake. Collins gives a set containing two dozen production rules for conducting a

Heavy

Rainfall

River

or Lake

Flat

Terrain
Terracing

Supply of

Fresh Water
Flat Area

OROR

Fertile Soil
Warm

Temperature

Flood the

Flat Area

Rice Grows

AND

AND

Figure 1.1: Factors affecting rice growing (from Collins [1977], fig. 1)

17

dialogue to teach the student about these factors. Here are two sample rules, along with

examples, for teaching students not to make hasty generalizations.

If the student gives a conclusion based on insufficient factors, inquire

about the faulty generalization.

If the student gives water as the reason they grow rice in China, ask

�Do you think any place with enough water can grow rice?�.

If the student gives a conclusion based on insufficient factors, give a

counterexample.

If the student gives water as the reason they grow rice in China, ask a

question like �Do they grow rice in Ireland?� or �Why don�t they grow

rice in Ireland?�.

The complete set of rules includes cases where the student gives an extraneous factor or

an incorrect answer. The rules can be combined to make dialogues such as the following:

(2) T: Where in North America do you think rice might be grown?

S: Louisiana.

T: Why there?

S: Places where there is a lot of water. I think rice requires the ability to

selectively flood fields.

T: O.K. Do you think there�s a lot of rice in, say, Washington and Oregon?

S: Aha, I don�t think so.

T: Why?

(excerpted from Collins [1977], table 1)

Collins also analyzes real and hypothetical dialogues on a variety of topics conducted by

other teachers to show that the rules can be used in other domains. Although Collins does

not explicitly give a hierarchical goal structure, all possible sequences for executing the

rules lead to coherent text. Resnick [1977] attempts to produce a more directly executable

version of Collins� rules by making the prerequisites more explicit.

Collins and Stevens [1982] give a finer-grained version of the rules in Collins

[1977]. Additionally, they provide some data about potential high-level goals, based on

think-aloud sessions with expert teachers. Finally, they consider the refinement of semantic

18

forms into more primitive forms. For example, they point out that each strategy can be

implemented in three forms: questioning (ask for), suggesting (suggest) and commenting

(point out). In the questioning form, which is the most frequently used, the teacher

attempts to elicit information from the student. The suggesting form involves suggesting a

factor for the student to consider. The commenting form involves giving information to

the student.

Collins and Stevens [1991 (originally published in 1983)] analyze additional

dialogues from a variety of fields and produce a list of instructional techniques shared by

inquiry-oriented teachers. These techniques include selecting counterexamples, generating

hypothetical cases, entrapping students (�so would you say that��) and tracing

consequences to a contradiction.

Very little of Collins and Stevens� work was implemented due to the difficulty of

understanding the student�s responses and discerning which factors the student is referring

to. Here is an excerpt from a sample dialogue from the WHY system [Stevens &

Collins 1977]. The contrast between this dialogue and the elegant work of the human

tutors may explain why further implementation work was not continued.

(3) T: Do you think the Amazon jungle has heavy rainfall or little rainfall?

S: Heavy rainfall.

T: Why does the Amazon jungle have heavy rainfall?

S: Because it�s near the Atlantic.

T: Yes, the Amazon jungle is near the equatorial Atlantic. How does that

affect the rainfall in the Amazon jungle?

(excerpted from Stevens and Collins [1977], table 1)

Recently, Wong, Looi and Quek [1996] have produced a prototype tutor based on the

rules in Collins and Stevens [1982].

Collins� work is relevant to CIRCSIM-Tutor because it demonstrates the use of

multiple tutorial plans for a goal. Thus a distinction has been made between domain

19

knowledge and the method of teaching it. The reference to questioning, suggesting and

commenting forms is a step toward providing multiple discourse forms for a tutorial

method. However, Collins does not make a distinction between a discourse form and

potential syntactic implementations for it, as he does not discuss the linguistic

implementation of his theories.

Among the specific methods discussed by Collins, some are relevant to CIRCSIM-

Tutor, such as the idea of teaching by deriving a contradiction from the student�s

statements. Others, such as getting the student to state rules more carefully, do not apply

because CIRCSIM-Tutor generally does not teach rules explicitly unless the student is

having trouble. In particular, rules involving the comparison of two cases have no

analogue in CIRCSIM-Tutor.

1.1.5 Clancey: Rule-based representation of tutorial knowledge in GUIDON

GUIDON [Clancey 1987] is a tutoring system which attempts to teach the student the

problem-solving knowledge contained in the MYCIN expert system for medical diagnosis.

As the student solves a problem, GUIDON tracks the student�s progress against the solution

trace provided by MYCIN. A difficulty intrinsic to GUIDON is that MYCIN is a rule-based

system which does not use the abstractions and reasoning processes which medical

students need to learn. This problem was ameliorated in later systems.

The tutorial rules in GUIDON contain knowledge about dialogue patterns. For

example, one of the tutorial methods used by GUIDON is to go through each clause of a

MYCIN rule and explain its status to the student. Another is to challenge the student�s

response by asking a question about the student�s action. For example, GUIDON can use the

following template to question one of the student�s responses:

(4) T: Given <facts in premises>, does this tell you <your conclusion>?

20

GUIDON can provide more than one way to teach a concept. A set of alternative rules for

the same goal is known as a packet.

GUIDON maintains coherence via a data structure called the focus record, a set of

registers which keep track of the global context of the dialogue. In the absence of a global

plan, the use of the focus record helps to ensure a certain amount of coherence. An

additional measure of coherence is provided by the conversational structure induced by the

program. Although GUIDON does not contain a global planner, by following MYCIN�s

solution, it generates a reasonably well-structured conversation. However, conversations

with GUIDON can be difficult to follow, as evidenced by the following example:

(5) T: What are the organisms that might be causing the infection?

S: Neisseria meningitidis.

T: What facts about this case tell you that Neisseria meningitidis is one of

the organisms that might be causing the infection? (Enter one factor per

line.)

S: Age.

T: None of the factors that you mentioned are appropriate. The age of

J. Smith is not evidence for the conclusion that Neisseria meningitidis is

one of the organisms that might be causing the infection. After gaining

more evidence about this case, the age of J. Smith will enable us to

conclude that the organisms that might be causing the infection are

E. coli (considering whether the infection was acquired while the patient

was hospitalized), Pseudomonas aeruginosa, �

(excerpted from Clancey [1987], p. 276)

Clancey�s own commentary is clearer and more succinct:

T: The age of the patient will be relevant later, but it�s premature to look at it

now.

Although GUIDON contains explicit tutorial knowledge, the tutorial knowledge remains too

close to the domain knowledge. Using the language of pragmatics, one could say that the

problem with the text above is that human speakers do not say all of the information that

they know. Using the language of text generation, we could say that an additional step is

21

necessary to convert the tutorial goals into language. Even though the text produced by

GUIDON can be wordy and unnatural, it can still be useful to the experienced user, just as

compiler error messages can be useful to programmers in spite of their stylized and

repetitive nature.

1.1.6 Woolf: Procedural representation of tutorial knowledge in MENO-TUTOR

MENO-TUTOR [Woolf 1984, 1987] combines tutorial knowledge and discourse

knowledge in a procedural representation. The action of tutoring is represented by several

levels of augmented transition networks. The topmost ATN defines the basic teaching

cycle for each topic: introduce a topic, teach it, identify and repair misconceptions, and

complete the topic. The ATN formalism does not differentiate between sequential steps

and alternatives. At run time, the student�s input will determine whether the tutor will

follow the teaching segment, the misconception segment, or possibly both. If more than

one method is available for teaching a concept or there is more than way to express a

method in text, each would follow a separate path through a lower-level ATN. Dialogue-

related functions such as issuing acknowledgments and non-generation related functions

such as parsing the student�s input are interspersed with tutorial decisions.

Several methods of teaching are defined, including giving the student some general

or specific knowledge, proposing an analogy, and suggesting an example. In the

misconception segment, one of the creative tutorial methods is the �grain of truth

correction.� When the student�s response is unexpected, MENO-TUTOR can respond

cooperatively by jumping to a different part of the ATN.

MENO-TUTOR is related to CIRCSIM-Tutor in the way it handles unexpected inputs.

Both systems can change or augment a plan when an unexpected input is received.

Although MENO-TUTOR is hierarchically organized, its operation is essentially sequential; it

22

has no equivalent of intention-based planning. Additionally, MENO-TUTOR does not allow

the representation of complex tutorial methods such as pointing out a contradiction to the

student except through hard-coding a series of states. MENO-TUTOR is intended for domains

where the tutorial methods are simple and content-independent. Although the use of

content-independent methods was common in traditional CAI systems, they no longer

seem adequate for representing the complex tutorial methods employed by human

teachers.

Text produced by MENO-TUTOR is largely coherent because the ATNs are designed

so that every path through them produces a reasonable response to the student�s

statements. The hierarchical organization makes it easier to validate this claim.

The original plans for MENO-TUTOR were never fully implemented. Input is done with

menus or by giving the system hand-coded semantic forms. Text realization is done by

string substitution.

1.1.7 Tutorial goals in plan-based systems

Recently a number of plan-based ITSs have been described in the literature. It is

interesting to note that although these systems tutor students in different domains, they

tend to have similar sets of primitives.

For example, Van Marcke [1990] lists the following ways to remediate a student

error in the GTE (�Generic Tutoring Environment�) system:

• Give correct answer
• Give explanation
• Give a hint
• Look at subproblems
• Diagnose error
• Retry without any of the above

23

This system contains four ways to clarify a concept:

• Clarify by description
• Clarify by example
• Clarify by simulation
• Clarify by analogy

Much of the content of this system is contained in the domain knowledge objects. For

example, typical errors, generalizations, counterexamples and other types of tutorial

information are stored in the system and described instead of having text generated about

them on the fly.

Chevallier [1992] describes a system for tutoring elementary statistics using the

following set of tutorial operators:
1

• Question
• Acknowledgment
• Neutral commentary on the student�s response
• Advice
• Hint
• Personalized explanation
• Canned explanation from syllabus
• Summary of proof or calculation

In Chapter 4, we will see that although these terms can be used to describe CIRCSIM-Tutor

output, most of them are not CIRCSIM-Tutor primitives. Each of these systems is intended

for teaching a topic which does not require as deep or extensive a domain model as

CIRCSIM-Tutor. Each uses canned text or a similar template mechanism for output.

CIRCSIM-Tutor differentiates the tutorial level, or method of teaching, from the discourse

level, or type of interaction with the student. For example, the show-contradiction method

can be implemented with questions, as in a Socratic dialogue, or in a single paragraph as a

1
My translation.

24

monologic explanation. One instantiation of a tutorial method may be a multi-turn method

while others are not. Additionally, CIRCSIM-Tutor combines output from consecutive

primitives to form cohesive turns. Although the output of CIRCSIM-Tutor contains hints,

explanations and similar categories, these phenomena are built from smaller primitives.

1.2 Text planning: intentional and decompositional approaches

1.2.1 Architecture of text generation systems

Text can be generated from a variety of internal representations. When the internal

representation is isomorphic to the surface text or close to it, the term template filling is

often used. A problem with template filling is that there is no level of linguistic abstraction,

i.e. no way to represent the relationship between alternative ways of saying the same thing.

Furthermore, the use of template filling makes it difficult to improve coherence within a

turn because there is no intermediate semantic representation to manipulate. However,

many natural language systems continue to use template filling because it is simple, fast

and, at the sentence level, robust [Reiter 1995].

Many recent developers of natural language generation systems have chosen a

similar division of functions between the phases of a text generation system [Reiter 1994,

1996]. Although no two systems divide their functions in exactly the same way or use

exactly the same terminology, the following chart gives an overview of the major functions

which must be accomplished.

• Content planning or content determination

Choosing which concepts will be included in the text to be

constructed. Content planning is sometimes accomplished as a side

effect of another process such as an expert system. In other cases,

content planning is accomplished in concert with the following phase.

25

• Discourse planning, paragraph planning or sentence planning

Determining the outline of the text to be uttered. This might include

choosing the sequence of concepts to be expressed, determining

sentence boundaries, and choosing which concept will be expressed

by the main clause and which by an adjunct. The output of this phase

is an abstract semantic structure for each sentence.

• Lexical insertion

Instantiating each object or action in the abstract semantic structure

with a word or phrase in the desired language.

• Text realization

Creating a surface string from the internal representation. Word

order, morphology and agreement are some of the important

phenomena which must be taken care of during the text realization

phase.

The amount of processing required can be greatly reduced by such a pipeline architecture.

This is true despite the fact that the phases cannot be precisely delimited. For example,

whether a particular concept should be expressed as one sentence or two, or whether a

particular concept should be expressed as a subordinate clause or a prepositional phrase,

are decisions which may fall in paragraph planning or in text realization, depending on the

structure of the planner and the reasons for the decision. Although Danlos [1987] and

others have provided examples showing that certain lexical items require an integrated

treatment of these two phases, this does not invalidate either the general principle or the

practical necessity of reducing the branching factor.

The pipeline architecture is often described as separating high-level planning, or

�what to say,� from low-level sentence construction, or �how to say it.� This two-way

distinction is more useful in systems where content planning and paragraph planning are

integrated into one phase which determines �what to say.� In that case the interface

between text planning and text realization is a data structure which represents, roughly,

�what is to be said.� This structure is often called a discourse tree. CIRCSIM-Tutor, on the

26

other hand, moves gradually from �what to say� to �how to say it� through the use of

tutorial plans, which explain how to teach a particular concept. Thus the tutorial planner

decides �what to say� as well as a certain degree of �how to say it.� Section 5.3.1

describes the architecture of CIRCSIM-Tutor. The planning process is outlined in

Section 5.1.1.

1.2.2 Using a global planner for discourse planning

A crucial issue in text generation is ensuring that the generated text is coherent,

i.e. that the parts of the text fit together to express an idea. Just as a sentence is not just a

sequence of words, a paragraph is not just a series of sentences. Although attempts have

been made to generate paragraphs relying on surface models of coherence (e.g. [Mann &

Moore 1981]), none have been successful in the long run. Similarly, the work of Halliday

and Hasan [1976], which describes surface phenomena found in coherent text, does not

provide a model which can be used for generation.

One way to ensure that a text conveys a single idea is to derive it from a high-level

communicative goal, such as to inform the hearer of X or to ensure that the hearer knows

X. The roots of this approach to text generation are found in speech act theory, a field of

philosophy which considers speech as a type of act. This idea is usually attributed to

Austin [1962]. Searle [1969] systematized Austin�s work and has had more direct

influence on the use of speech act theory in linguistics [Levinson 1983, p. 237]. In speech

act theory, an utterance is an action by means of which a speaker does something to a

hearer. In text generation the generation system is the speaker (or writer), and the user is

the hearer (reader). In the case of a tutoring system, the speaker and hearer are often

referred to as tutor and student.

Planning, or plan construction, is the process of finding a sequence of actions which

27

will transform a given state of the world into a desired state. Planning permits an agent to

consider future actions before executing them. If we consider utterances as actions, then

we can use planning algorithms to generate text. Other work on reasoning about actions

also becomes applicable [Cohen, Perrault & Allen 1982]. Cohen & Perrault [1979] give a

detailed derivation of sentences such as Tell John to give me the key from the goal of

informing the hearer about something.

Another early work using planning to generate text is that of Appelt [1985].

Appelt�s goal was to provide a formal proof that the sentences he generated indeed

fulfilled their discourse goals. A lot of his attention went to generating correctly referring

noun phrases. He generates one or at most two sentences for each discourse goal. Appelt

uses a hierarchical planner based on the one devised by Sacerdoti [1977] to derive an

abstract representation from a set of basic axioms. He uses a functional unification

grammar to generate the final text from the abstract representation.

The earliest formal planning system is the STRIPS planner of Fikes and Nilsson

[1971]. In the text planning domain, a STRIPS-style or �classical� planner begins with the

goal of generating text to implement a given speech act, such as to inform X of Y. The

planner has operators which can replace this goal with smaller subgoals when appropriate

preconditions are satisfied. Bottom-level subgoals add to an intermediate representation

such as the discourse tree defined above. When a set of subgoals equivalent to the original

goal have been simultaneously satisfied, the discourse tree is input to the realization phase,

which converts the intermediate representation to natural language text. [Hovy et al.

1992] The realization phase can use any computer-compatible grammatical theory, and

may or may not use a planning mechanism. Two popular choices for the underlying

grammar are functional unification grammar and Halliday�s systemic grammar.

28

Using planning as a model for text generation gives rise to the problem of

combinatorial explosion. One way to reduce the number of choices needed to generate a

text is to obtain a general plan at a high level of abstraction and then refine each step

independently. This method, known as hierarchical planning, was first implemented by

Sacerdoti [1974] in the ABSTRIPS system. A potential problem with this method is that

contradictions between the refinement of one step and the refinement of another can cause

significant backtracking. This problem was somewhat ameliorated in the NOAH system of

[Sacerdoti 1977]. NOAH had constructive critics which attempted to fix contradictory

refinements to avoid backtracking. Depending on how the parts are implemented, the

common arrangement of two systems connected by a discourse tree may or may not be

correctly considered a hierarchical planner.

An improvement in efficiency can be obtained through the use of partial-order

planning [Weld 1994]. Instead of representing a plan as a sequence of steps, a partial-

order planner uses a graph representing only necessary relations between the plan steps.

Before executing a partial-order plan, one chooses a specific linearization. The goal of

partial-order planning is to reduce backtracking by avoiding unnecessary commitments to

the order in which subgoals are satisfied. Partial-order planning has the potential to make

discourse planning more efficient because this issue occurs often in discourse planning.

For example, if a phrase or clause has more than one prepositional phrase attached, the

order in which text is chosen to realize the adjuncts is often arbitrary.

UCPOP (pronounced you-see-pop) [Barrett et al. 1994] is a partial order planner

which permits universal quantification in the preconditions, effects and goals of plan

operators. It also permits conditional effects. These features make it easier to represent

actions in the everyday world. Penberthy and Weld [1992] prove that UCPOP is sound and

29

complete, two attributes which simplify implementation by eliminating the possibility of

generating a plan which doesn�t work or missing a correct plan. DPOCL is a system derived

from UCPOP and intended specifically for text generation [Young & Moore 1994b; Young,

Moore & Pollack 1994; Young, Pollack & Moore 1994]. A recent addition is to this line

of research is LONGBOW, a new planner based on DPOCL and intended specifically for

discourse planning [Young 1994]. LONGBOW permits nested functions in plan operators, a

feature essential for text generation but which is not implemented in UCPOP. LONGBOW

provides the ability to use a domain-independent declarative representation for discourse

plans instead of writing a custom discourse planner for each application [Young & Moore

1994a].

1.2.3 Two approaches to planning

The planner formalism can be applied to text generation in many ways. In

decompositional planning, the prerequisites of a plan operator specify a speech act which

the speaker wishes to perform, and the body of the operator gives a set of subgoals,

which, executed in sequence, will result in the successful completion of that act. In

intentional planning, the prerequisites specify a change in the hearer�s mental state which

the operator should achieve if satisfactorily executed. Decompositional and intentional

operators can coexist in the same system. For example, �get the tutor to teach X� and �get

the student to know X� are decompositional and intentional ways of looking at the same

problem. Precompiled decompositions of a problem are often known as schemata. A

schema consists of a list of semantic primitives or other schemata which can be used to

realize a communicative goal. Schemata are useful whenever one can identify a sequence

of smaller parts from which one can build a text.

If schemata are not used, a different method must be used to structure the text. For

30

example, discourse structure relations (DSRs) can be used wherever one can identify a set

of rules relating the parts of a text to one another. A discourse structure relation describes

the relation between two pieces of text, such as example-of or elaboration-of.

The syntax of the CIRCSIM-Tutor plan operators is described in Section 5.3.8.

Section 5.1.2 describes the motivation for the use of schemata in CIRCSIM-Tutor. Note that

the implementation of schemata has changed over time. In particular, the schemata used in

CIRCSIM-Tutor are more flexible and powerful than the schemata in many earlier systems.

In the following sections we look at some important early text planning systems

using both paradigms.

1.2.4 McKeown: Schemata

The use of schemata in generation is usually attributed to McKeown [1985].

McKeown�s system generated text for three discourse goals, to define, to describe and to

compare. The generated text followed one of four schemata, identification, constituency,

attribution and comparison. A set of rules was used to determine which schema was used

for each discourse goal. For example, depending on the object X, the goal define X could

be expanded using the constituency schema or the identification schema. The goal

describe X could use the constituency schema or the attribution schema.

Each schema consisted of a list of lower-level predicates or semantic primitives.

Seven predicates are implemented: identification, attribution, constituency, analogy,

illustration, evidence, and amplification. (Predicates and schemata of the same name are

distinct.) Indefinite repetitions of a predicate were permitted. For example, the

identification schema consisted of the following list:

31

Identification:

(Analogy | Constituency | Attribution)*

(Illustration | Evidence)+

Amplification | Analogy | Attribution

Illustration | Evidence

Recursion was not permitted except in the comparison schema, which permitted exactly

one level of recursion, namely using one of the other schemata to describe each of the

objects to be compared.

When more than one proposition in the data base would fit in a given slot in the

schema, Sidner�s [1983] theory of immediate focus was used to pick the one which was

most likely to lead to coherent text. A functional unification grammar was used to

translate the instantiated schema into grammatical text.

1.2.5 Paris: Multiple strategies for describing a concept

Instead of always using the same schema to answer a given question, Paris [1985]

noticed that writers use more than one strategy to describe an object depending on the

user�s level of expertise. She identified two of these strategies, the descriptive strategy,

preferred by experts, and the procedural trace, preferred by novices. Instead of assuming

that each user fell completely in one of these categories, she allowed the user to be

knowledgeable or not about each subpart of the object being displayed. Thus her system

generated a mix of descriptive and procedural trace information customized for each user.

Paris [1988, 1993] extends McKeown�s planner in three ways. First, she has an

explicit user model. The user is classified on a continuum from novice to expert, and a list

is also kept of which concepts the user is presumed to understand. Second, Paris� system

does not use pure schemata. Under some conditions, it traces links in the data base and

produces a text structured according to the kind of links it finds as opposed to a

32

predetermined schema. This strategy is used to describe how something works [Paris &

McKeown 1987]. Third, Paris� system has full recursion.

1.2.6 Moore: Intention-based planning

Moore�s system is described by Moore and Paris [1989] and Moore and Swartout

[1991]. This system is used as the text generator for the expert system shell EES

(Explainable Expert System) [Neches, Swartout & Moore 1985; Paris 1991]. As the input

is processed, Moore builds a history tree containing four kinds of information:

intermediate goals (intentional structure), information about dialogue focus (attentional

structure), rhetorical structure, and user model information. The attentional information

which must be saved is defined in terms of the focus theory of Grosz and Sidner [1986].

As the system plans explanations to achieve discourse goals, it saves a trace including the

reasons for its decisions. Then, when the user asks a follow-up question, it can respond

based not only on what it believes the user already knows, but on how this particular

conversation is shaping up. For example, it can use previous failed attempts to explain

something to get a better idea of what the user really wants to know and how it could be

explained.

1.2.7 Hovy: Using discourse structure relations for generation

Hovy [1988, 1991] wanted to generate connected discourse using the concept of

axioms from Appelt�s work instead of schemata. To obtain the axioms he needed to

connect larger units of text, Hovy drew from the Rhetorical Structure Theory (RST) of

Mann and Thompson [1986, 1988]. Mann and Thompson had looked at the relations

between clauses of a sentence as well as the relationship between sentences in connected

discourse. They labeled a large number of these relations, such as CIRCUMSTANCE,

33

ANTITHESIS and SEQUENCE. For example, the sentence they laughed when I sat down to

play uses the CIRCUMSTANCE relation to connect the satellite I sat down to play to the

nucleus they laughed. Although RST is an open system which can be augmented as

needed based on the context in which the theory is being applied, the basic set of relations

is fairly constant.

One major network of DSRs was developed by a cross-disciplinary group of

researchers and reorganized by Maier and Hovy [1991]. The major influences are Mann

and Thompson�s RST taxonomy and Martin�s taxonomy of English conjunctive relations

[Martin 1983]. Following Halliday�s ideas, there are three major categories of DSRs:

ideational, interpersonal, and textual. Ideational relations, which include various subtypes

of ELABORATION, CIRCUMSTANCE and SEQUENCE, relate two concepts. Interpersonal

relations, which include categories such as INTERPRETATION and ENABLEMENT, describe the

speaker�s relation to the proposition. Textual relations relate two pieces of discourse.

Many function words, such as likewise, rather and but, are instantiations of textual

relations. Some relations can be used to advance more than one theme depending on the

context. For example, CONCESSION (�although�) can refer to a fact (ideational) or to

another part of the text (textual).

In order to avoid the unconstrained branching factor which would arise if the system

could choose any of Mann and Thompson�s relations each time the discourse tree was

expanded, Hovy restricts the branching factor by assigning to each RST relation a small

number of other relations, called growth points, that the system can choose for its next

expansion possibility. Hovy points out that this reduces the full generality of his system

and makes generation via RST look more like schemata with full recursion. The PENMAN

text realization system [Mann 1985] is used to generate English text from the preferred

34

discourse tree.

In order to get back to the full generality of the RST relations, another way must be

found to reduce the branching factor. Hovy and McCoy [1989] use focus rules derived

from Grosz and Sidner�s focus theory [McCoy & Cheng 1991] to reduce the number of

possible RST relations and topics to instantiate them with at each choice point.

Recently, many researchers, beginning with Moore and Pollack [1993], have

pointed out problems with using RST for text generation and suggested various

alternatives.

1.2.8 Rösner & Stede: Combining schemata and DSRs

There is no a priori reason why DSRs and schemata cannot be used in the same

system. This approach is used by Rösner and Stede [1992] in their research on the

generation of automobile maintenance manuals. They represent each maintenance

procedure as a schema with three subdivisions:

• Preconditions
• Plan steps
• Postconditions

Two types of optional annotations can be used to amplify each schema step:

• Warnings of various degrees of severity
• Hints about potential errors or failures

Each schema step is then broken down further using RST relations.

1.3 From plan to text

This section provides background information for understanding how semantic

forms are turned into text in CIRCSIM-Tutor.

35

1.3.1 Turn planning as an instance of paragraph planning

CIRCSIM-Tutor uses a schema-based planner for tutorial planning. Once the semantic

forms for a turn have been chosen, they are organized into turns by a second process, the

turn planner. Thus, from the turn planner�s point of view, the tutorial planner has

accomplished the content generation step.

In theory, any paragraph planner could fulfill the needs of the turn planner. In

practice, a considerably simpler system is sufficient. Although it is exciting to think about

complex ways to combine semantic forms within a turn, we do not currently have tutorial

planning operators or a lexical insertion module sophisticated enough to use such a

feature.

Since most of the sentences generated by CIRCSIM-Tutor represent discrete events,

such as the change in value of a variable, we can simplify the processing by generating one

sentence per semantic form in many cases. A small number of rules is provided for cases

where significantly better text can be generated by combining semantic forms. The output

of the turn planner uses a basic schema for a turn derived using the methodology of

Conversation Analysis (Section 1.3.4). The turn planner is responsible for calling the

lexical insertion and text realization phases.

1.3.2 Levels of semantic forms

Many researchers have independently discovered the value of having an intermediate

semantic representation which is both domain-independent and independent of any specific

human language. Robin [1994] follows the suggestion made by Elhadad [1992] that the

use of a declarative formalism for representing the transformations between levels would

lead to a cleaner implementation. In Robin�s system, the deep semantic form describes

what happened. It is language-independent and uses concepts from the domain knowledge

36

base and concepts derivable from them.

The surface semantic form describes what we want to say about what happened.

The surface semantic form is intended to be domain-independent, as basic ontological

relationships such as before/after, causality, and so forth can be used in any domain. The

surface semantic forms are described using the representation described by Fawcett

[1987], extending the systemic grammar of the verb presented by Halliday [1985]. The

surface semantic form is independent of any specific human language. It is obtained from

the deep semantic form through the use of a set of functional unification rules.

The deep syntactic form uses a representation which is syntactically identical to the

surface semantic form, but which contains fields representing syntactic roles in addition to

fields representing types of objects and events. To obtain the deep syntactic form, Robin

uses another set of functional unification rules to choose lexical items for the actions in the

surface semantic forms. Choosing a verb determines the argument structure, so that the

sentence is more nearly determined.

Finally, the surface syntactic form is the familiar syntax tree obtained from the text

realization process. For this purpose Robin uses the FUF system of Elhadad [1992, 1993].

Although Meteer [1992] uses a very different method for text realization, she also

posits a level of semantic structure which she calls Text Structure. The Text Structure

shows the relationship between the events involved in a sentence and the relationships

between those events and the objects they involve.

Plan operators in CIRCSIM-Tutor correspond to surface semantic forms in Robin�s

terminology. Since the fundamental knowledge representation in CIRCSIM-Tutor is a

schema indicating how to teach something, it is already a discourse-based representation.

We use a lexical insertion process similar to Robin�s to choose verbs and case frames for

37

sentences. The output of the lexical insertion process, a set of deep syntactic forms, or

surface semantic forms with verbs and their arguments filled in, is then input to FUF for

text realization.

1.3.3 Systemic grammar as an approach to text realization

The work of Halliday [1985] and other proponents of systemic grammar is useful in

text generation for two reasons. First, as a functional linguist, Halliday is interested in the

use of language in context and the relationship between syntactic structures and the

functions they convey. In addition, the British school of systemic linguistics, of which

Halliday is a member, cares about whether their theories are implementable and whether

they match reality.

A systemic grammar is a constraint-satisfaction system for describing a language,

implemented as a series of (possibly recursive) AND-OR graphs. Each node or system

(hence the name), contains a piece of procedural code called a chooser. The chooser looks

at all the available data. Then it sets the values of one or more features which will

determine which of the possible successor nodes will be accessed next. For example, one

of the choosers in the verb network determines whether the verb to be generated should

be in the indicative or the imperative mode. If the indicative mode is chosen, the next

chooser decides whether the verb will be declarative or interrogative. Recursion is needed,

for example, so that a prepositional phrase can contain another prepositional phrase as a

modifier. When a piece of output text has been fully specified, it is produced by a

realization routine called by the node which determined this fact. Systemic grammars can

model complex syntactic phenomena without the use of transformations.

The FUF text realization package [Elhadad 1992, 1993] uses a systemic grammar of

English called SURGE. FUF uses functional unification as its underlying formalism.

38

1.3.4 Sinclair & Coulthard: Conversation Analysis

Conversation Analysis, a sociological approach to dialogue, is an invaluable

theoretical resource for dialogue planning. Conversation Analysis is more concerned with

describing how turns accrete to form a conversation rather than the hierarchical structure

of the conversation as a whole. A transaction corresponds to the discussion of one topic.

In our system, the correction of each variable is a topic. An exchange is the smallest unit

of dialogue, and moves are the smallest independent goal units. Note that turns are not

coterminous with exchanges; in fact, a turn often ends one exchange and starts another.

Like RST, Conversation Analysis is a methodology rather than a theory with a

specific content. The work of Sinclair & Coulthard [1975], to which I was introduced by

Cawsey [1992], is particularly relevant to CIRCSIM-Tutor because it contains an analysis of

the speech of teachers. Stenström [1994] provides an alternate set of definitions for the

levels posited by Sinclair and Coulthard. Traum and Hinkelman [1992] use Conversation

Analysis as a guide to parsing. Although the problem they are studying is inverse to ours,

their use of Conversation Analysis is similar.

In CIRCSIM-Tutor, the Conversation Analysis methodology has been used to develop

a schema for the structure of a turn. The turn planner builds turns which fit this schema.

1.4 Planning and replanning in an ITS

1.4.1 Using global planning with replanning for dialogue generation

One can think of the basic planning cycle of an ITS as driven by the student�s

responses or by the tutor�s goals. Wenger [1987, section 18.2] refers to the two

possibilities as opportunistic and plan-based pedagogical styles. Since even a plan-based

ITS must take the student�s responses into account, the true difference between the two

39

styles is the fact that in a plan-based ITS, the tutor�s actions are derived from a global

plan. In a text-based ITS, the use of such a global plan can create a high-level organization

for the text and thus a sense of high-level coherence. The plan-based style is also a natural

one to use for an ITS such as CIRCSIM-Tutor where tutoring must proceed in a specified

sequence.

Yet many researchers [Bilange 1991; Gerlach & Horacek 1989; Jönsson 1991;

Jullien & Marty 1989] have shown that planning dialogues is different from planning

monologues. The crucial issue is that dialogues cannot be completely planned in advance

because the tutor cannot predict how the student is going to respond, making it impossible

to know how the conversation will evolve.

This fundamental point has echoes in three aspects of planner design: the need to

interleave planning and realization, the need to maintain global planning strategies and

multi-turn plans regardless of the student�s input, and the need to maintain a coherent

conversation. The ability to interleave planning and realization is important because it is

wasteful to plan future conversational turns in detail when the conversation may take a

different tack before those turns are reached. The use of global strategies and multi-turn

plans is a significant factor in achieving the tutor�s pedagogical goals as well as

contributing to coherence. Finally, in order to maintain a helpful and coherent

conversation, the tutor must occasionally make responding to the student a higher priority

than continuing with the plan.

1.4.2 Wilkins: Replanning in SIPE

Wilkins� SIPE system [1988] is an advanced classical planning system used for

activities such as robot planning, not a text planning system. Wilkins� work is relevant to

ours because it is one of the few planning systems using the classical model which can

40

cope with unexpected events happening during plan execution. For example, the robot

might arrive at a room and find the door locked. Wilkins� system copes with unexpected

events by adding what he calls �Mother Nature nodes� to the plan in progress. Wilkins

presents a taxonomy of actions which the plan execution module can attempt in order to

correct the plan, such as grafting new steps onto a plan in progress.

The replanning methods in CIRCSIM-Tutor are conceptually similar to those SIPE

methods which apply to text planning. The fact that SIPE can cope with unexpected input

and continue goal-oriented processing is very similar to what CIRCSIM-Tutor needs to do.

On the other hand, one aspect of robot planning which is different from text planning is

that the tutor cannot �unsay� anything. If the robot drops a screw, it can pick up another

screw and try again with few or no untoward consequences. However, if the student does

not understand a question and the tutor decides to ask it again, it is likely that the second

attempt will need to be somewhat different from the first in order to be cooperative in the

sense of Grice [1975]. In addition to choosing a different way to ask the question, our

human tutors sometimes use formulas such as �let me try again� to indicate that they know

the question is a repetition.

1.4.3 McCalla: Replanning in a simple domain

Peachey and McCalla [1986] give an algorithm for updating a plan based on input

from the student. This algorithm is similar to the one described in Chapter 5 for CIRCSIM-

Tutor. The student model consists of a set of atoms representing concepts the student

needs to learn and misconceptions the student possesses. The system teaches by displaying

canned text and asking a question. Peachey and McCalla update the plan based on the

student�s responses. Spontaneous learning by the student causes the planner to drop a

subgoal which is no longer necessary. A wrong answer can cause a remedial operator to

41

be added to the plan to remediate a misconception.

Huang and McCalla [1992] add a truth maintenance system to the design proposed

by Peachey and McCalla. The student model is stored as a set of clauses. After each

student input, the truth maintenance system is used to update the student model and

determine how the instructional plan should be updated.

As in many fields, logically complete algorithms which work for a small,

uncomplicated knowledge base are not necessarily practical in real systems. Nevertheless,

these papers are worthwhile because they point at a principled way of revising plans. The

replanning algorithm in CIRCSIM-Tutor is consistent with the one described by Peachey and

McCalla.

1.4.4 Jullien & Marty: Replanning in a dialogue system

Jullien and Marty [1989] describe a method for plan revision in dialogue similar to

that used by CIRCSIM-Tutor. Jullien and Marty describe an advice-giving system which

asks the user for financial information as it tries to draw up an investment plan. They

maintain three data structures: a tree showing the current plan; an attentional stack, listing

the potential foci when the question is asked; and an expectation stack, listing all of the

communicative goals the user could be executing at each level of the tree. Each potential

unexpected answer, such as asking for a definition or an explanation instead of answering

the question, is connected to a tree transformation. When a specified type of deviation

occurs, the corresponding transformation is executed to create a new plan tree. In the

example above, the transformation would add a communicative goal to the tree to provide

the desired definition or explanation before returning to the previous topic. Jullien and

Marty state that the expectation stack is used to validate potential responses and the

attentional stack is used to reduce the possible interpretations of the user�s statements.

42

In CIRCSIM-Tutor, each potential deviation points to either an adjunct schema which

will be added to the top of the stack or to a replacement schema. In the example above,

the adjunct schema would contain the semantic forms necessary to provide the definition

or explanation.

In contrast to Jullien and Marty, Gerlach & Horacek [1989] and Chu-Carroll and

Carberry [1995] use an intention-oriented method for determining the best response to

make in a dialogue. Smith [1992] uses a method directly based on theorem proving, but

which only works in a very simple domain.

1.5 Plan-based explanation systems

Our work is different from other large-scale generation systems [Moore 1995;

Cawsey 1992; Maybury 1992] in that the latter are explanation systems which accept

follow-up questions rather than tutoring systems. Thus they do not need to generate the

variety of teaching mechanisms which CIRCSIM-Tutor requires. Furthermore, in each of

these systems, the dialogue terminates when the student is satisfied. In CIRCSIM-Tutor, the

student must prove through correct answers to questions that the material has been

mastered.

Conversations with CIRCSIM-Tutor are generally longer than conversations with an

explanation system. In the systems mentioned above, a dialogue usually includes an

explanation by the system followed by a small number of follow-up questions. To

complete one CIRCSIM-Tutor problem, the student must eventually give correct values for

seven variables at each stage. It is rare for a student to be able to do this without

additional dialogue. Because of the greater length of the conversation and the fact that the

student is required to demonstrate active understanding, the issue of updating the user

model during a conversation, which these systems do not do, becomes more important.

43

1.5.1 Cawsey: EDGE, a dialogue-based explanation system

In many ways, Cawsey�s EDGE system is the closest in spirit to the work described

here. It teaches concepts from a causal model and embeds the content in a naturally

structured conversation. However, since CIRCSIM-Tutor needs to cover more complex

content in each tutoring session and has a greater variety of teaching methods to do it

with, there are some structural differences.

In Cawsey�s system, the Conversation Analysis paradigm is used as the main

structuring principle for the dialogue, with the content material subordinate to it. Every

generated turn is connected to the explanatory goal which generated it. One never needs

to backtrack from an explanation subgoal, so the necessary explanatory goal is always

available. When the student gives a wrong answer and the tutor corrects it, the correction

turns are nested under the same explanatory goal. This structure is not useful in CIRCSIM-

Tutor, where most of the text consists of the tutor correcting the student�s

misconceptions. We do not want to package the correction turns with the original turn

because there may be a change of topic involved, for example, when the tutor identifies a

misconception and tries to correct it.

Additionally, CIRCSIM-Tutor needs to maintain a deeper tree of content goals than

EDGE in order to cover its material with appropriate depth and variety. Thus it is more

sensible for us to consider the tutor�s goals as primary. We use material from

Conversation Analysis in a �coroutine� fashion to maintain natural conversation patterns

between the tutor and student as the tutor�s goals are satisfied.

We share Cawsey�s use of the Conversation Analysis methodology [Sinclair &

Coulthard 1975; Stenström 1994] as a guide to conversation planning.

44

1.5.2 Maybury: The TEXPLAN system

Maybury�s TEXPLAN system [1991, 1992] illustrates several ways of explaining a

concept, such as the use of various types of definitions and descriptions. One aspect of

TEXPLAN which resembles our system is that plan operators may match on either the

header field, which identifies the speaker�s communicative act, or the effects field, which

contains the intended effect on the hearer. From the point of view of CIRCSIM-Tutor, this

means that a plan operator can be chosen either because it will express the tutor�s

communicative goal or because it will have a desired effect on the student�s

understanding. These two aspects are useful in different circumstances.

Although explanation is one of the methods which CIRCSIM-Tutor uses to enhance

the student�s understanding, explanations per se are not a major focus of our work. We

are more interested in generating a relevant explanation at an appropriate point in the

conversation. In general, CIRCSIM-Tutor only gives an explanation after the failure of a

method such as hinting, which requires more active participation on the part of the

student.

1.5.3 Moore: Using intention-based planning to generate follow-up questions

The goal of Moore�s PEA system [1995] is to be able to handle follow-up questions

more intelligently by understanding the meaning of the student�s response in context. Thus

Moore needs to know which part of the tutor�s statement the student understood in order

to know what to say next. Although Moore�s basic design has much in common with

CIRCSIM-Tutor, this aspect of it is not relevant to us.

Moore uses plan operators described according to their intended effect on the

hearer. Moore sets up her prerequisites the way she does specifically for the use she will

make of them in generating follow-up questions. But we generate follow-up questions the

45

same way we generate any other text, i.e. from semantic forms. Moore does not try to

discern the accuracy of these beliefs or update her student model based on them. She

assumes that the desired alteration in the student�s belief always happens, and she does not

worry about updating the student model. These simplifications work for her because she is

not generating her follow-up questions from scratch. In exchange for these restrictions,

she can implement a sophisticated system for generating follow-up questions. CIRCSIM-

Tutor needs to be able to generate many types of discourse mechanisms, not just

explanations and follow-up questions.

1.6 Causal and functional models

There is no such thing as a perfect model. A model is only useful for a given

purpose. Sometimes multiple models are required for different purposes. Sometimes when

one tries to create a deeper model, the nature of the model changes. What appears to be

the most important factor in choosing a model is to make sure that the system, and thus

the student, is using the model an expert would use to solve the same problem. A causal

model can contain two kinds of knowledge, knowledge about the causal sequence of

events and knowledge relating factors inside a given event. As we have seen in

Section 1.1.4, the latter is sometimes called functional knowledge. In this section, we

examine some systems where authors have found it necessary to make this distinction.

1.6.1 Brown, Burton and Zdybel: Causal and functional modeling in a meteorology

tutor

The meteorology tutor of Brown, Burton and Zdybel [1973] attempts to represent

causal and functional knowledge in order to answer questions involving causal knowledge.

The authors state that meteorology is a good subject area for studying causal reasoning

because major processes such as evaporation, condensation and rainfall can be described

46

at an elementary level using qualitative reasoning. Causal and functional knowledge is

represented by an augmented finite-state automaton for each process, with state

transitions representing the events. For example, the ATN for humidity of saturation

contains three states: decreasing, stable and increasing. Since humidity of saturation is

determined by air temperature, the link from stable to decreasing, for example, is labeled

�air temperature decreases.� The transition conditions can also refer to global predicates

which are used to represent the current discourse context.

The complete model includes about twenty interrelated ATNs and can calculate

values for variables such as rate of evaporation, absolute humidity, rate of condensation

and relative humidity. In addition, one of the ATNs can cycle through the steps of the

coalescence process, which causes rainfall.

After the student chooses the input conditions, the tutor runs the model. To permit

the generation of complex text, the system constructs a tree containing all possible paths

through the ATN, along with their associated text, before generating any text. This tree

can be used to answer any question about the causal relationships between the events

modeled by the ATN. In its current form, the system generates text by tracing the tree,

adding discourse particles according to a set of rules, but the authors state that one could

write a natural-language back-end to generate more natural text from the tree. The

following is an example of the generated text.

(6) S: What happens when the water temperature drops to 22 degrees?

T: The air temperature decreases from 25 to 22 degrees because water

temperature decreases. The humidity of saturation decreases from 24 to

20 mm Hg because air temperature decreases. The relative humidity

increases from 100 to 120% because humidity of saturation decreases

�

(excerpted from Brown, Burton and Zdybel [1973], Appendix II)

To simplify the domain model, at each step transitions representing instantaneous changes

47

are processed before transitions representing an advance in time. The authors assert that

distinguishing between transitions due to functional relations and transitions which

advance the clock will keep the ATNs from looping. This distinction is still a key feature

of today�s qualitative physics. Although CIRCSIM-Tutor contains a causal model, it does

not distinguish between these two types of transitions. Making this distinction would

simplify the deeper levels of the concept map and permit the generation of better text for

deep explanations.

1.6.2 Stevens, Collins and Goldin: Classifying students� misconceptions in

meteorology

Stevens, Collins and Goldin [1979] started by modeling physical processes as

scripts, which they describe as partially ordered sequence of events connected with

temporal or causal connectors. For example, each step in the processes causing rainfall

was described, and the steps were connected with relations like precedes, causes, and

enables. The following example shows the high-level script for heavy rainfall.

A warm air mass over a warm body of water absorbs a lot of moisture from the

body of water.

precedes

Winds carry the warm moist air mass from over the body of water to over the

land mass.

precedes

The moist air mass from over the body of water cools over the land area.

causes

The moisture in the air mass from over the body of water precipitates over the

land area.

(excerpted from Stevens, Collins and Goldin [1979], fig. 1)

48

The model is hierarchical, so that a step at one level can break down into a sequence or

graph of steps at a more detailed level. Although this model could be used to query

students about the steps leading to rainfall and teach the missing steps, it could not

respond to students� underlying misconceptions.

The authors conclude that many of the students� underlying misconceptions could

only be expressed in terms of a functional viewpoint. They decided that in additional to

the linear view, it was necessary to describe the relationship between the variables

involved in each major phenomenon. They used the following representation for the

functional viewpoint. Each phenomenon has a set of actors. Each actor has a role. Each

actor has a set of attributes. Some of the attributes are factors in the process being

described. The result is always a change in the value of some factor. Finally, the functional

viewpoint includes a description of the functional relationship between the factors and the

result. For example, consider the evaporation phenomenon. The actors are a moisture

source, which must be a large body of water, and a destination, which is an air mass. The

factors are the temperature of the two actors and the distance between them. When the

temperature of the moisture source goes up, the humidity of the destination air mass

increases.

Stevens, Collins and Goldin used the functional viewpoint to analyze dialogues with

live tutors. They discovered that the high-level structure of the dialogues is controlled by

the scriptal viewpoint. But in order to correct student misconceptions within a step, tutors

tend to shift to a functional viewpoint in order to ensure that the student understands the

main actors, the important attributes and the relationships between them.

Finally, Stevens, Collins and Goldin attempted to identify misconceptions at the

functional level which were shared by many students, including sixteen bugs just on the

49

subject of evaporation. For example, many students believe in the �cooling by contact�

bug, i.e. that warm air touching cold land causes condensation. According to the model of

Stevens, Collins and Goldin, since the remediation of misconceptions is accomplished

using a functional viewpoint, we need to develop a functional model before we can isolate

a set of conceptual bugs for CIRCSIM-Tutor.

1.6.3 STEAMER: Modeling via graphical simulation

STEAMER is an instructional tool for training people to operate the steam propulsion

systems on large ships. Although the goal of the training is to teach the students to

perform the necessary procedures correctly in both normal and problem conditions, this

can only be accomplished by giving students a mental model of the steam plant and

teaching them the relevant engineering principles. The propulsion plant occupies

approximately one-third of the space on a ship. It is impossible for students to memorize

several hundred procedures, and there is no way to pre-plan a procedure for every

possible fault that could happen [Williams, Hollan, & Stevens 1981]. This is similar to the

situation in CIRCSIM-Tutor: one cannot predict all of the failure modes of the human body,

but we want the student to react correctly to any which arise.

STEAMER is an interactive graphics-based simulation. The goal of STEAMER is

conceptual fidelity, trying to match the models used by experts, rather than physical

fidelity [Hollan, Hutchins & Weitzman 1984]. According to the description given by

Stevens and Roberts [1983], functional information relating the components of the model

is built into the graphical simulation. Causal information is represented through the use of

goal-oriented procedures, each of which is represented as a series of steps. Students can

change not only parameters which they could affect in the real world but also derived

values which cannot be directly influenced in the real world. Thus in addition to directly

50

simulating potential actions, students can use the simulation to increase their general

understanding of the propulsion plant.

Although no details on the tutoring algorithm are given, the authors state that when

the student makes a mistake, the relevant engineering principles are activated and the

system generates a message such as the following:

(7) T: According to the principle which requires that whenever you admit steam

into a closed chamber you should first align the drains, before opening

value 13 you should align the drain valves FWD-E254 and FWD-E239.

([Stevens & Roberts 1983, p. 19])

As in GUIDON and the meteorology tutor, the text in STEAMER has been generated from a

form close to the original domain knowledge.

51

Chapter 2
Introduction to the Baroreceptor Reflex Domain

The heart has its reasons, which reason cannot

know. �Blaise Pascal

This chapter starts with some basic facts about cardiovascular physiology. Then we

describe the baroreceptor reflex problems which constitute the domain of CIRCSIM-Tutor.

To give an idea of the range of the system, we enumerate all of the problems of the

simplest type and give some representative examples of more complex problems. We give

rules for solving the problems and give a detailed solution trace for one problem.

(Appendix A contains detailed solutions for all of the simple problems and a number of

others.) We point out the influence of the model on the type of language which CIRCSIM-

Tutor can generate.

2.1 Teaching cardiovascular physiology

One of many specific topics which medical students must learn is how blood

pressure is regulated in the human body. Human life is only compatible with a specific

range of blood pressures. When something happens to change the blood pressure, such as

increasing or decreasing the volume of blood in the body, the body tries to compensate.

The negative feedback loop which controls this process, known as the baroreceptor

reflex, is a difficult topic for students in the first-year physiology course.

For many years, Professors Joel Michael and Allen Rovick of Rush Medical College

have been experimenting with a variety of methods to help students understand this

process, including reading, lectures, and various types of problem-solving exercises. For

52

the last ten years, they have also included regularly scheduled computer laboratory

sessions. During these sessions, they assist students in using CAI programs to solve

problems about the baroreceptor reflex similar to those which will appear on course

examinations. Several years ago, they became interested in using artificial intelligence

techniques to allow a program to conduct a conversation with the student instead of using

canned text. This was the genesis of the CIRCSIM-Tutor project.

CIRCSIM-Tutor uses a simplified model of blood circulation to help students learn the

basic concepts of blood pressure regulation. As we have seen in the previous chapter,

what is important for tutoring purposes is not a perfect model of the domain but a model

of the domain that matches what experts use. Not only can any model be further refined,

but the type of information in the model changes as the model becomes more detailed.

Although higher-level models of the baroreceptor reflex deal with the values of variables,

lower-level models deal with intracellular events. Which of these models is most

appropriate at a given moment depends on the question being answered or the problem

being solved. Our domain experts teach students using the highest-level model possible.

They drop to a lower level only when the student is having difficulty, and they can always

explain the baroreceptor reflex without resorting to the intracellular level. In addition, no

model is a perfect mirror of reality. For example, CIRCSIM-Tutor v. 2 does not consider the

influence of mean arterial pressure (MAP) on stroke volume (SV). In version 3, this

influence is taken into account, providing a more accurate but also a more complex model.

2.2 A layperson�s guide to the baroreceptor reflex

2.2.1 Defining the baroreceptor reflex

The heart is an intermittent pump which repeatedly moves a small volume of blood

forward in one fixed direction in a circular path through a closed system of blood vessels.

53

The heart pumps the entire blood volume at a steady rate during a half second and then

pumps nothing, with no pressure in the system, during the next half second. During the

pumping phase, or systole, the heart contracts and empties; during the quiet phase, or

diastole, it relaxes and is refilled. It takes approximately one minute for the blood to

circulate through the body. Externally caused events, such as administration of a drug,

change blood pressure by changing the need for blood in different parts of the body. Since

human life is only compatible with a small range of blood pressures, the body immediately

tries to return the situation to normal.

A mechanism which causes a parameter to return toward a preset value after a

disturbance is called a negative feedback system, �negative� because a portion of the

difference between the original value and the new value is applied as a correction to

moderate the new value. Every negative feedback system attempts to maintain the value of

a regulated variable by changing the value of other variables known as controlled

variables. The negative feedback system which regulates blood pressure is called the

baroreceptor reflex; the regulated variable is the mean arterial pressure (MAP). A reflex is

a hard-wired, stereotyped response to a well-defined stimulus. The prefix �baro� means

�pressure,� as in �barometer.� The baroreceptor reflex is an autonomic reflex because it is

mediated by the autonomic nervous system. It is a homeostatic mechanism because it

attempts to return MAP to its initial value.

To teach the student about the baroreceptor reflex, CIRCSIM-Tutor concentrates on

the causal relationships between the regulated variable, the controlled variables, and a

small number of intermediate variables. The value of MAP is measured via anatomical

structures in the neck known as baroreceptors. A change in the pressure sensed by the

baroreceptors changes the signal sent through the nervous system to the effector organs,

54

which changes the values of the parameters measured at these organs. These parameters

are the controlled variables.

2.2.2 Basic anatomical structures and physiological parameters

Blood carries oxygen from the lungs to the body tissues. The pumping action of the

heart carries blood from the lungs to the capillaries in the body tissues, and back again.

The following description introduces some of the anatomical objects which are important

to CIRCSIM-Tutor.

Blood is pushed out of the heart from the left ventricle. From the left ventricle it

enters the arteries. From the arteries the blood flows through the arterioles, which are

smaller in diameter, and thence to the capillaries, which are even smaller. From the

capillaries the blood gives up its oxygen to the cells in the body tissues.

After giving up its oxygen, the blood returns to the heart via increasingly large veins

in the venous system. The large central veins (also called the great veins) serve as a

reservoir for blood. The central veins are compliant. When blood volume increases, they

expand like a balloon to hold the extra blood; when blood volume decreases they contract

somewhat. Pressure inside a compliant structure is determined by the volume and the

compliance. From the central veins the blood re-enters the heart via the right atrium. It

takes about a minute for the blood to circulate through the body.

After entering the heart via the right atrium, the blood goes to the right ventricle,

then to the lungs, where it is re-oxygenated. After leaving the lungs, the blood goes to the

left atrium, then to the left ventricle, from which it will exit the heart. As these interior

divisions of the heart can be ignored for the purpose of studying the baroreceptor reflex,

we can assume that the blood enters the heart via the right atrium and leaves immediately

via the left ventricle.

55

The following definitions introduce the core parameters which CIRCSIM-Tutor is

concerned with.

1) Heart rate (HR).

Each heart beat allows some blood in and then forcefully ejects it.

The number of beats per minute is the pulse or heart rate,

abbreviated HR.

2) Inotropic state (IS).

Inotropic state, or IS, is a measure of how much the heart contracts

(or, similarly, how forcefully it contracts) with every beat. Cardiac

contractility, abbreviated CC, is a synonym for IS which was used in

version 2 of CIRCSIM-Tutor and in some of the human-to-human

tutoring sessions.

3) Stroke volume (SV).

The amount of blood pumped per beat is called the stroke volume, or

SV. Stroke volume equals end-diastolic volume minus end-systolic

volume. In other words, the difference between the volume of blood

in the ventricle before contraction and the volume after contraction is

the amount of blood ejected during the contraction.

4) Cardiac output (CO).

Multiplying HR and SV gives the amount of blood pumped per

minute, which is called cardiac output or CO.

5) Mean arterial pressure (MAP).

Blood is pumped from the heart into the arteries, where the blood

pressure is measured. The time average pressure of blood in the

arteries is called the mean arterial pressure or MAP. The purpose of

the baroreceptor reflex is to maintain a constant value for MAP.

6) Total peripheral resistance (TPR).

From the arteries the blood flows through the arterioles. Total

peripheral resistance, or TPR, is the resistance to blood flow

through the circulatory system. Since arterioles are small in diameter

and resist the flow of blood through them, arteriolar resistance is a

major component of TPR.

7) Central venous pressure (CVP).

From the arterioles, blood flows through a number of vessels until it

56

reaches the central veins. Blood pressure in the venous system just

outside the heart is called central venous pressure, or CVP. Central

venous pressure is approximately equal to the pressure in the right

atrium, known as right atrial pressure or RAP. Version 3 of

CIRCSIM-Tutor uses CVP as one of the core variables in the model,

but RAP was used in version 2 and in some of the human-to-human

tutoring sessions.

These parameters are related as follows:

The equation CO = HR * SV states that cardiac output, which is the volume of

blood exiting from the heart per minute, is a function of the rate at which the heart beats

and the amount of blood ejected per beat. Thus we can say that an increase in HR or SV

will cause an increase in CO.

When the heart pumps more blood per minute, more blood is forced into the

arteries. Since the arterial system has resistance, pressure goes up. Thus increasing the

blood flow per minute into the arteries causes an increase in arterial pressure. In other

words, when CO rises, MAP rises.

TPR is another determinant of MAP. Another way to adjust blood pressure is to

adjust the resistance of the arterioles. In contrast to the low resistance of arteries, the high

degree of arteriolar resistance causes a marked drop in pressure as the blood flows

through the arterioles. Arteriolar resistance is responsible for converting the pulsatile

systolic-to-diastolic pressure swings in the arteries into non-fluctuating pressure in the

capillaries. Instead of the elastic connective tissue in the arterial walls, arteriolar walls are

made of smooth muscle richly innervated with sympathetic nerve fibers. Sympathetic nerve

impulses cause the arterioles to contract, causing resistance to increase, which increases

the pressure in the arteries which feed them. In other words, an increase in TPR causes an

increase in MAP. In fact, there is an algebraic relation between MAP and its determinants:

MAP = CO * TPR.

57

Note that the equations MAP = CO * TPR and CO = HR * SV are statements of

causality as well as algebraic equalities. An increase in CO, for example, will cause an

increase in MAP, but a change in MAP does not cause a direct change in the variables on

the right-hand side. This is a frequent student misconception.

When cardiac output increases, increased quantities of blood are transferred from

the venous system into the arterial system, decreasing the central blood volume and

increasing the arterial blood volume (and pressure). The decrease in central blood volume

causes central venous pressure (CVP) to go down. In other words, a increase in CO

causes a decrease in CVP.

The central veins provide the input to the heart. When the central venous pressure

increases, more blood flows into the heart on each beat. This quantity is known as

ventricular filling or preload. An increase in ventricular filling causes the heart to beat

more forcefully, a relationship known as the Frank-Starling effect. The cause of this

phenomenon is the length-tension relationship, which states that the more muscle fibers

are stretched, the more force they can develop. The more forceful beating of the heart

causes more blood to be pushed out per beat, i.e. stroke volume is increased. In other

words, an increase in CVP causes an increase in SV.

Inotropic state (IS) is another determinant of SV. The ventricular function curve

shows the relation between ventricular filling and cardiac output, i.e. between the input

and output of the heart. A change in IS causes the whole curve to shift up or down. In

other words, at higher values of IS, the same degree of ventricular filling causes a higher

stroke volume.

An increase in IS and an increase in ventricular filling both cause the heart to beat

more forcefully, but through different mechanisms. Although an increase in ventricular

58

filling causes the heart to beat more forcefully, it does not cause IS to increase. This is

another common student misconception.

Finally, an increase in mean arterial pressure causes SV to decrease. When mean

arterial pressure increases, it becomes more difficult for blood to exit the heart. This

causes stroke volume to decrease. The pressure that the ventricle has to pump against,

i.e. the arterial pressure, is called afterload. This effect is less important than the other

determinants of SV, and is in fact ignored by the older version of CIRCSIM-Tutor.

2.2.3 The role of the nervous system

The baroreceptor reflex attempts to control the value of MAP. When MAP rises

above the level it should remain at, this rise triggers changes which force it down again.

Similarly, when MAP falls too low, changes are triggered which force it back up.

The baroreceptors measure the blood pressure in the arteries, i.e. MAP. Although

the baroreceptors are located in the neck, the arteries are large vessels which do not resist

the flow of blood much, so the pressure measured by the baroreceptors is similar to the

pressure at the point where the blood exits the heart.

The baroreceptors stimulate the nervous system, which then passes on messages

about blood pressure to other organs of the body. The nervous system has two

components, the sympathetic and parasympathetic nervous systems. The sympathetic

nervous system acts as a kind of accelerator and the parasympathetic system as a brake.

Usually they act in concert, so that these two aspects of the nervous system can be

considered as one entity.

The variables directly controlled by the nervous system are called neural variables;

the others are called physical-chemical variables. There are three neural variables:

59

HR: The nervous system controls HR by stimulating the sino-atrial

node, which controls heart rate. When MAP goes up, HR goes

down, so the heart beats fewer times per minute, reducing cardiac

output, and thus reducing MAP.

TPR: The nervous system controls total peripheral resistance (TPR) by

dilating or constricting the arterioles. The sympathetic tone

supplied to the smooth musculature of the blood vessels by the

nervous system determines their diameter. The diameter of a

blood vessel most strongly determines its resistance to flow. When

MAP goes up the blood vessels become wider, decreasing TPR,

and thus reducing MAP.

IS: The nervous system controls IS by changing the intracellular

concentration of calcium ions, which controls the force of

contraction of the heart muscle. When MAP goes up, IS goes

down, so less blood is pumped per beat (a decrease in stroke

volume), reducing CO, and thus reducing MAP.

If the link from the baroreceptors to the nervous system is disabled, then the

baroreceptors cannot affect the nervous system, so a change in MAP will not affect these

variables. This operation is called denervating the baroreceptors.

2.2.4 Three stages: DR, RR, SS

In this section we introduce concepts necessary to understand the problems used by

CIRCSIM-Tutor. Although knowledge about stages must be represented in any model, these

particular definitions are specific to CIRCSIM-Tutor.

All negative feedback loops have a time component to their behavior; in the

CIRCSIM-Tutor model, the body�s response to a change, or perturbation, is divided into

three stages:

• DR. The direct response or DR stage consists of those changes

which happen immediately after the perturbation, before the

baroreceptors are activated by the change in blood pressure.

60

• RR. The reflex response or RR stage consists of changes that occur

as a result of the activation of the baroreceptors, i.e. by the

baroreceptor reflex. By convention, the values of parameters in RR

are measured with respect to the value of the same parameters in DR,

not with respect to the initial value before the perturbation.

• SS. The steady state or SS stage describes the state of the system

after it has restabilized. Since, by convention, values in SS are

measured relative to the initial value before the perturbation, the

value of a parameter in SS will be the algebraic sum of its DR value

and its RR value.

Central
Venous

Pressure

Stroke
Volume

Cardiac
Output

Mean
Arterial

Pressure

Inotropic
State

Heart
Rate

Total
Peripheral
Resistance

+

+

+

−−−

+ +

+

+

−

Nervous
System

Response

Baroreceptor
Pressure

+

−

Figure 2.1: A version of the concept map

61

In the human body, a steady state is achieved within two to three minutes at most after the

initial perturbation. The changes within a stage happen simultaneously but we model them

for the student as a sequential process to help the student learn the causal reasoning

involved.

2.2.5 Determinants and the concept map

The seven core variables and the relationships between them are summarized for the

student on a concept map, a graphical memory aid shown in Figure 2.1. Students are given

copies of the concept map and encouraged to use it to think about problems. The concept

map does not uniquely define the causal model, as it does not indicate constraints on the

relations, which relations take precedence, and whether changes happen simultaneously or

sequentially. However, the concept map is a useful memory aid for students.

Each box in the concept map represents a parameter. An arrow with a plus sign

indicates a direct relationship, i.e. when the first variable changes, the second variable

changes in the same direction. An arrow with a minus sign indicates an inverse

relationship, i.e. the second variable changes in the opposite direction. When two variables

are related in this way, we say that A is a determinant of B. When a variable has multiple

determinants, we need a way to decide which value should prevail, i.e. which variable is

the main determinant. Since we are using a qualitative model, we cannot use look at the

relative values in order to combine values. It is also convenient to define the concept of

minor determinant, which is a variable whose value is only considered if none of the other

variables has a value yet. The use of minor determinants does not add functionality to the

model but it does simplify the representation.

The relationships described in Sections 2.2.2 and 2.2.3 can be summarized as

follows:

62

Determinants:

HR, TPR and IS are neural.

The determinants of SV are CVP and IS, and MAP is a minor

determinant (inverse direction).

The determinants of CO are SV and HR.

The determinants of MAP are CO and TPR.

CO is the sole determinant of CVP (inverse direction).

These relationships can be seen on the concept map or on Figure 2.3, which shows

additional detail.

2.3 Defining the problem space

2.3.1 Defining the perturbations

After students have been introduced to the qualitative model of the heart, they are

given problems to work. In each problem, a perturbation changes the processing of the

heart. The student is then asked to predict the value (increase, decrease or no change) of

the seven core variables in the DR, RR and SS stages, i.e. immediately after the

perturbation, after the negative feedback loop has had time to operate, and after a new

steady state has reasserted itself. Students store their responses on a tabular worksheet

called a prediction table (Figure 2.2).

63

There are two terms which belong to the tutor�s model of the problem but are not

used directly with the student. The procedure variable is defined as the first variable

known to the system which is affected by the perturbation, and the primary variable is the

first of the seven core variables to be affected. When talking to the student, our domain

experts prefer to use paraphrases such as �first variable affected� and �first variable in the

prediction table.� If the procedure variable is one of the seven core variables, then the

procedure variable and the primary variable are the same.

Perturbations can be caused by an event or by administering a drug to the patient.

Sometimes we tell the student directly that a variable has changed without specifying the

cause. The following list shows the principal events which CIRCSIM-Tutor can handle.

• Hemorrhage or transfusion

A hemorrhage or transfusion causes a change in blood volume (BV).

Because the central veins comprise the main blood reservoir of the

body, any change in blood volume affects the central blood volume

(CBV), i.e. the amount of blood in the central venous compartment.

A hemorrhage causes the central blood volume to go down, causing

a drop in central venous pressure (CVP). Similarly, a transfusion

causes an increase in CVP.

DR SS

Central Venous Pressure

Inotropic State

Stroke Volume

Heart Rate

Cardiac Output

Total Peripheral Resistance

Mean Arterial Pressure

RR

Figure 2.2: Prediction table

64

• Centrifuge

Putting a person in a centrifuge causes the central blood volume to

drop by moving some blood out of the great veins toward the

periphery of the body. Again, this causes central venous pressure

(CVP) to drop.

• Broken pacemaker

If a pacemaker which normally forces the heart to beat at 72

beats/min suddenly escalates to 120 beats/min, the heart rate has

increased ipso facto.

Several kinds of drugs affect one or more of the neural variables. To understand the

mechanism, one must look at the receptors of neural impulses. The signals sent out by the

nervous system are received by three kinds of receptors: alpha receptors, beta receptors

and cholinergic receptors.

• Alpha agonists and antagonists

Alpha receptors are located on the walls of the arterioles. Thus drugs

which affect alpha receptors, called alpha agonists or alpha

antagonists based on whether they potentiate or inhibit the reception

of signals by the alpha receptors, will affect the value of total

peripheral resistance (TPR).

• Beta agonists and antagonists

Beta receptors are located on the sino-atrial node, which controls the

heart rate (HR), and on the heart muscle itself, which affects the

value of inotropic state (IS). Thus drugs which influence the

reception of signals by the beta receptors have two primary variables,

HR and IS. For example, the commonly used beta-blockers are a

type of beta antagonist. By blocking the reception of signals, they

reduce the heart rate, and therefore cause blood pressure (i.e. MAP)

to drop.

• Cholinergic agonists and antagonists

Cholinergic receptors are also located on the sino-atrial node, so

cholinergic agonists and antagonists cause an increase or decrease in

HR respectively.

65

Mean
Arterial
Pressure

Total
Peripheral
Resistance

Arteriolar

Resistance

Arteriolar
Muscle
Tone

Arteriolar

Diameter

+

+

−

−

Stroke

Volume

Central
Venous
Pressure

Inotropic

State

Alpha-Blocker

(drug)

Pacemaker Rate Up

(or Down)

Intracellular
Ca++

Concentration

Beta-Blocker

(drug)

+

+

+

+

−
−

−

−

Transfusion

(or Hemorrhage)

Blood Volume
Central Blood

Volume

Cardiac

Output

Heart

Rate

Sino-Atrial
Node
Rate

+

+

+

+

Nervous
System
Response

Baroreceptor

Pressure

++ +

+

+

−

− −

Figure 2.3: A more detailed concept map

66

In some cases, we tell the student directly that a variable has changed without specifying

an external event which caused it.

• Change in arteriolar resistance (Ra)

Since arteriolar resistance is the largest component of total peripheral

resistance (TPR), an increase in arteriolar resistance will cause TPR

to rise.

• Change in venous return (VR)

Venous return is the rate at which blood returns to the central veins.

An increase in venous return causes an increase in central blood

volume, thus increasing central venous pressure (CVP).

• Change in intrathoracic pressure (Pit)

An increase in intrathoracic pressure reduces the space available for

the central veins, thus causing an increase in central venous pressure

(CVP). As we will see in Section 2.4.5, however, this case is

different from other cases where CVP is the primary variable because

an increase in Pit also causes SV to fall.

A chart summarizing a large number of perturbations is found in Appendix A.

2.3.2 Enumerating the simple problems

In this section we enumerate the possible problems containing one perturbation and

one primary variable.

Studying the perturbations above, we see that only four of the seven core variables

can be primary: central venous pressure (CVP), inotropic state (IS), heart rate (HR), and

total peripheral resistance (TPR). The remaining three parameters can be affected only

through their relationships to other variables. Once the primary variable and the direction

in which it changes have been determined, the value of each variable in the DR stage is

completely determined. Thus, from the point of view of DR, there are only four kinds of

problems.

When the primary variable is neural, an additional fact is required to fully determine

67

the values for the RR stage. That factor is whether or not the primary variable continues

to change in RR. For example, suppose a pacemaker malfunctions, causing the heart to

beat at a constant but higher than normal pace. By definition, this means that heart rate has

increased in the DR stage. Although the baroreceptors will send out signals to lower the

heart rate in RR�that is, after all, the purpose of the system�the heart rate in such a

patient is totally controlled by the artificial pacemaker and does not respond to the signals

from the baroreceptors. We refer to such a variable as a clamped variable.

A different situation occurs when the change caused by the baroreceptor reflex can

further update the change caused by the initial perturbation. For example, a hemorrhage

will reduce the amount of blood in the central veins, causing central venous pressure

(CVP) to decrease in DR. But the hemorrhage is now over: there is no reason why the

baroreceptors cannot affect CVP in the RR stage. In fact, since the goal of the system is to

maintain arterial blood pressure (MAP), it will move additional blood from the veins to the

arteries, causing the counter-intuitive result that CVP will drop further in RR.

Sometimes the problem statement will tell the student whether a variable is clamped.

For example, drugs can cause IS or TPR to be clamped if given in sufficient concentration.

Heart rate (HR) is different because the sino-atrial node contains two kinds of receptors.

Thus, even if one type is blocked, the other will not be.

Since each of the three neural primary variables can be clamped, the four simple

cases in DR give rise to seven CIRCSIM-Tutor problems. Taking into account the fact that

the initial stimulus in each problem can increase or decrease, there are 14 simple problems

in total. Since the rules which determine the values of variables are symmetric with respect

to �increase� and �decrease�, the solutions for each pair of related problems are inverses.

The solutions to all of the simple problems are found in Appendix A.

68

2.3.3 Different ways of wording the problem for the student

Although there are only seven types of simple problems, each problem can be

presented to the student in several ways. Khuwaja [1994] describes four levels of

difficulty, based on the amount of inference needed to get from the immediate cause of the

perturbation to the primary variable:

1) Identify the primary variable directly.

2) Identify the primary variable indirectly.

3) Directly identify a procedure variable other than the primary variable.

4) Indirectly identify a procedure variable other than the primary variable.

The increase in the difficulty level can be seen from the following examples:

1) Predict the effects of a drop in central venous pressure.

3) The patient lost a liter of blood due to hemorrhage.

4) The patient played several vigorous games of tennis without a break

on a hot, humid day. Toward the end of the third game, the patient

became dizzy and fainted.

2.4 Solving the problems

2.4.1 The language used in the rules

In this section we present rules for solving the problems. In later chapters we will

discuss examples of dialogue which can be used to teach the rules. Although the text

cannot be derived from the rules alone, different rules give rise to different textual

formulations. The rules given in this section are largely mechanical, i.e. they deal with the

propagation of values from one core variable to another based on rules which can be

memorized or read from the concept map. Much of the dialogues conducted by expert

tutors uses this type of language.

When talking about core variables is not sufficient to help the student, there are two

ways to extend the language. Both of these methods use language similar to that in

69

Sections 2.2.2 and 2.2.3. In one case, we enrich the set of variables to include additional

anatomical and physiological concepts. Within the CIRCSIM-Tutor project, this is known as

using a deeper concept map. A further addition would be the addition of functional

concepts. A functional concept is an abstract physical relationship which is not tied to a

specific object, such as the relationship between volume and pressure. The current

CIRCSIM-Tutor knowledge base does not currently contain knowledge about functional

relationships; it can only store the relationship between a specific volume and its

associated pressure.

2.4.2 Rules for the DR stage

Before giving the propagation rules for DR, we give the following rule, which

applies in all stages:

Propagation-meta-rule:

Once a variable has been assigned a value in a stage, that value is never

recomputed during that stage.

The algorithm for predicting the values for the DR stage is given below.

Determine-DR:

1. Determine the procedure variable and its direction from the

perturbation.

2. Derive the primary variable and its direction from the procedure

variable.

3. Determine the values of the neural variables.

4. Propagate values to variables on the shortest path to MAP.

5. Propagate values to the variables on the secondary path.

The first step in solving a problem is to determine the procedure variable. We also need to

determine the direction in which the procedure variable changes, i.e. whether the

perturbation causes it to increase or decrease. The next step is to determine the primary

variable. For the cases we will be examining, both the procedure variable and the primary

70

variable can be determined from Appendix A or from Figure 2.1. By definition, the

determination of the procedure variable is outside the range of the system, but the

determination of the primary variable from the procedure variable can be done using the

propagation rules we are about to introduce. We determine the procedure variable and the

primary variable first because they can be determined without reference to other variables.

These rules for determining the procedure variable and the primary variable can be

summarized as follows:

Det-procedure-variable:

When the value of the perturbation is propagated, the procedure

variable is the first variable on the extended concept map to receive a

value.

Det-primary-variable:

When the value of the procedure variable is propagated, the primary

variable is the first core variable to receive a value.

The third step is to determine the values of the neural variables, i.e. heart rate (HR), total

peripheral resistance (TPR), and inotropic state (IS). We determine the values of the

neural variables next because they can be ascertained without reference to variables other

than the primary variable. Since the neural variables are controlled by the nervous system

and DR is the period before nervous system functioning is activated (i.e. before the

changes being propagated through the system reach the baroreceptors), neural variables

are not affected during the DR period. There is one exception to this rule. If the primary

variable is neural, we already know from the previous step that it has changed. This is not

a contradiction because it has not changed as a result of the baroreceptor reflex but

because of a perturbation from outside the system.

So the following rule can be used to determine the value of the neural variables:

71

Neural-DR:

Neural variables which are not primary do not change in DR.

The need to teach this rule usually arises only in a situation where we already know that

the variable is not primary. Thus we can teach it using the more concise formulation:

• Neural variables don�t change in DR.

Although one rule is needed for deriving solutions and evaluating the correctness of

student answers, the text we utter is somewhat different. This is one of the reasons that

discourse schemata are necessary.

The fourth step is to determine the values of the variables along the shortest path to

MAP. The shortest path to MAP is the shortest path from the primary variable to MAP.

The shortest path to MAP must be stored as domain knowledge because there may be

more than one path with the same length. It can be defined as follows:

Determine-shortest-path:

The shortest path is determined by the primary variable.

HR primary: HR → CO → MAP

HR and IS primary: HR → CO → MAP

No primary variable: HR → CO → MAP

IS primary: IS → SV → CO → MAP

TPR primary: TPR → MAP

CVP primary: CVP → SV → CO → MAP

Since the definition of the shortest path depends only on the primary variable, it is

fully determined at this point. As we will see, the values of the variables on the primary

path are now fully determined at this point also.

Several rules are needed to propagate values along a path in the concept map. For

each variable on the shortest path, we determine its value by looking at the values of its

determinants and whether each link inverts the direction of change. When there is only one

72

determinant, there is only one possible case:

Prop-1:

When a variable has one determinant, then the value of that

determinant (increased, decreased or unchanged) determines the value

of the variable.

These are the possible cases when there are two determinants:

Prop-2n:

(no value) If a variable has two determinants and one of them has a

value and the other one does not have a value yet, then the value of the

one with a value determines the value of the variable.

Prop-2u:

(unchanged value) If a variable has two determinants and one of them

has increased or decreased and the other one is unchanged, then the

value of the one which has changed determines the value of the

variable.

Prop-2e:

(equal values) If a variable has two determinants and both of them

have the same value, then that value becomes the value of the variable.

Prop-2sv:

(conflicting values for SV) In DR, if the two determinants of SV

(i.e. IS and CVP) have conflicting values (one increases and the other

decreases), the value of CVP determines the value of SV.

Rule Prop-2sv expresses the fact that CVP usually has a stronger effect on SV than IS.

This results from the fact that HR, which determines CVP, is usually more powerful than

IS.

When there are three determinants, i.e. two determinants plus a minor determinant,

the following rule applies:

Prop-minor:

If a variable has two determinants and neither of them has a value

other than �unchanged,� but there is a minor determinant with a value,

then the value of the minor determinant determines the value of the

variable.

73

No other cases occur in DR, i.e. it never happens that there is one determinant but it

doesn�t have a value yet, or there are two determinants and both of them have values, or

there are two determinants and neither of them has a value and either there is no minor

determinant or it doesn�t have a value either. Thus this set of rules uniquely determines the

values on the shortest path to MAP in the DR stage.

The last step is to determine the values of the remaining variables. The secondary

path contains all the variables that have not been assigned values after the shortest path to

MAP has been traversed. Empirically these values always form a path. From a biological

point of view, the secondary path contains the important link from CO to CVP unless

CVP is the primary variable. The following rule can be used to determine the secondary

path. No new rules are needed to determine the values along the secondary path.

Determine-secondary-path:

The secondary path is determined by the path which has already been

traversed.

HR → CO → MAP: CO → CVP → SV

IS → SV → CO → MAP: CO → CVP

TPR → MAP: MAP → SV → CO → CVP

CVP → SV → CO → MAP: (none)

We now know enough to complete the DR stage of an actual problem. The

paragraph below contains the text of one of the problems which is used in the beginning

physiology course.

A patient with a non-functioning sino-atrial node has had an artificial

pacemaker implanted. The pacemaker has been running at 72

beats/minute. Suddenly it malfunctions and the rate changes to 120

beats/minute.

We show below the result of applying these rules to the DR stage of this procedure. For

each step, we give the rule which applies and one way to express it in English. The results

74

is an imaginary �think-aloud� session which represents the type of reasoning we want the

student to internalize and the sequence we want the student to follow.

DR:

Procedure and primary variables:

HR: Since HR is the first variable known to CIRCSIM-Tutor to be

affected by a faulty pacemaker, HR is the procedure variable.

Since the pacemaker is beating too fast, HR will increase.

(Det-procedure-variable, perturbation = pacemaker)

Since HR is in the prediction table, it is the primary variable also.

(Det-primary-variable, procedure variable = HR)

Neural variables:

TPR: Since the DR stage is by definition the stage before the

baroreceptor reflex is activated, a neural variable can�t change in

DR unless it�s the primary variable. So TPR is unchanged.

(Neural-DR, V = TPR)

IS: By the same reasoning, IS is unchanged.

(Neural-DR, V = IS)

Shortest path to MAP:

CO: Since HR went up and SV has no value yet, CO (= HR * SV)

must go up.

(Prop-2n, V = CO, Dchanged = HR, Dno-value = SV)

MAP: CO going up will cause MAP to go up, since MAP = CO * TPR

and TPR is unchanged.

(Prop-2u, V = MAP, Dchanged = CO, Dunchanged = TPR)

Secondary path:

CVP: CO going up will cause CVP to go down.

(Prop-1, V = CVP, D = CO)

SV: Since CVP went down and IS is unchanged, SV will decrease.

(Prop-2u, V = SV, Dchanged = CVP, Dunchanged = IS)

75

2.4.3 Rules for the RR stage

In the RR stage, the baroreceptors have responded to the change in MAP in the DR

stage. They activate the nervous system, which sends signals to various parts of the body.

These signals cause a change in any neural variable whose value is not clamped. Referring

to Section 2.2.3, we see that a change in MAP in DR causes neural variables to move in

the opposite direction in RR.

The following propagation rules can be used to determine the values of the variables

in RR.

Determine-RR:

1. Determine values for the neural variables.

2. Propagate values to variables on the most important path to MAP.

3. Propagate values to variables on the secondary path.

The following two rules can be used to determine values for the neural variables.

Neural-RR:

If MAP went up in DR, then any non-clamped neural variable will go

down in RR, and vice versa.

Clamped-RR:

Clamped neural variables do not change in RR.

The most important path to MAP is the path where the most significant changes take

place. This path starts with HR unless HR is clamped. It can be determined as follows:

Determine-most-important-path:

No clamped variable: HR → CO → MAP

IS clamped: HR → CO → MAP

TPR clamped: HR → CO → MAP

HR clamped: IS → SV → CO → MAP

HR and IS clamped: TPR → MAP

The secondary path in RR is determined using the same rule as in DR.

76

The following solution trace continues the previous example.

RR:

Neural variables:

HR: The pacemaker prevents the nervous system from having any

effect on HR, so HR is unchanged from its DR value.

(Clamped-RR, V = HR)

IS: Since MAP went up in DR, IS will decrease.

(Neural-RR, V = IS)

TPR: By the same reasoning, TPR will decrease.

(Neural-RR, V = TPR)

Most important path to MAP:

SV: Since IS decreased and CVP has no value yet, SV will go down.

(Prop-2n, V = SV, Dchanged = IS, Dno-value = CVP)

CO: Since SV went down and HR is unchanged, CO will go down.

(Prop-2u, V = CO, Dchanged = SV, Dunchanged = HR)

MAP: Since CO and TPR both decreased, MAP will go down.

(Prop-2e, V = MAP, D1 = CO, D2 = TPR)

Secondary path:

CVP: CO going down will cause CVP to go up because CO inversely

affects CVP.

(Prop-1, V = CVP, D = CO)

2.4.4 Rules for the SS stage

In SS, the system returns to a steady state. The following propagation rules can be

used to determine the values of the variables in SS.

Determine-SS:

1. Determine the value of the primary variable.

2. Determine values for the remaining neural variables.

3. Propagate values to variables on the shortest path to MAP.

4. Propagate values to variables on the secondary path.

77

Neural variables have done all the changing they are going to do in RR, so they have no

further changes to make to come to a steady state in SS. But for primary variables, the

majority of the change took place in DR. Thus we have the following rules for primary

variables, whether neural or not, and for other neural variables in SS:

Primary-SS:

If a variable is primary, it has the same value in SS as it did in DR.

Neural-SS:

If a neural variable is not primary, it has the same value in SS as it did

in RR.

If MAP decreases in DR and thus increases in RR, it will usually still be decreased in SS

relative to its initial value. This is an important principle which is usually expressed to the

student as follows:

• The reflex never fully compensates [for the perturbation].

This is a basic principle of negative feedback systems. For example, suppose we give a

patient a transfusion. This will cause MAP to increase and thus cause the values of the

neural variables to decrease. In the new steady state, MAP will remain elevated and the

neural variables decreased until the extra fluid is excreted.

This gives us the following rule:

Compensate-MAP:

The value of MAP in SS is the same as its value in DR.

We could work backward from MAP to obtain values for the other variables. However,

we prefer to work forward to be consistent with the previous stages. Thus we do not use

Compensate-MAP in our solutions.

The following rule can be used along with the rules for primary and neural variables

given above to solve SS without using any propagation rules.

78

Algebraic-SS:

The value of a variable in SS is the �algebraic sum� of its qualitative

predictions in DR and RR. If the DR and RR values have opposite

signs, the DR value prevails.

This rule is simple and easy to explain. However, because the propagation rules may give

a deeper understanding of the mechanism, we complete our example by giving the solution

trace for SS using the propagation rules.

One additional rule is needed to complete propagation in SS. The intent of the

following rule is to permit propagation along the path SV → CO → MAP even when

there is conflicting data from HR and TPR.

Prop-2c:

(conflicting determinants for CO and MAP) If a variable other than

SV has two determinants with conflicting values, and one determinant

is neural and the other is not, then the non-neural determinant takes

precedence unless the neural determinant is primary.

In fact, rule Prop-2c can be used to replace all of the forms of Prop-2 given above except

for Prop-2sv. The clause �unless the neural determinant is primary� does not apply in any

of the current cases but is necessary if Prop-2c is used to replace other forms of Prop-2.

An advantage of rule Prop-2c is that it makes the derivations independent of the sequence

in which they are done.

SS:

Neural variables:

HR: Since HR is primary, it has the same value in SS as in DR, so it

rises.

(Primary-SS, V = HR)

TPR: Since TPR is not primary, it has the same value in SS as in RR, so

it decreases.

(Neural-SS, V = TPR)

79

IS: Since IS is not primary, it has the same value in SS as in RR, so it

decreases.

(Neural-SS, V = IS)

Shortest path to MAP:

CO: Since HR went up and SV has no value yet, CO (= HR * SV)

must go up.

(Prop-2n, V = CO, Dchanged = HR, Dno-value = SV)

MAP: CO went up and TPR went down. CO overrides TPR because

TPR isn�t primary, so MAP goes up.

(Prop-2c, V = MAP, Dnon-neural = CO, Dneural = TPR)

Secondary path:

CVP: CO going up will cause CVP to go down.

(Prop-1, V = CVP, D = CO)

SV: Since both CVP and IS went down, SV will decrease.

(Prop-2e, V = SV, D1 = CVP, D2 = IS)

2.4.5 Multiple primary variables, multiple perturbations, and other special cases

There are several ways to create more complex problems, and additional rules are

needed to solve them.

• Multiple primary variables. For example, beta-blockers, a class of

drugs used to reduce blood pressure, affect both heart rate and

inotropic state.

• Exceptions. Although the rules given above are a useful model,

sometimes instructors would like to use a problem which requires a

more complex model.

• Denervating the baroreceptors. If the connection between the

baroreceptors and the nervous system is severed, additional rules are

required to describe the resulting behavior of the system.

• Multiple perturbations. The student can be asked to predict the

effect of sequential perturbations. For example, a pacemaker can

break after a drug has been administered to the patient.

80

Beta-blockers have two primary variables, HR and IS. The sino-atrial node, which

controls heart rate, contains both beta receptors and cholinergic receptors. Since beta-

blockers block only the effect of the nervous system on beta receptors (i.e. through the

sympathetic nervous system) and not on cholinergic receptors (i.e. through the

parasympathetic nervous system), HR will not be clamped. IS will be clamped if a

sufficient quantity of the drug is given. No additional rules are needed to solve problems

involving beta-blockers. A complete solution is shown in Section A.8.1.

A change in intrathoracic pressure (Pit) is an example of a perturbation which

requires rules more complex than those given above. When intrathoracic pressure (Pit)

increases, all of the structures inside the chest are compressed, including the central veins

and the chambers of the heart. Since the central veins are compressed, pressure inside

them rises, so the primary variable is central venous pressure (CVP), which increases.

Normally an increase in CVP would cause more blood to flow into the heart on each beat,

i.e. an increase in ventricular filling. This would cause more blood to flow out per beat

also, i.e. stroke volume (SV) would increase. But when Pit increases, the arteries where

the blood will go as it leaves the heart are compressed also. As a result, ventricular filling

decreases, causing a decrease in SV. The following enhancement to rule Prop-1 is needed

to solve problems involving Pit. Section A.8.2 contains the details of the solution.

Prop-1-Pit:

The following case is an exception to rule Prop-1. When intrathoracic

pressure (Pit) is the primary variable, SV is inversely determined by

CVP.

Denervating the baroreceptors means to cut the link from the baroreceptors to the

nervous system. Since the nervous system is not active in DR, this means that the effect of

the perturbation is not noticed in DR, i.e. no variables change. In RR, the complete

81

cessation of signals from the nervous system will appear to the receptors on the effector

organs as a very steep fall in MAP. As a result all of the neural variables will rise in RR,

and none is clamped. The following two rules describe this situation. A complete solution

is shown in Section A.8.3.

Denervate-DR:

If the baroreceptors have been denervated, then no variables change

their values in DR.

Denervate-RR:

If the baroreceptors have been denervated, then all the neural variables

rise in RR.

When two perturbations occur in sequence, we process them sequentially and illustrate the

result by showing the prediction table after each perturbation. The DR for the second

procedure is based on the result of SS in the first procedure. In other words, DR for the

second procedure measures the change from the previous steady state. This result differs

from the regular DR in only one case. When the first perturbation causes a variable to be

clamped, it stays clamped in RR during the second procedure, with the exception that a

broken pacemaker in the second procedure can override the result of clamping by a drug.

The following rules are needed to solve the multiple-perturbation problems given in

Sections A.8.4 and A.8.5. It is possible that other problems involving multiple

perturbations would require additional rules.

Clamped-RR-previous:

If a variable is clamped during the first perturbation of a multiple-

perturbation problem, it does not change in RR of the second step

except in the case where the variable in question is HR and the second

procedure involves a broken pacemaker.

Denervate-RR-longterm:

If the first procedure involves denervating the baroreceptors, then no

variables change in RR in the second procedure.

82

The intent of Clamped-RR-previous is to express the idea that a clamped variable stays

clamped. Since an artificial pacemaker acts directly on the sino-atrial node, it takes

precedence over any other influence.

Denervate-RR-longterm expresses the idea that although cutting the link from the

baroreceptors causes the reaction described by Denervate-RR, once that link is cut, there

is no way to trigger a further reaction.

As the tutoring sessions from which we abstracted our pedagogical and linguistic

knowledge did not contain any examples of these complex cases, some additional

schemata might be required to handle them correctly. For example, to handle multiple

perturbations one would need a schema which went through the stages twice. However, it

is unlikely that enhancements to the lower-level aspects of text generation would be

required. The ability to add these additional cases quickly and easily is a consequence not

only of the use of artificial intelligence techniques but of the modular design of the system.

83

Chapter 3
Introduction to the CIRCSIM-Tutor Project

Increasingly, people seem to misinterpret

complexity as sophistication, which is baffling�

the incomprehensible should cause suspicion

rather than admiration. Possibly this trend

results from a mistaken belief that using a

somewhat mysterious device confers an aura of

power on the user. �Niklaus Wirth

The previous chapter introduced the physiological concepts necessary to understand

a CIRCSIM-Tutor problem and its solution. In this chapter we examine how an automated

system can be used to tutor students on the solution to these problems. We start by

examining earlier CAI programs for tutoring cardiovascular physiology. Then we review

the history of CIRCSIM-Tutor in order to motivate the research goals listed in the

Introduction. Finally, we describe two aspects of the student�s interaction with

CIRCSIM-Tutor: the user interface, which determines how the student interacts with the

program, and the experimental protocol, which determines the overall flow of the

student�s session by controlling when the tutor can intervene in the prediction process.

3.1 Computer-assisted instruction (CAI) systems for the baroreceptor reflex

3.1.1 MACMAN: A quantitative simulation

Michael and Rovick were first introduced to the possibilities of using the computer

as a teaching aid through MACMAN [Dickinson, Goldsmith & Sackett 1973], a

mathematical model of the baroreceptor reflex developed at McMaster University.

MACMAN was a FORTRAN program which ran on a mainframe and printed its output on a

84

line printer. It had a simple interface that allowed the user to specify the parameters for

running the model and to designate which parameters would be printed, either graphically

or in tabular form.

Rovick and Michael translated the program into TUTOR, the language for the PLATO

system. They used it with a lab manual that described experiments to be carried out,

allowed students to design and carry out their own experiments, and included questions to

direct the students� attention to relevant phenomena.

After a year of experimentation, they concluded that MACMAN was not particularly

useful to their students. The students tended to do the experiments in a rote fashion

without thinking about the implications of the results. Additionally, they did not know

enough about physiology or experimental design to generate their own experiments. Thus

the success of MACMAN was totally dependent on interaction with an instructor.

3.1.2 HEARTSIM: Adding a didactic component

Rovick and Michael believed that the reason for the failure of MACMAN was the fact

that it was purely a simulation with no pedagogical component. Their response was to

develop HEARTSIM [Rovick & Brenner 1983], a PLATO program which included a didactic

component in addition to MACMAN.

The didactic component introduced three new features which proved to be

successful in helping students learn and which they have therefore carried through to their

more recent systems. The three features are:

• Reliance on qualitative instead of quantitative predictions
• Use of the prediction table as an interface device
• Predefined set of problems for the students to work

Rovick and Michael switched to the use of qualitative predictions after realizing that they

85

would be satisfied if the student could make a qualitative prediction, i.e. state whether the

value of each variable would increase, decrease, or remain unchanged. They introduced

the prediction table [Rovick & Michael 1992], a chart with spaces for the student to enter

a qualitative prediction for each variable at each physiological stage, which was illustrated

in Figure 2.2. (The prediction table is also shown in Figure 3.1 as part of the graphical

user interface for CIRCSIM-Tutor.)

The prediction table served three purposes:

• Give the students a way to organize their thinking
• Provide an easy way for students to enter data
• Provide a simple way for the system to give feedback

(by highlighting errors)

In addition to switching from quantitative to qualitative predictions, Rovick and Michael

switched from having the students specify the parameters they wanted to modify to

providing a menu of predefined problems. Although HEARTSIM continued to give students

the opportunity to design and run their own experiments, relatively few students used this

feature of the program.

Students used HEARTSIM with the protocol given below. While the quantitative and

graphical results were provided by MACMAN, the qualitative results used for the

comparison were stored rather than calculated.

1. Select a problem.

2. Make predictions for all three stages.

3. Correct errors.

4. See the results of the procedure plotted and displayed as a table.

5. Compare predictions with the actual results and study canned text

selected by the system.

86

3.1.3 CIRCSIM: CAI program using qualitative reasoning

CIRCSIM is a BASIC program for DOS machines whose development was prompted by

the limited availability of PLATO. In developing CIRCSIM, Michael and Rovick realized that

the mathematical model in HEARTSIM was used only to display graphs showing the

behavior of the variables over time. Since in their opinion most of the learning was being

generated from the qualitative stored predictions rather than the quantitative information,

they did not give CIRCSIM a mathematical model. Instead CIRCSIM stores the correct

predictions and the limited data needed to display the desired graphs.

To provide more guidance to the student, CIRCSIM contains a procedure which can

lead a student through the solution to a problem. This procedure also helps the student

develop a general model for negative feedback systems and a method for solving the

problems. CIRCSIM currently has over 250 canned text paragraphs which it can use for

tutoring.

3.2 Comparison of v. 3 of CIRCSIM-Tutor to v. 2

3.2.1 Motivation for the development of CIRCSIM-Tutor

Parallel to the development of CIRCSIM, Michael and Rovick also realized that while

CIRCSIM was an effective learning tool, there were many kinds of errors and

misconceptions that it was unable to remedy. This conviction arose from the observation

that students continued to have significant problems with their understanding of the

baroreceptor reflex even after using CIRCSIM. They believed that the solution to this

problem would be the availability of a program that could conduct a dialogue with the

student. Several versions of CIRCSIM-Tutor have been developed under the supervision of

Professor Martha W. Evens of the Illinois Institute of Technology

87

The current version of CIRCSIM-Tutor is v. 2, developed by Woo [1991] and others

using Procyon Lisp for the Macintosh. A prototype had earlier been implemented in

Prolog by Kim [1989]. Many of the high-level aspects of v. 2 fit the problem well and have

been carried over into v. 3. On the other hand, v. 3 is more sophisticated than v. 2 in many

respects, including planning, dialogue handling, and text generation. In some situations,

v. 3 generalizes a feature available in v. 2 only in specific situations which are hard-wired

into the program. The crucial difference between v. 2 and v. 3 is that the primary goal of

v. 3 is to generate a dialogue. With text generation as a primary goal, it is easier to

generate the variety of tutoring phenomena used by our expert tutors while maintaining a

coherent conversation. Pedagogical planning rules are still used to decide which tutoring

method to use at any point in time, but the output of these rules is a plan for a piece of

text which will be integrated into the developing conversation. As a result discourse goals

generated by disparate pedagogical goals can be amalgamated into one turn or even into a

single sentence. Textual mechanisms needed for ensuring coherence (so, but, etc.), for

switching topics or for handling a student initiative can be generated without disturbing

the pedagogical plan.

Although Zhang�s [1991] work precedes v. 2, it contains the crucial idea that a text

model separate from the pedagogical model is needed for text generation. However,

Zhang�s text planner uses descriptive terms such as hint as goals. In our view, as

demonstrated in Sections 4.6 and 4.11, hints and other descriptive phenomena are created

as the result of one or more subgoals of the text planner.

88

3.2.2 Features and shortcomings of CIRCSIM-Tutor v. 2

The following list shows some of the main features of v. 2.

• User interface. The handling of the user interface and experimental

protocol in v. 2 fit the problem well and will be carried over into v. 3,

although the default protocol is different. Students use a prediction

table to make their predictions, then engage in a tutorial dialogue led

by the tutor.

• Top-level dialogue organization. Version 2 tutors the student on

each incorrect prediction. Within each stage, the variables are tutored

in causal sequence, i.e. in the sequence in which they are encountered

while solving the problem.

• Tutoring methods. Version 2 has two principal methods for tutoring

variables, one for neural variables and one for non-neural variables.

Each of these methods uses a multi-turn plan. When the student gets

multiple neural variables wrong, a shorter correction method is used

for the second and subsequent variables.

• Turn structure and responding to the student. Version 2 always

responds to the student before continuing with the tutor�s plan.

When the student makes a mistake, v. 2 chooses whether to give the

correct answer or to give the student a hint first. When two

determinants are requested and only one is given, v. 2 can prompt for

the second determinant.

• Text generation. Each turn consists of one or more syntactically

correct sentences. Many are generated from semantic forms; some of

the more complex ones are hard-coded.

Viewed from today�s perspective, however, v. 2 has many shortcomings:

Planning:

• Inability to generate nested text structures. Since v. 2 generates text

by means of an augmented finite-state machine, it cannot generate

nested structures unless they are hard-wired in the finite-state

machine. One hierarchical text structure which is hard-coded in the

finite-state machine is the correction of variables within stages.

Version 3 can handle arbitrary nested structures.

89

• Lack of retry capability. Version 2 does not have the general

capability to retry a goal which has failed. It can only retry a goal

when an alternative response has been pre-programmed. Otherwise

the only option is to give the student the correct answer. Two kinds

of retry, the ability to generate a hint (�Consider ��) in certain

contexts and the ability to ask for a second determinant when only

one is given, are hard-coded into the finite state machine. Version 3

can retry any goal as long as an alternative is available.

• Inability to drop a plan. Version 2 cannot drop a multi-turn method

if the student�s response is disappointing. Version 3 can change plans

whenever an alternative is available.

Chapter 5 contains a detailed account of the planning process for

v. 3.

Turn structure:

• Restricted turn structure. Version 2 always gives the student an

explicit acknowledgment, either interpersonal (e.g. correct), content-

based (SV is the correct answer), or both. But human tutors often

leave the acknowledgment implicit. Additionally, in v. 2 the response

to the student is always a declarative statement, never a question or a

multi-turn plan. As shown in Section 4.5, version 3 can use any type

of tutorial method to reply to the student. It can also leave the

acknowledgment explicit when desired.

Coherence:

• Insufficient attention to intra-turn coherence. Version 2 generates

each sentence of a turn individually, causing turns to be more or less

coherent depending on which path through the finite-state machine

was chosen. As a result text generated by v. 2 has the stylized, stilted

quality we associate with compiler error messages rather than with

language used in natural situations. Since each discourse goal

generates a separate sentence, text generated by v. 2 does not

contain subordinate clauses. Since it does not attempt to connect

each sentence with earlier sentences in the turn, methods of cohesion

such as pronouns are never generated. In order to avoid these

problems, v. 3 generates text for each turn as a whole.

90

• Insufficient attention to inter-turn coherence. Coherence of the

conversation as a whole, i.e. inter-turn coherence, is less of a

problem but is still an issue. Text for tutoring each variable is

generated individually. Since there is only one schema for tutoring

each type of variable and each of them has content-based coherence,

large-scale coherence largely takes care of itself. However, in the

next section we will see several examples where inter-turn coherence

can be improved through the use of discourse markers. Creating

inter-turn and intra-turn coherence in v. 3 is discussed further in

Section 5.4.5.

• Unnecessary repetition in generated text. The use of the correct-

non-neural schema illustrated in the next section causes significant

repetition. Each non-neural variable is treated as a separate unit. The

system asks for the determinants of each variable even though that

information may have been given by the student earlier in the

conversation. This behavior is significantly different from that

employed by human tutors, who invite the student to build on the

results for each variable in order to solve the next. In contrast, v. 3

contains a move-forward schema, described in Section 4.7.2, which

enables the tutor to base the value of a variable on a previous one.

Domain model:

• Inability to go beyond the core variables. In v. 2, the domain model,

the pedagogical model and the text schemata contain information

solely about the seven core variables. The knowledge base in v. 3

contains sufficient information to generate text about causal

relationships on a deeper concept map, although it does not contain

functional information.

Variety (pedagogical, linguistic and lexical):

• Pedagogical variety. The fact that there is only one schema for each

type of variable makes it too easy for the student to respond

automatically without thinking about what the tutor is saying.

Furthermore, work done by the CIRCSIM-Tutor project on creating a

more sophisticated student model is less useful without a selection of

alternatives for the planner to choose from.

• Syntactic variety. Most discourse goals in v. 2 have only one

potential realization. Repetition at the pedagogical and syntactic

91

levels is the primary reason why CIRCSIM-Tutor v. 2 does not always

give the feel of communicating with an intelligent agent. But adding

alternative realizations without a mechanism to ensure coherence will

not lead to better text.

• Lexical variety. Although v. 2 can choose multiple lexical items for

some concepts, it does so randomly. Since people make their lexical

choices based on pragmatic considerations, in some cases random

lexical choice sounds less natural than simple repetition would. The

choice of syntax and lexical items in v. 3 is discussed further in

Section 5.4.3.

3.2.3 Sample texts from CIRCSIM-Tutor v. 2

This section illustrates the features and weaknesses of v. 2 described in the previous

section. Version 2 has two major teaching plans, one for neural variables and one for non-

neural variables. Using the notation to be introduced in Section 4.6.1, the plan for

correcting neural variables can be described with the following schema.

Correct-neural (?v):

Teach-info (has-definition(DR, definition-of(DR)))

Elicit-info (has-mechanism(?v, neural))

Elicit-info (has-value(?v, DR, no-change))

Shorter versions are provided for the second and third incorrect neural variables:

Correct-second-neural (?v):

Elicit-info (has-mechanism(?v, neural))

Elicit-info (has-value(?v, DR, no-change))

Correct-third-neural (?v):

Elicit-info (has-value(?v, DR, no-change))

As these schemata are closely aligned with the methods used by expert human tutors in

our transcripts, they will be reused in v. 3, albeit with more varied realizations (see

Section 4.6). The following three-part example gives the flavor of v. 2 while illustrating

the three versions of the neural paradigm.

92

(1) T: Remember that the Direct Response occurs immediately and produces

physical changes in the system before any reflex is activated. What

controls HR (heart rate)?
S: Nervous system.

T: Correct. Heart rate is neurally controlled. What is the correct value of

HR?

S: Unchanged.

T: Correct, the value of HR is unchanged. Please redo the variable HR and

click on the �done� button.

S: (changes prediction table)

(2) T: What controls CC (cardiac contractility, i.e. inotropic state)?
S: Nervous system.

T: Great, cardiac contractility is controlled by the autonomic nervous

system. What is the correct value of CC?

S: Unchanged.

T: Please redo the variable CC and click on the �done� button.

S: (changes prediction table)

(3) T: What is the correct value of TPR (total peripheral response)?
S: Unchanged.

T: Please redo the variable TPR and click on the �done� button.

S: (changes prediction table)

This text is accurate but repetitive. It would read more smoothly if some of the explicit

acknowledgments were omitted.

The following schema illustrates the pattern which v. 2 uses to correct any

non-neural variable. (This pattern exists in v. 3 but is relatively uncommon; see

Section 4.7.1).

Correct-non-neural (?v):

Get-determinants (?v)

Get-main-determinant (?v, ?determinant)

Get-relationship (?v, ?determinant)

Get-value (?v)

The following excerpt shows a typical instantiation of this schema. It also shows an

example of one of the typical error correction paths in v. 2. In turn 2, the student gives an

incorrect answer. The tutor�s reaction in turn 3 contains three parts. First the tutor gives a

93

content-based reply (�MAP is the wrong answer�). Then the tutor satisfies the get-

determinants subgoal by giving the answer (�SV is determined by ��). Finally, the tutor

moves on to get-main-determinant, which is the next subgoal.

(4) 1 T: What are the determinants of SV?
2 S: MAP.
3 T: MAP is the wrong answer. SV is determined by RAP and CC. What is

the important determinant in this case?
4 S: RAP.
5 T: Correct, the important determinant of SV in this case is RAP. What is the

relation between RAP and SV?
6 S: Direct.
7 T: Good, you got the correct answer. What is the correct value of SV?
8 S: Decrease.
9 T: Correct, the value of SV is decreased.

This text is grammatically acceptable but stilted. Again, it would read more smoothly if

some of the explicit acknowledgments were omitted. Because v. 2 plans text

independently for each turn without taking previous turns into account, the generated text

occasionally lacks inter-turn coherence. For example, turn 7 could be expressed more

smoothly as follows:

(5) T: Correct. So what is the value of SV?

The discourse marker �so� makes this text sound more natural because it reminds the

reader that a subtopic has been completed and that the tutor is returning to the previous

topic [Schiffrin 1987]. Because v. 2 generates text for each turn independently of the

evolving conversation, it never generates such cues for the reader.

From a discourse functional point of view, the problem is that each sentence uttered

by the tutor expresses a proposition with all arguments fully spelled out. In normal human

discourse, people leave some parts of most propositions implicit. The fully spelled-out

propositions accentuate the related problem of unexpected topic shifts, such as from MAP

94

to SV in turn 3. These issues could be summarized as a lack of intra-turn coherence. The

examples below show some more natural replies which the tutor could give for turn 3.

Each of them expresses the same ideas as the original, but in shorter and more natural-

sounding language. In the suggested replacements, several linguistic mechanisms are used

to increase coherence: sentences have been combined, pronouns have been inserted where

appropriate, and some ideas have been left implicit.

(6) T: No, SV is determined by RAP and CC.

Now which one of those is the important one in this case?

(7) T: No, the determinants of SV are RAP and CC.

Which one is relevant here?

(8) T: No, the right answer is RAP and CC.

Which one is most important in this case?

The issues of intra-turn coherence and syntactic variety are closely associated.

Although it would be easy to add more lexical items and sentence structures to v. 2, that

would just create more cases which need to be tweaked in order to produce natural-

sounding text. The underlying issue is that v. 2 generates text for each pedagogical goal

independently. We need a way to take into account that several goals could be uttered

together in one turn without having to provide a template for every combination of goals.

The following two excerpts show hints generated by v. 2. Although the hints are

structurally identical, the first example is more coherent than the second. In the first

example, all of the sentences in the tutor�s response deal with the values of variables, and

RAP is a reasonable variable to consider in order to determine the value of SV. In the

second example, the topic changes from determinants to variables and back again.

Although the two examples are different, both would read more smoothly if a discourse

marker were added to the last sentence, e.g. Now what is the value of SV?

95

(9) T: � What is the correct value of SV?

S: Up.

T: No, SV does not increase. Consider the value of RAP. What is the

correct value of SV?

(10) T: What are the determinants of RAP?

S: CC.

T: Sorry. RAP is not determined by CC. Consider the value of CO. What

are the determinants of RAP?

The following example shows an example of lexical choice where v. 2 does not take

pragmatic considerations into account. The tutor must believe that the student knows the

meaning of the abbreviation CC in order to use it in the first turn. The student�s response

does nothing to contradict this belief. Thus it sounds odd when the tutor uses the term

cardiac contractility in the following turn. A similar case occurs in the third turn of

example (2).

(11) T: The value of a neural variable in SS is the same as its value in RR

because neural variables don't change in DR except when one is a

primary variable. What is the value of CC in DR?

S: Decrease.

T: Correct, the value of cardiac contractility is decreased in DR.

Although both CIRCSIM and CIRCSIM-Tutor v. 2 are useful learning aids for students, each

of them is limited in various ways. In fact, students who have used both sometimes feel

that CIRCSIM is more intelligent because the canned text it uses is both linguistically and

physiologically more sophisticated. There is no contradiction here; it is similar to saying

that in a specific range an algorithm with an O(n
2
) running time can be faster than one with

an O(n) running time. The goal of v. 3 is to generate more coherent text while at the same

time expanding the range of situations which the system can discuss and the ways it has to

discuss them. The goals stated for v. 3 in the Introduction were derived from this analysis

of the shortcomings of v. 2 as well as from the analysis of the productions of human tutors

described in Chapter 4.

96

3.3 User view of CIRCSIM-Tutor v. 3

3.3.1 User interface for CIRCSIM-Tutor v. 3

CIRCSIM-Tutor v. 3 is written in a Lisp compatible with both Allegro Common Lisp

for Windows and Macintosh Common Lisp. Only the screen handling code is different for

the two systems. The basic user interface is the screen shown in Figure 3.1. The left-hand

side contains a prediction table where the student can fill in predictions for the DR, RR

and SS stages. The right-hand side of the screen contains a window where dialogue with

CIRCSIM-Tutor will unfold. A small window at the top of the screen contains a summary of

the current problem for the student�s reference. The student can enlarge this window to

see the complete problem description if desired. At the bottom of the screen is an

additional window which the student can use as a scratchpad and the designers can use to

communicate with the underlying Lisp process. The menu bar contains �help� and �quit�

entries which the student can use at any time to obtain information about how to use the

interface, quit working on the current problem, or terminate the tutoring session.

Each session is logged to disk. For development purposes it is convenient to be able

to play back a given session from the log without having to enter each of the student�s

responses in sequence. The logs are also useful as a source of data for analyzing human-

computer conversations.

97

3.3.2 Protocols for interleaving predictions and dialogue

After the student finishes each phase, the tutor and the student conduct a dialogue

to give the tutor an opportunity to correct the student�s misconceptions. In the protocol

currently being used both for live tutoring sessions and for CIRCSIM-Tutor, called

protocol 3 by Khuwaja et al. [1995], the student solves the problem in a largely

uninterrupted fashion. At the beginning of the procedure, the student is required to

 Prediction Table

Instructional Dialog

 Quit Debug Help

Procedure Description

Central Venous Pressure

 Inotropic State

 Stroke Volume

 Heart Rate

 Cardiac Output

 Total Periph. Resistance

 Mean Arterial Pressure

DR RR SS

Scratch Area

Figure 3.1: CIRCSIM-Tutor screen interface

98

correctly predict the primary variable and its direction. After that, the student works the

problem one stage at a time, making the predictions in any sequence. After each stage is

complete, the tutor conducts a dialogue with the student where each incorrect variable is

discussed.

The rationale for protocol 3 is that with the full set of predictions for a stage

available, the tutor can have a better idea about the student�s problems. Previous protocols

interrupted the student after each wrong answer in line with more traditional pedagogical

beliefs. On the other hand, CIRCSIM, a traditional CAI program described in Section 3.1.3,

lets students work all three stages before intervening. A side effect of protocol 3 is that the

tutor cannot require the student to predict the variables in a logical sequence, as there is

no way to intervene during the prediction phase, although tutors do talk to the student

about logical solution sequences.

In CIRCSIM-Tutor v. 3, the protocol is determined by a high-level schema. As a

result, although the initial implementation uses the protocol described above, one could

switch to a different protocol without changing any code.

99

Chapter 4
A model of instructional discourse
for cardiovascular physiology

A good question is never answered. It is not a

bolt to be tightened into place but a seed to be

planted and to bear more seed toward the hope

of greening the landscape of idea.
�John Ciardi

This chapter introduces a model for a tutoring dialogue based on the structure and

discourse mechanisms found in naturalistic
1
data and suitable for implementation by an

automated text planner. We analyze previously collected human-to-human tutoring

sessions from a text planning perspective. We characterize the aspects of the tutor�s

productions which are the most significant to model in a computer-based tutoring system,

including both content-based and content-independent patterns at sizes ranging from the

conversation as a whole down to single turns. We illustrate patterns from the three aspects

of each turn�responding to the student�s last utterance, advancing the tutoring plan, and

obtaining feedback from the student. Finally, we identify aspects of human tutoring which

are not susceptible to current techniques in artificial intelligence.

Previous studies of the CIRCSIM-Tutor transcripts have concentrated on the syntactic

structure of our human tutors� productions [Seu et al. 1991] or their pedagogical goals as

indicated by surface structure [Hume 1995; Hume et al. 1993, 1995, 1996; Evens

et al. 1993; Spitkovsky 1992]. Our analysis is oriented toward modeling the deep structure

1
Although there were no constraints on the language to be used, the dialogues were collected in an
experimental setting, not in everyday life.

100

of the human tutors� productions in order to generate similar ones.

4.1 Developing a model from naturalistic data

4.1.1 The keyboard-to-keyboard data collection sessions

Over the last four years, the CIRCSIM-Tutor project has collected a large number of

transcripts of human-to-human tutoring sessions, including both face-to-face and

keyboard-to-keyboard sessions. The corpus for this study consisted of 47 keyboard-to-

keyboard transcripts totaling about 5000 turns
2
of dialogue, or about 75 hours of written

dialogue. Our domain experts, who are experienced professors of physiology, served as

tutors. The students were volunteer medical students who were paid a nominal fee for

their participation. They are also told that they might learn something from the

experiment: the slogan for recruiting volunteers is �earn while you learn.� The sessions are

conducted each year after the students have been introduced to the basic concepts in class

but before they have completed the lab experiments, small group discussion sections and

other activities which will complete their study of the topic. At this point, after the

students have studied the basic material but before they have internalized it, they come

closest to the ideal student for whom CIRCSIM-Tutor is being developed.

Because CIRCSIM-Tutor communicates with the student using written language�it

displays text and the student types responses�the tutoring sessions in the corpus were

conducted in the same way. In this manner we eliminate the expected differences between

oral and written dialogues. A major difference between face-to-face and

keyboard-to-keyboard sessions is the restricted availability of pragmatic cues such as

intonation and gestures in the latter. Additionally, at present our experimental setup

2
A turn is the connected speech of one speaker.

101

precludes the possibility of using graphics. Thus we need to find out how both student and

tutor use language to make up for the missing possibility of communication via non-verbal

channels. As a side note, collecting the data in written form eliminates the necessity for

expensive and error-prone transcription, and aids in input analysis by providing data on

misspellings and abbreviations invented by students.

Student and tutor are located in separate rooms so that they can communicate only

via the terminal. The conversation is managed by the Computer Dialogue System (CDS)

developed by Li et al. [1992] for this purpose. CDS uses a teletype-like interface which

permits each party to see what is being typed by the other. CDS also permits interrupts

from either party. In each tutoring session, the tutor helps the student work through one

or two problems in cardiovascular physiology, with approximately one hour allocated to

each problem. They use the same protocol as v. 3 of CIRCSIM-Tutor will eventually use,

described in Section 3.3.2.

4.1.2 From tutoring session to transcript

The tutoring sessions are logged to disk. A suite of programs written by the

CIRCSIM-Tutor group are used to format conversations and strip off personal identifying

information, which is stored separately and used only for demographic purposes. Since it

does no parsing, the numbering program cannot always correctly determine sentence

boundaries, but can only guess based on punctuation. The resulting errors in sentence

numbering are corrected by hand.

The transcripts have been stored in their original format so that future researchers

will be able to study phenomena of their choosing. I designed an annotation subsystem

which allows individuals to annotate interesting phenomena in the transcripts without

interfering with other users� annotations. The annotation system permits us to produce

102

versions of the transcripts with normalized spelling and various types of formatting in

order to improve the visibility of high-level phenomena such as pedagogical and discourse

goals. Using a spelling-corrected version as input to our KWIC index programs would

result in approximately a one-third increase in the number of useful entries retrieved.

4.1.3 Simplifying human discourse

One of the reasons human speech is so fascinating to study�and so difficult to

model�is that there are multiple, overlapping meanings in even the shortest conversation.

Human beings have been arguing for thousands of years about the intentions behind

statements in Plato�s dialogues. Although many statements can be considered as satisfying

multiple goals, we will show that assigning a single meaning per statement at each level of

planning, as a conventional planner does, is sufficient to model the dialogues of our expert

tutors.

Since the model describes the deep structure of the dialogues, the mechanisms in

this chapter do not necessary have one-to-one analogues in the surface structure, although

many do. Thus these mechanisms are not necessarily the same as the discourse patterns

identified by previous CIRCSIM-Tutor researchers through analysis of the surface structure

of the transcripts. In Section 4.11, we will discuss how to implement previously described

phenomena using the model described here.

We do not expect the human tutors to necessarily agree with or even be aware of

the discourse mechanisms we use to model their behavior. For most people, discourse

processing usually happens below the surface of consciousness except in writing or speech

courses. Additionally, these discourse mechanisms have been chosen as a suitable model

for an automated planner. Since human beings are capable of much more complex

103

reasoning, there is no need to persuade our expert users to see their speech the same way

we do.

4.1.4 Typographical conventions used in this chapter

Excerpts from the transcripts are identified by transcript and turn number. The

excerpts are quoted verbatim with the following exceptions: spelling has been corrected,

punctuation and capitalization have been normalized, and abbreviations such as �I� or �+�

for �increase� have been spelled out as forms of the verbs increase, decrease and did not

change. I have consistently used abbreviations, such as CVP and IS, for core variables and

spelled out the names of deeper-level variables. Omissions are indicated by ellipses and

added material by square brackets. For simplicity, only the relevant section of each turn is

quoted, frequently leading to the omission of the tutor�s acknowledgment of the student�s

previous response and the tutor�s closing request of the student. Where an additional

explanation is necessary, it has been italicized and enclosed in parentheses. Arrows have

been used to mark relevant text in long excerpts.

The schemata are described in pseudo-code. Since one goal of this dissertation is to

provide a feasible architecture for CIRCSIM-Tutor v. 3, we have tried to demonstrate the

range of possible schemata. We have also tried to identify a hierarchical set of schemata

which provide the major functions necessary to make CIRCSIM-Tutor a useful resource for

medical students. We have not tried to give exact prerequisites for the schemata shown,

and we have freely used notation from extended BNF such as if, repeat, and optional

where it simplifies the exposition. This notation may be implemented by the planner in a

number of different ways.

Whether a text excerpt can be generated by a given schema depends not only on the

schema but on the grammar and lexicon available and the realization rules used by the turn

104

planner to convert each set of semantic forms to text. We have tried to use only examples

which could realistically be generated by the schemata given, but there is bound to be

some disagreement. For some of the examples, to generate the exact text shown would

require additional semantic forms, for example to generate a discourse marker or an

adverb.

4.2 Principal aspects of the model

4.2.1 Modeling tutorial planning

The following list summarizes the major elements of the model. In the following

sections we will describe each of them in more detail. Unless otherwise mentioned, each of

these items applies both to the human tutors and to dialogues generated by CIRCSIM-Tutor.

• The tutor maintains a hierarchy of goals, visible via the hierarchical

structure of the resulting conversation, while at the same time

carrying on a conversation with an agent whose responses can�t be

predicted in advance.

• The text contains a segment for each of the three physiological

stages. Within each stage, the text is divided into segments, one for

each incorrect core variable. The variables are discussed in a partially

ordered sequence which corresponds to the solution trace of the

problem.

The fact that the basic building block of the model is the correction of one variable does

not mean that that correcting variables is the human tutors� ultimate goal. In fact, the

tutors� underlying goal is to teach the student several levels of information about solving

problems in cardiovascular physiology, and their own model of the process concentrates

on incorrect relationships between the variables rather than on incorrect values of

individual variables. However, the simpler model proposed here, that tutors achieve their

goals by tutoring one variable at a time, is sufficient for the purpose of text generation and

105

leads to simpler planning operators.

Both the human tutors and any mechanized system must steer a balance between

teaching principles too directly, which does not help the student learn to apply them in

context, and concentrating too much on the problem at hand, which could lead to the

student memorizing the answers without understanding the domain reasoning.

• The text for each variable is divided into attempts to tutor it. The

tutor makes attempts to teach a variable until the student has stated

its correct value. The resulting hierarchical structure can be depicted

as follows:

Solve a problem

Solve first phase

Get student�s predictions

Conduct dialogue

Correct first variable

First attempt

Second attempt
�

Correct next variable
�

• The tutor has a variety of methods for teaching the value of each

variable, including single-turn and multi-turn methods. Methods may

be nested, and one or more methods are available for tutoring each

lower-level concept. If the student doesn�t give the expected answer

to a question, whether it is a question terminating a method or a

question in an intermediate step, the tutor has three alternatives:

a) Respond to the student, then continue with the method. The response

may include an acknowledgment of the student�s statement and/or a

content-based reply. If necessary, the tutor can give the student the

answer.

b) Respond to the student, then retry the current goal with a new

instantiation.

c) Respond to the student, then back up one or more levels and try a new

method. If the tutor backs out of a multi-turn method without

106

completing it, the remaining steps of the method are dropped. A cue

phrase like �let�s try again� is sometimes used to delimit attempts.

From a technical point of view, b) and c) are identical; in b) the tutor

backs up zero levels.

• Semantic forms may be combined before text is uttered. This

combination may involve combining clauses into one sentence,

realizing a semantic form as a prepositional phrase or dependent

clause, or even the realization of a semantic form through the use of

a specific lexical item.

4.2.2 Modeling dialogue handling

The tutor must maintain the back-and-forth structure of a two-party conversation as

well as carry out the hierarchical goals derived from the tutorial plan. In order to describe

the tutor�s possible response to the student, we must first classify the student�s potential

inputs. The following classification is sufficient for our needs:

• Positive response
• Correct answer (direct or hedged

3
)

• Linguistically close but not exact answer

Example: student identifies the correct variable but refers to it

using terminology from the deeper-level concept map
• A step toward the correct answer

Example: student names a variable on the correct path in the

concept map but not the desired variable

• Negative response
• Wrong answer (direct or hedged)

• Student initiative
• Question or statement which does not answer the question at the top

of the agenda (i.e. the question at the end of the tutor�s last turn)

3
A hedge is text which indicates uncertainty, such as I think, maybe, or a question mark at the end of an
otherwise declarative response.

107

• Multiple responses

Any combination of the above, such as the following:
• Correct and incorrect responses in the same turn
• Positive/negative response plus student initiative
• Correct response with incorrect reason

In the typical dialogue pattern, predicted by the Conversation Analysis school

[Sinclair & Coulthard 1975; Stenström 1994] and observed in our transcripts, every turn

has the following basic structure:

Turn:

Response to student�s previous statement (optional)

New material (optional)

Question or request for the student

The question is part of either the response or the new material. Since each part of the turn

must be contiguous, the question can only belong to the response if there is no new

material. The response itself can be divided into two sections as shown below. The

question can only be part of the content-oriented section.

Response:

Acknowledgment of student�s statement (optional)

Content-oriented reply (optional)

An acknowledgment may take one of two forms, or a combination of the two:

• A particle such as yes or no
• A more extensive statement such as you�re right

We define positive and negative acknowledgments and content-oriented replies as those

which could be used to respond to positive and negative utterances on the part of the

student, as defined in the previous section. This definition accords with the usual use of

the terms positive and negative acknowledgments. Mixed acknowledgments are used to

respond to a multiple response, again as defined in the previous section.

108

The most common forms for negative content-oriented replies include the following:

• A statement denying the student�s statement or a related fact
• A rebuttal of the student�s statement or a related fact
• A statement supporting the opposite of the student�s statement

An explicit negation of the student�s statement is an emphatic way to point out a wrong

answer. Sometimes it is more useful to negate a part of the student�s statement or a logical

prerequisite to it. A rebuttal is used when the tutor wants to share some reasoning about

the student�s error, not just the facts. A statement supporting the opposite conclusion can

be a useful hint toward the right answer. Replies to the student can invoke multi-turn

plans, but in general only rebuttals are complex enough to require one.

The most common forms for positive content-oriented replies include the following:

• A restatement of the student�s statement, possibly in more precise language
• A statement supporting the student�s statement

These replies are used in response to a correct answer or an answer which is basically

correct but where the tutor wants to improve the student�s language. When the student

says something which is on the path to a correct answer but which needs further dialogue,

the tutor�s most common response is to switch to a new schema which refers to a lower-

level concept map. A positive acknowledgment may be issued but there is usually no need

to issue a content-oriented reply because the new schema will respond to the content. This

case will be described in Section 4.10.

After replying to the student�s statement, the tutor may continue with new material

from the teaching plan. The turn ends when the tutor must request information from the

student. The request is most commonly phrased as a question, but it can also be expressed

as an imperative. It can be framed in direct or indirect language (�Can you tell me��).

In the transcripts the closing question or request is sometimes left implicit. For

109

example, if the tutor states a fact which hints at a solution to a problem, the student will

probably try to solve the problem without an explicit request [Schegloff & Sacks 1973;

Grice 1975]. For a number of reasons, discussed in detail in Section 5.3.7, the mechanized

tutor always ends each turn with an explicit question or request.

4.2.3 Examples showing multiple attempts and turns

The first example shows an incorrect prediction by the student followed by two

attempts at correction. Each attempt ends with the tutor asking for the value of the

variable to see if the student understands yet. After the second attempt, the student gives

the correct answer.

(1) S: CC increases.

T: Yes, that�s the effect of increased sympathetic stimulation on the

myocardium. However, what happens to CC in the DR period?

S: CC increases.

T: Reminder, the DR occurs before there are any reflex (neural) changes.

What happens to CC in the DR?

S: CC remains constant.

(K3:40�44)

The tutor�s first turn includes a response followed by new material. The response consists

of an acknowledgment plus a statement supporting the student�s utterance. The new

material includes the concept �we�re in DR now,� expressed by the phrase in the DR

period, and a question about the value of the variable. The tutor�s second turn consists

entirely of new content.

It is sometimes unclear whether to classify a statement like the reminder in the

tutor�s second turn as a reply or as new content. The let�s try again test sometimes

provides a useful heuristic in such cases. Since the cue phrase let�s try again is used to

start a new attempt, it separates the reply from the new content. In other cases, our

110

research has not yet led to a principled way to classify such statements. We expect that

attempting to generate coherent text with CIRCSIM-Tutor may clarify this issue.

The second example demonstrates the use of a multi-turn plan. The tutor wants to

point out a contradiction based on the fact that MAP = CO * TPR.

(2) T: � What are the determinants of MAP?

S: CO and TPR.

T: Correct. And you have predicted CO increases and TPR increases. So how

can you say MAP decreases?

(K32:226�228)

If the student had not �played along� with the tutor by correctly answering the first

question, the tutor would have been unable to continue as planned. In fact, that�s exactly

what happens in the next example:

(3) T: Now look at your predictions: MAP decreases, TPR increases, CO doesn�t

change. Is that possible?

S: Yes.

T: Let�s try again. MAP = CO * TPR. CO doesn�t change. TPR increases�

(K33:122�124)

In this case, the tutor recovers by trying the same plan again but wording it differently.

The cue phrase �let�s try again� indicates a new attempt.

Schema switching will be discussed in Sections 4.6.6 and 4.10.1.

4.2.4 Realizing a semantic form in multiple ways

In addition to using a variety of argumentative forms to tutor each concept, the

tutor can also express the communicative acts which comprise the forms in more than one

way. The sentences below show several locutions which the human tutors use to start the

dialogue. Although each of these serves the same purpose, they have slightly different

semantic values. From a pedagogical point of view, the primary value of having multiple

111

realizations of a concept may be to encourage the student to read and understand the

material, rather than to respond by rote. Additionally, the use of a variety of ways to

express a concept exposes the student to more of the medical sublanguage which our

domain experts want them to acquire. Finally, one of the realizations may help the student

to recall existing knowledge. From a technical point of view, having multiple verbs and

syntactic configurations available permits us to choose a different realization when the

tutor needs to ask the same question twice. Depending on the rest of the turn, multiple

potential realizations may be necessary in order to have one which fits into the turn being

planned.

The following examples show alternative realizations for introduce-stage.

(4) T: � Now let�s review some of your predictions�

(K32:46)

(5) T: � Let�s take a look at some of your predictions�

(K10:29)

(6) T: � let�s talk about your predictions�

(K27:50)

(7) T: � There are some errors here. Let�s start with this issue�

(K14:31)

The following examples show a set of alternatives for a key component of move-forward.

(8) T: � And what happened to RAP?

(K28:8)

(9) T: � What effect would this have on RAP?

(K32:62)

(10) T: � what must happen to SV?

(K28:10)

(11) T: � How will that affect SV?

(K30:74)

112

Any of the following alternatives can be used to return to the top level of the concept map.

(12) T: � What variable in our list reflects this?

(K28:5)

(13) T: � What variable has the same value as CVP?

(K6:35)

(14) T: � What parameter here reflects filling of the left ventricle?

(K27:66)

Finally, the following examples show a variety of ways to inquire about the determinants

of a variable.

(15) T: � But let�s consider � the things that determine SV. Can you list these

for me?

(K33:74)

(16) T: What are the two parameters that determine CO?

(K13:49)

(17) T: � What parameter determines RAP?

(K25:48)

(18) T: � What are the determinants of SV?

(K15:59)

(19) T: � Can you write the equation relating MAP, CO, and TPR?

(K24:96)

Section 5.2.3 gives examples of the independence of the generated surface structure and

the underlying semantic form.

4.2.5 Naming convention for schemata

Although names are arbitrary, we have attempted to name schemata consistently in

order to show patterns where they exist and reduce the cognitive load on the reader. In

this chapter the schemata are named from the tutor�s point of view; the first word of each

schema name is a verb describing the tutor�s action. In Chapter 5 the plan operators are

named from an objective point of view to emphasize the point that some conversational

113

objectives can be achieved by either party. As CIRCSIM-Tutor moves closer to the goal of

cooperative communication, the use of an objective point of view becomes more

important.

The following list includes the most common verbs used in the schema names:

Forms relating to dialogue sections:

Process- to get predictions for a section of the problem, then conduct a

dialogue

Start- to begin a section of the dialogue (first time or retry)

Introduce- to begin a section of the dialogue (first time)

Attempt- to converse with the student about a topic. Because we cannot predict

the student�s response in advance, an attempt may not be successful.

Correct- to converse with the student about a topic, leading to a correct answer

about a question

Conclude- to end a section of the dialogue

Forms relating to domain knowledge:

Teach-info to communicate some information, either via convey or elicit

Convey-info to give the student information about a topic

Elicit-info to request information from the student

Get-<variable-name> abbreviation for eliciting the value of variable-name

Ensure-student-knows to teach the specified information unless it has been

conveyed earlier in the conversation

From a philosophical point of view, schemata names are only a mnemonic aid to the reader

[McDermott 1981]. We conventionally assume, as does Moore [1995], that students

know something when they have been told. From a pedagogical point of view, several

responses over a period of time may be required to really ensure that a student knows

something. Even in that case, we can never know whether the student will retain the

knowledge over the long term.

114

4.3 Discourse mechanisms used in high-level planning

4.3.1 Top level: interleaving data acquisition and correction

The top-level rules structure the task according to a protocol selected by our

domain experts. In the currently preferred protocol, as described in Section 3.3.2, the

student solves each stage uninterruptedly before discussing it with the tutor. This protocol

is used in the transcripts beginning with K30, and can be realized with the following

schemata:

Correct-problem:

Process-primary-variable

Process-stage (DR)

Process-stage (RR)

Process-stage (SS)

Process-primary-variable:

Get-predictions (DR, ?primary-variable)

Correct-variable (?primary-variable)

Process-stage (?stage):

Get-predictions (?stage, all-remaining)

Correct-stage (?stage)

The form get-predictions is a primitive which obtains the student�s initial predictions for

the variables using the graphical interface described in Section 3.3.1.

4.3.2 Introducing a stage

In this section we give some potential realizations for the schema introduce-stage,

which performs the pedagogical function of introducing the stage to be discussed next.

Although the pedagogical function of introducing a topic may be implemented, as least in

part, by the discourse function of introducing a topic, the two are different in other

contexts.

115

(4) T: � Now let�s review some of your predictions�

(K32:46)

(5) T: � Let�s take a look at some of your predictions�

(K10:29)

(6) T: � let�s talk about your predictions�

(K27:50)

(7) T: � There are some errors here. Let�s start with this issue�

(K14:31)

The examples above show the result of realizing introduce-stage in a sentence by itself.

The following turns show two different ways to implement introduce-stage plus the

beginning of the first variable in correct-variables.

(20) T: � That completes your DR predictions. Most of them are correct.

However, I want to pursue IS with you. Can you tell me what you think

that IS means?

(K47:56)

(21) T: Let�s take these one at a time, starting with CC�

(K5:29)

4.3.3 Correcting a stage

The following schemata can be used to correct a stage:

Correct-stage:

Introduce-stage (optional)

Correct-variables

Inquire-about-correct-variables (optional)

Conclude-stage (optional)

Correct-variables:

Correct-variable*

Conclude-correction-phase (optional)

The semantic form inquire-about-correct-variables permits the tutor to check the

student�s understanding even if the student has predicted all the variables correctly. This

item, which is optional, is not discussed further here because the open-ended nature of the

116

questions used (see the next example), make it difficult to implement directly.

4.3.4 Concluding a stage

Here is a turn which contains conclude-correction-phase plus the beginning of the

first variable from inquire-about-correct-variables.

(22) T: � All of your other predictions were correct. However, I�d like to know

how you arrived at some of them. For instance, how did you come up with

CVP decreasing?

(K47:62)

Here is an example of conclude-stage. This semantic form is often omitted, as the tutors

usually just move to the next stage.

(23) T: You got it. And you have finished the DR�

(K5:27)

4.4 Discourse mechanisms used in correcting a variable

4.4.1 Second level: division into variables

As described in Section 3.3.2, the tutor tutors the student on each incorrect variable

in a sequence based on a solution trace of the problem. Rules for determining the solution

trace are given in Section 2.4. For example, in the DR stage, the variables are usually

discussed in the following order:

• Neural variables
• Variables on the shortest path to MAP
• Variables on the �secondary path�

The fact that the dialogue is planned one variable at a time does not restrict the algorithms

available to the pedagogical problem solver for choosing the sequence of variables to

correct. For example, the pedagogical problem solver could use an algorithm involving

117

nested variables (�to correct V1, correct V2 first�) to determine which variable to teach

next. The effect of nested variables can be obtained without an explicit rule like the one

above by making the correction of V2 a prerequisite of the rule which corrects V1.

In addition to nested pedagogical goals, other types of pedagogical planning

algorithms could be implemented by changing only the pedagogical problem solver. For

example, adding the ability to utilize the fact that the student has given the correct answer

for a variable other than the one being discussed, a form of opportunistic planning, would

not require any changes to the planner. The ability to drop a variable and return to it later,

or the ability to compare cases, heavily used in the Socratic dialogues of Collins [Collins &

Stevens 1982], could also be added without difficulty, but neither is expected to be useful

since the solution path for most CIRCSIM-Tutor problems is close to being linearly ordered.

4.4.2 Introducing a variable to correct

The schema for correcting a variable looks like this:

Correct-variable:

Start-new-variable (optional)

Attempt-correction-section+

Conclude-variable (optional)

The semantic form start-new-variable can be omitted, or implemented in one of two ways.

• Introduce-variable
• Transition-to-next-variable

4

The semantic form introduce-variable can be used at any time, but transition-to-next-

variable is not valid for the first incorrect variable of a stage. Here is an example of

introduce-variable:

4
Since our naming convention requires that semantic forms start with a verb, this must be the ugly
neologism �to transition.�

118

(24) T: � You predicted that TPR would increase�

(K48:44)

The following two examples show transition-to-next-variable realized by itself.

(25) T: � Let�s also look at your prediction for SV.

(K27:62)

(26) T: � Now let�s get back to some other things�

(K5:41)

The following two examples show combinations of transition-to-next-variable with other

semantic forms. In the first example, transition-to-next-variable is used to generate the

particle �now�, while the rest of the sentence is generated by a semantic form such as

elicit-info. In the second example, the tutor starts a new variable after a long correction

for the previous one. The phrase �while we�re on the subject� is generated by transition-

to-next-variable and the rest of the sentence is generated by correct-additional-neural.

(27) T: (gives answer for RAP)

Now, what will happen to SV?

(K2:32)

(28) S: (gives answer for one of the neural variables)

T: � While we�re on the subject, what other variable is under neural control

and how will it be affected in the DR?

(K5:33)

In the following example, transition-to-next-variable is implemented with a schema which

asks the student for the name of the variable.

(29) T: � Let�s come back to an earlier prediction of yours. You said (correctly)

that CO increases. What variable would that affect?

(K6:27)

4.4.3 Transition between attempts to correct a variable

Sometimes the student still doesn�t understand after the tutor�s first attempt to

119

explain. Each attempt except the last ends in the student giving a wrong answer. Once the

student gives a right answer, the correction of the variable is complete, and no more

attempts are required.

The form start-new-attempt may be used to generate an introductory word, phrase,

clause or sentence preceding the correction attempt:

Attempt-correction-section:

Start-new-attempt (optional)

Attempt-correction

Just as at the beginning of a new variable, there are two ways to introduce a new attempt

at correction, one which is always valid and one which can only be used after the first

attempt:

• Introduce-attempt
• Transition-to-next-attempt

Here are two examples of transition-to-next-attempt:

(30) T: � What will happen to RAP then?

S: (gives unsatisfactory answer)

→ T: Let me start again.

(tutor starts new explanation for value of RAP)

(K2:30�32)

(31) T: Can you now tell me what determines RAP?

S: Central venous pressure.

→ T: Let�s try it this way�

(K14:37�39)

The following excerpt shows start-new-attempt used as part of a first attempt to correct a

variable. This case is rare in our current protocol because it is usually subsumed by

start-new-variable. In this example, the student introduces the variable, leaving the tutor

free to introduce the first correction attempt without redundancy.

120

(32) T: � What variable would change next?

S: TPR.

T: In what direction do you think it would change?

S: TPR would increase.

→ T: Let�s think about this. TPR is a neurally controlled variable. Simply

changing the CO wouldn�t affect its value, would it?

(K4:23�27)

4.4.4 Concluding an attempt: Asking for a new value for a variable

The tutor ends each attempt by determining whether the student now knows the

correct value of the variable.

(33) T: � What will happen to RAP then?

(K2:30)

(34) T: Can you now tell me what determines RAP?

(K14:37)

(35) T: � So what about TPR?

(K10:31)

(36) T: So TPR?

(K10:37)

Since by definition, the tutor�s turn ends when it is the student�s turn to speak, the end of

an attempt is always the end of a turn.

4.5 Responding to the student�s turn

In this section we describe each type of response mentioned in Section 4.2.2.

4.5.1 Acknowledgments: Positive, negative and mixed

Positive acknowledgments are especially likely to be explicit when the student has

correctly responded to an intermediate question in a multi-turn plan. In the following

example, the student has just responded correctly to the first step of the correct-neural

plan (Section 4.6.1). The tutor responds with a positive acknowledgment followed by new

121

material.

(37) T: � Can you tell me how TPR is controlled?

S: Autonomic nervous system.

→ T: Yes. And the predictions that you are making are for the period before any

neural changes take place. So what about TPR?

(K10:29�31)

The following excerpt contains another example of a positive acknowledgment followed

by new material. In addition, it shows a negative acknowledgment followed by some

information supporting an answer other than one given by the student. The fact that these

questions do not deal with the values of variables demonstrates that the tutorial

mechanisms in this example are being used to satisfy subgoals below the core variable

level.

(38) T: � When MAP goes up, what change occurs to the autonomic outflow to

the arterioles?

S: The efferent outflow causes vasodilation of arterioles.

→ T: That�s right. What nerves are affected and in what way?

S: Sympathetic cholinergic nerves.

→ T: No. They�re not part of the baroreceptor reflex. The sympathetic

adrenergic vasoconstrictor nerves are�

(K1:50�54)

In the following example, a negative acknowledgment is followed by new material. The

new material is signaled by a cue phrase generated by the start-new-attempt pattern.

(39) (after a question and wrong answer, but before the correction)

T: Not really. Try to look at it this way. The right atrium is like the end of the

venous system�

(K30:66)

If the tutor asks for more than one value, such as requesting multiple determinants for a

variable, the student may get one right and one wrong. In such a case, the tutor can

usually ignore the right answer and deal with the wrong one using any of the methods for

122

correcting a single wrong answer. Before doing so, however, the tutor must acknowledge

the student�s response. Although the method used for this purpose is sometimes called

�partial acknowledgment,� the term �mixed acknowledgment� is more accurate. The

student�s entire answer is acknowledged, but the tutor only accepts part of it.

In the following example, a mixed acknowledgment is followed by new material

designed to teach the student about the variable which was missed.

(40) T: What�s your first prediction?

S: TPR, HR, CC all increase simultaneously.

→ T: That�s pretty good except for HR. Remember in this case this guy�s HR is

solely determined by his broken artificial pacemaker.

(K18:36�38)

In the next example, the mixed acknowledgment is followed by a restatement of the

correct answer in different words. The new material in this excerpt consists of a follow-up

question designed to get the schema back on track.

(41) T: � What are the main determinants of SV?

S: Atrial filling and HR.

→ T: I agree with the first of these. Filling pressure is one. What�s the other main

determinant of SV?

(cf. K3:33�35)

A final example of mixed acknowledgment makes clear that a mixed acknowledgment

always deals with more than one value.

(42) T: � Can you tell me what parameter in the table represents preload?

S: RAP or TPR.

→ T: RAP yes! TPR no. TPR determines MAP, which is afterload�

(K31:72�74)

123

4.5.2 Negative content-oriented responses

The transcripts contain two common types of negative content-oriented responses:

• A statement denying the student�s statement or a related fact
• A statement supporting the opposite of the student�s statement

There is not always a clear dividing line between these categories. Similarly, when the

tutor gives a hint about a different answer, it is not always clear whether to classify it as an

aspect of a negative reply or as new content, although the �let�s try again� test is often

useful. Sometimes a statement by the tutor appears to be a reply when discourse issues are

considered but appears to be new content when looked at from the point of view of

pedagogy. In general, these ambiguities do not cause problems because they do not affect

the text which can be generated.

When the tutor issues a denial, the item most commonly denied is a logical precursor

to the student�s statement. For example, returning to example (38), the fact that the

sympathetic cholinergic nerves are not part of the baroreceptor reflex means that they

cannot be affected as the student has suggested. The tutor follows up the reply by giving

the correct answer.

(38) T: � When MAP goes up, what change occurs to the autonomic outflow to

the arterioles?

S: The efferent outflow causes vasodilation of arterioles.

T: That�s right. What nerves are affected and in what way?

S: Sympathetic cholinergic nerves.

→ T: No. They�re not part of the baroreceptor reflex. The sympathetic

adrenergic vasoconstrictor nerves are�

(K1:50�54)

Although the tutor may use words or phrases from the student�s statement, the tutor

generally does not deny a statement by negating the student�s exact statement. Sometimes

the tutor denies the student�s rationale for an answer but not the answer itself.

124

In example (42), the statement �TPR determines MAP, which is afterload� is not a

direct denial of the student�s idea that TPR represents preload. However, it does support

the idea that preload must be represented by a different variable.

(42) T: � Can you tell me what parameter in the table represents preload?

S: RAP or TPR.

→ T: RAP yes! TPR no. TPR determines MAP, which is afterload�

(K31:72�74)

When a statement supporting the opposite answer is issued, the supporting material

is usually a logical prerequisite of the correct answer. When combined with a positive

acknowledgment, this type of reply is designed to reinforce the student�s answer by

enriching the student�s knowledge. When combined with a negative acknowledgment, the

goal is to encourage the student to rethink the answer. In the following example, instead

of telling the student directly that HR will not be affected, the tutor gives a prerequisite for

deducing that fact.

(43) T: OK, but which variable will be affected by the [alpha] agonist directly?

S: HR increases.

→ T: No. Alpha receptors are not present on the SA node.

(K31:16�18)

This example has an ambiguous status. From the point of view of discourse analysis,

�alpha receptors are not present on the SA node� is a response to the student, but from a

pedagogical point of view, it is a hint toward the correct answer. The implication is that

hints can be found in the response portion of the turn as well as in the new material. The

following example is similar.

(44) S: SV does not change. It will not be affected in the DR.

T: Not true. SV is only partially under neural control via CC, one of its input

determinants�

(K5:34�35)

125

The following example contains a student initiative describing a misconception and the

tutor�s response. The tutor corrects the misconception obliquely. This example shows that

a �negative� response to a student�s statement need not contain any overtly negative

linguistic elements.

(45) S: SV stays the same.

T: When MAP increases, it�s harder for the ventricle to pump blood. So what

would that do to SV?

S: SV would decrease. I was thinking that CC staying the same would not

allow more blood to be pumped out of the ventricle.

→ T: You need to take all of the determinants into consideration together�

(K31:79�82)

Providing a specific rejoinder to a student�s incorrect response can be difficult for

two reasons. First, in order to give a specific response we must understand the student�s

statement. Incorrect answers do not necessarily map well onto the domain model. Second,

it is not possible to have schemata available for responding to every possible wrong

answer, although it is desirable to have as many as possible available in the plan library.

The following example shows a specific rejoinder.

(46) T: Now how about TPR?

S: I'm thinking that it will increase very briefly but immediately decrease so as

to adjust back to normal the CO.

T: By what mechanism will it increase?

S: If you increase pressure will you momentarily increase resistance.

→ T: No. You may be thinking of autoregulation. That�s slow. Remember that

we�re dealing with the short period before you get a reflex response. Is this

what you had in mind?

(K12:31�35)

In the following example, the specific rejoinder contains the tutor�s attempt to correct one

of the most common student misconceptions. Although one of the tutor�s goals is to make

sure that the student knows the difference between contractility and the Frank-Starling

126

effect, the tutor generally only has occasion to mention it if the student gets an appropriate

variable wrong.

(47) T: Let me try this another way. How is the inotropic state of the heart

(i.e. CC) altered physiologically?

S: By the force-length relationship?

T: No! You are confusing the Frank-Starling effect (increased filling gives

greater output) and contractility. CC is the force of contraction at any

given filling�

(K26:52�54)

4.5.3 Pseudo-diagnostic questions

In the following example, a denial is implemented as a question.

(48) T: There are some errors here. Let�s start with this issue. What parameter

determines RAP?

S: MAP.

→ T: Can you explain the mechanism by which MAP determines RAP?

(cf. K14:31�33)

We call this pattern the �pseudo-diagnostic question� because it has the same form as a

true diagnostic question but is not intended to elicit an explanation, as the tutor knows

that MAP does not determine RAP.

Occasionally, as in the following example, a student finds a way to respond to a

pseudo-diagnostic question other than by saying �no.� This case is treated just as any

other unexpected response, i.e. a new schema is chosen. Although v. 3 of CIRCSIM-Tutor

does not ask open-ended questions, the fact that a true diagnostic question would have the

same form as the pseudo-diagnostic question would not cause any problem, as we would

choose a schema based on the student�s response in any case.

(49) T: � Now let�s get back to CO. You said that it would increase. What

variable would that affect?

S: SV.

127

→ T: How would it affect SV?

S: SV increases.

→ T: In what way can CO affect SV?

S: CO = HR * SV, so an increased CO would mean an increased SV.

T: In this case, remember, CO went up because HR increased. So, an increase

in CO does not mean that SV went up. Can you tell me what the main

determinants of SV are?

(K4:35�41)

4.5.4 Pointing out a contradiction

One way of pointing out to the student that an answer is wrong is to demonstrate

that the answer leads to a contradiction. In the show-contradiction method, we take one

or more statements of the student and derive a contradiction from them.

In the following example, the tutor shows that the student is contradicting rule

Prop-2u of Section 2.4.2 about the propagation of values.

(50) T: � RAP and CC determine SV. You predicted that CC would be

unchanged and that RAP increased. How can SV be unchanged?

(K27:68)

The following example shows a contradiction to rule Prop-2e of the same section.

Remember that MAP = CO * TPR.

(51) T: � What are the determinants of MAP?

S: CO and TPR.

→ T: Correct. And you have predicted CO increases and TPR increases. So how

can you say MAP decreases?

(K32:226�228)

The following text shows two consecutive attempts to correct a variable, each instantiated

with show-contradiction:

(52)→ T: Now look at your predictions: MAP decreases, TPR increases, CO doesn�t

change. Is that possible?

S: Yes.

128

→ T: Let�s try again. MAP = CO * TPR. CO doesn�t change. TPR increases.

MAP should increase by that logic. But you said the reflex doesn�t

completely correct MAP. (i.e. MAP decreases) So?

(K33:122�124)

Conversely, the following excerpt is syntactically consistent with the output of show-

contradiction, but in fact shows the tutor asking a real question.

(53)→ T: So we have HR going down, SV going up and CO going down. How is

this possible?

S: HR is down more than SV is up.

T: Very good.

(K27:72�74)

As in the case of the pseudo-diagnostic question, if the student tries to answer a show-

contradiction, the tutor can choose a new schema to handle the situation.

4.5.5 Positive content-oriented responses

The transcripts contain two common types of positive content-oriented responses

which can be used to respond to correct answers or correct answers where the tutor wants

to improve on the student�s language.

• A restatement of the student�s statement, usually in more precise language
• A statement supporting the student�s statement

The following excerpts contain examples of restating the student�s statement as a way of

reinforcing an important point.

(54) S: CC does not change because there is no change in the sympathetic

innervation on the heart with the change in the pacemaker. TPR does not

change because of the same reason.

T: Another way of saying this is that both CC and TPR are determined by the

reflex and the reflex hasn�t happened yet in DR

(K24:43�44)

(55) T: � Now, when CO falls, how does that affect RAP?

S: RAP increases.

129

T: Super. They are inversely related when CO changes before RAP does�

(K31:84�86)

The following excerpt shows an example of supporting the student�s statement. Perhaps

the tutor provided explicit positive feedback in this turn because of the negative feedback

provided in the tutor�s previous turn.

(56) T: OK. Then predict the first variable that would be affected by injecting the

alpha agonist.

S: CC.

T: The myocardium only contains beta receptors and hence can�t respond to

an alpha agonist.

S: TPR.

→ T: Sure. The vascular smooth muscle contains alpha receptors�

(K32:18�22)

4.5.6 Responses to student initiatives

When the student changes the topic of conversation, either instead of or in addition

to replying to the tutor�s question, the tutor has several options for responding:

• Put the student�s request on the agenda above current plan

(i.e. respond to student�s statement, then return to plan)
• Put the student�s request on the agenda instead of current plan

(i.e. switch to new plan)
• Put the student�s request elsewhere on the agenda
• Acknowledge student�s input without responding
• Ignore student�s input

In effect, the tutor�s options for responding to a student initiative are similar to the tutor�s

options for responding to any unexpected input, such as a wrong answer.

If the student responded to the tutor�s question in addition to uttering the initiative,

the tutor must decide whether or not to respond to that aspect of the student�s utterance.

If the student�s answer is incorrect, the tutor will generally need to respond to it unless the

content of the reply has already been covered by the response to the student initiative.

130

In the following examples, the tutor replies to the student�s statement, then returns

to the tutoring plan in progress. Responding in this fashion is a sensible choice when the

student initiative consists of a request for a definition, an explanation, or help, as in the

first example. In the second example, the tutor responds to a student statement for which

the truth value is can be determined. This type of student initiative is more difficult for

CIRCSIM-Tutor because the input understander may need to expend considerable resources

before it can determine whether such a statement is within its purview or not.

(57) T: � What would happen after that?

S: Before I answer, could you explain the difference between SV and CO?

T: SV is the amount of blood pumped by a ventricle in one beat. CO is the

volume of blood pumped by a ventricle in one minute.

(K34:30�32)

(58) T: What�s your first prediction?

S: TPR, HR, CC all increase simultaneously.

T: That�s pretty good except for HR. Remember in this case this guy�s HR is

solely determined by his broken artificial pacemaker.

→ S: Wouldn�t his other myocardial cells respond to sympathetic stimulation and

couldn�t they override his artificial pacemaker?

T: They might and then again they might not. We�re assuming in this case that

they don�t. So what do you say about HR?

(K18:36�40)

A potential student initiative is the case where the student opportunistically responds to a

higher-level goal on the agenda or gives a value for more than one variable. CIRCSIM-Tutor

could use the information to shorten the dialogue, but we have not planned to do so

because our domain experts prefer to see each variable discussed.

In all of the cases above, the student�s desire is incorporated into the tutor�s agenda.

Initiatives which would require maintaining two goal stacks, one for the tutor and one for

the tutor�s perception of the student�s goals, as in a truly cooperative conversation, are

outside the bounds of CIRCSIM-Tutor.

131

4.6 Correcting neural variables

This section describes the principal method used by our human tutors to correct the

student�s ideas about neural variables in the DR stage. In the following two sections, we

look at equivalent methods for non-neural variables and for the primary variable. In cases

where different rules are required for the three physiological stages, we show detailed

rules only for the DR stage.

4.6.1 Schema for correcting the first neural variable

The following schema shows the method most frequently used by our tutors to

correct the first neural variable which the student has predicted incorrectly.

Correct-neural (?v):

PQ: ?v is neural

?v is not the primary variable

Ensure-student-knows (has-mechanism(?v, neural))

Ensure-student-knows (not(is-active(nervous-system, DR)))

Ensure-student-knows (has-value(?v, DR, no-change))

The intended interpretation is that the tutor must ensure that the student knows the

following three facts, which constitute a syllogism for teaching the value of a neural

variable.

The variable is controlled by the nervous system.

The nervous system has no effect in the DR phase.

Therefore the value of the variable does not change in DR.

When it is desirable to represent the concept �therefore� explicitly, a semantic form is

added for that purpose. For simplicity, we will not show this form in the examples.

The most common implementation is for the teacher to tutor the concepts involved

and then ask the student for the value of the variable, i.e. as if the schema were written as

follows:

132

Correct-neural (?v):

Teach-info (has-mechanism(?v, neural))

Teach-info (not(is-active(nervous-system, DR)))

Elicit-info (has-value(?v, DR, no-change))

The main difference between this schema and the previous one is that this schema requires

some text to be generated for each semantic form, while ensure-student-knows can

evaluate to nil if the tutor believes that the student already knows a fact.

Since teach-info can be satisfied by telling the student something (convey-info) or by

eliciting the information from the student (elicit-info), the semantic form ensure-student-

knows can be realized in three ways, as shown below.
5

• Convey-info: Give the student some information
• Elicit-info: Ask the student for some information
• Nil: Say nothing

This choice of methods can be used to generate a wide variety of observed tutorial

phenomena.

4.6.2 Instantiation as interactive explanation

The following set of choices occurs frequently in our transcripts:

Elicit-info: Ask student for the control mechanism for the variable

Convey-info: Inform student that nervous system did not activate yet

Elicit-info: Ask student for the correct value of the variable

This option can be used to generate examples such as the following:

(37) T: � Can you tell me how TPR is controlled?

S: Autonomic nervous system.

T: Yes. And the predictions that you are making are for the period before any

neural changes take place. So what about TPR?

(K10:29�31)

5
In Section 5.2.3, we show that the choice of semantic form does not determine the eventual surface
syntax.

133

This text is an example of an interactive explanation, a generalization of Sanders� [1995]

�directed line of explanation� (DLR). An interactive explanation conveys information to

the student using at least one question in addition to the final request for data.

4.6.3 Instantiation as explanation

If the student finds interactive explanation too difficult, the tutor can try a less

interactive option. A natural option is for the tutor to give an explanation, then ask a

question to make sure the student understands. This choice could be described as follows:

Convey-info: Inform student that variable is neurally controlled

Convey-info: Inform student that nervous system did not activate yet

Elicit-info: Ask student for the correct value of the variable

The following excerpt illustrates this alternative.

(59) T: � Remember that TPR is neurally controlled and that we�re discussing

what would happen in the DR period. That�s before there are any reflex

changes. Try again.

(K7:23)

The following example uses the same instantiation of the schema, but the semantic forms

have been amalgamated into one sentence. The final question has been left in a semi-

explicit state, something which is acceptable in a human-to-human conversation but not in

CIRCSIM-Tutor.

(60) T: If CC is under neural control and we�re talking about the period before any

change in neural activity then CC�

(K11:57)

The following example is similar, except that the order of the first two semantic forms has

been switched.

134

(61) T: Remember, we�re dealing with the direct response period. That�s before

there are any reflex responses. TPR is a neurally controlled variable. Try

again.

(K6:23)

Although CIRCSIM-Tutor always requests an explicit value for each variable, the human

tutor is not so restricted. Thus the human tutor could instantiate all three semantic forms

with convey-info, as follows:

Convey-info: Inform student that variable is neurally controlled

Convey-info: Inform student that nervous system did not activate yet

Convey-info: Inform student of the correct value of the variable

This set of implementation choices creates monologic explanations such as the following:

(62) T: � But more to the point, both TPR and CC change only when the reflex

alters the activity in the autonomic nervous system. And since DR is before

the reflex can act, both must be unchanged in DR�

(K13:57)

This type of explanation is relatively uncommon because our human tutors prefer to elicit

the value of the variable even if the rest of the schema has been instantiated in a

non-interactive form. In the following similar example, the human tutor follows up the

explanation with a yes/no question. We do not need to generate this option because yes/no

questions do not provide useful information to a mechanized tutor.

(63) T: HR and CC are unchanged because they are neurally determined variables

and the nervous system isn�t involved in DR. OK?

(K35:114)

4.6.4 Instantiation as hint

Another option is to instantiate one of the first two semantic forms as nil, resulting

in a setup such as the following:

135

Nil: (No text generated here)

Convey-info: Inform student that nervous system did not activate yet

Elicit-info: Ask student for the correct value of the variable

This option is used to generate a hint for the student. In particular, this instantiation

generates a CI-hint
6
in the terminology of Hume et al. [1993]:

(64) T: � Remember that we�re talking about what happens before there are any

neural changes. Now what do you say about TPR?

(K11:51)

The following example is similar, except that the open-ended question is more suitable for

a human tutor than for CIRCSIM-Tutor.

(65) T: � Now I would remind you that you are predicting what would happen

before there are any reflex changes. Would you like to change any of your

predictions?

(K31:56)

The following example combines a question-less hint with a pseudo-diagnostic question.

(66) T: But remember that we�re dealing with the period before there can be any

neural changes. How can CC go up if it�s under neural control?

(K10:43)

4.6.5 Another schema for correcting the first neural variable

The following schema is an alternative to the correct-neural schema introduced in

Section 4.6.1.

Correct-neural-alt (?v):

PQ: ?v is neural

?v is not the primary variable

Ensure-student-knows (has-mechanism(?v, neural))

Ensure-student-knows (current-stage(DR))

Ensure-student-knows (has-value(?v, DR, no-change))

6
A CI-hint is so named because it �conveys information.�

136

In this schema, the middle semantic form conveys the idea that the student is currently

working on the DR phase instead of giving any information about that phase. More

research is required to identify the conditions under which this schema is preferred.

The following example, which can be analyzed as an instance of correct-neural-alt

where all of the semantic forms except the middle one are realized as nil, provides an

extremely concise example of a human-generated hint.

(67) S: TPR increases.

T: This is DR.

(K31:159�160)

The following example can be analyzed two ways. It can be considered either as an

example of convey-neural-alt, where the second sentence includes the content of both the

middle and final semantic forms, or as an example of correct-neural, where the phrase �in

DR� is part of the realization of the final semantic form. Further research is required to

know which interpretation is more useful for mechanized text generation.

(68) T: TPR is a neurally controlled variable�Then what value would you assign

to TPR in the DR?

(K3:43)

4.6.6 Building complex corrections

In this section we examine what happens when the student gives a wrong answer to

one of the intermediate questions in the correct-neural schema. The first example starts

with an instantiation of convey-neural-alt as an interactive explanation:

Elicit-info: Ask student for the control mechanism for the variable

Convey-info: Inform student that the current stage is DR

Elicit-info: Ask student for the correct value of the variable

After the student gives an incorrect value for HR, the tutor drops the convey-neural-alt

137

schema and retries using convey-neural instead. Only the middle form of convey-neural is

instantiated. The first form is omitted because the tutor has just received direct feedback

that the student knows that information, and the final form is omitted because turn-taking

rules can be used in a human-to-human conversation. Thus the retry could be considered a

hint.

(69) T: I need to remind you. Things work according to the way that they are

controlled. How is HR controlled?

S: Autonomic nervous system.

T: This is the DR. How will HR change?

S: MAP changing affects baroreceptor reflex changing, affecting HR.

T: In DR no reflex changes have occurred yet.

S: So HR will not change.

T: Correct�

(K34:180�186)

In the next example, the tutor starts with a completely interactive variant of the interactive

explanation pattern:

Elicit-info: Ask student for the control mechanism for the variable

Elicit-info: Ask student about the activation of the nervous system

Elicit-info: Ask student for the correct value of the variable

When the student answers the second elicit-info with a nonsense answer (�diastolic

relaxation�), the tutor retries that goal using convey-info. Since the question answered

incorrectly is an intermediate question, this type of retry is a feasible alternative. When the

failed question is the final question of an attempt, i.e. asking the student for the value of a

variable, such a retry would result in giving the student the answer. In that case the tutor

might prefer other options, such as retrying the whole correct-neural schema or switching

to a different schema.

(70) T: � What input to the heart causes CC to change?

S: Sympathetic stimulation. (i.e. sympathetic nervous system)

138

T: Right. Does sympathetic stimulation change during the DR phase?

S: Does DR mean diastolic relaxation?

T: No! The DR occurs during the period of time before any reflex response to

the perturbation of the system takes place.

S: Oh, if I understand the question, I don�t think that sympathetic stimulation

acts during DR.

T: So, predict what change will occur to CC during the DR period.

(K16:39�45)

In the following example, the tutor gives a negative content-oriented reply, then retries the

question. The student gives the correct response (�by neural control�) the second time,

permitting the tutor to continue with the correct-neural schema.

(71) T: In what way is CC controlled?

S: It�s controlled by the volume of blood in the compartment and affected by

inotropic changes.

T: Not quite. Changing the volume changes the performance of the muscle via

the length/tension relationship, i.e. Starling�s Law. Changing the inotropic

state of the myocardium is what we mean when we refer to CC. By what

mechanism is CC controlled, then?

S: By neural control?

T: So how will CC be affected in this DR period?

(K31:60�64)

4.6.7 Correcting subsequent neural variables

For the second or third erroneous neural variable, the tutor tends to refer to the

logic just explained instead of repeating it. Even version 2 of CIRCSIM-Tutor, which does

not take context into account under most circumstances, recognizes repeated neural

variables and generates a shorter dialogue for subsequent ones. The following schema,

which always generates an interactive explanation, can be used to generate the text used

by our human tutors.

Correct-repeated-neural (?v):

Elicit-info (has-mechanism(?x, neural))

Elicit-info (has-value(?x, DR, no-change))

139

This schema can be instantiated in two ways, depending on whether or not the concept �in

DR� is explicitly represented in the text generated by the second semantic form. Below is

an example of each.

(72) T: � What other variable is neurally controlled?

S: CC.

T: Super. So what value would you assign it?

(K4:31�33)

(73) T: � What other variable is under neural control?

S: TPR.

T: Right. So how will it be affected in DR?

(K5:35�37)

Human tutors can combine these goals into a single turn, resulting in concise pieces of

tutoring such as the following:

(74) T: � What other neurally controlled variable is there and how is it affected?

(K6:25)

(75) T: � While we�re on the subject, what other variable is under neural control

and how will it be affected in the DR?

(K5:33)

By using suitable prerequisites and realization rules, the schema given in Section 4.6.1 for

correcting the first neural variable could be generalized to cover all neural variable

corrections. Whether that option is more convenient is a programming issue.

4.7 Correcting non-neural variables

4.7.1 Getting a value via the use of determinants

Version 2 of CIRCSIM-Tutor used the schema below to correct all non-neural

variables. Although it is an effective teaching strategy, using it as the sole teaching

strategy and realizing it with the same words every time makes text generated by version 2

sound tedious and repetitive, and deprives the student of the deeper learning experience

140

which would be provided by a richer conversation.

Correct-via-main-determinant (?v):

PQ: ?v is not neural

?v is not the primary variable

Get-main-determinant (?v, ?determinant)

Get-relationship (?v, ?determinant)

Get-value (?v)

The following text shows an example of this pattern as implemented in version 2.

T: What determines SV? (i.e. main determinant)
S: CVP.

T: And what is the relation between CVP and SV?

S: Direct. (i.e. directly proportional)
T: So what is the correct value of SV?

S: It decreases.

T: Yes, it must decrease.

(CIRCSIM-Tutor v. 2
7
)

Although the ideas behind this pattern permeate the transcripts, this pattern itself is

relatively rare because other options can be used to generate more concise text. For

example, the tutor can switch to a deeper domain model (Section 4.10.1), use the show-

contradiction pattern (Section 4.5.4) or use the move-forward pattern described in the

next section. These options generate more cohesive conversation because they permit the

tutor to make use of the values of variables obtained in earlier steps instead of requiring

the tutor to ask again for the value of a variable which has already been mentioned. The

use of move-forward is especially pronounced in the early transcripts, where, due to the

protocol in use, it was likely that the desired determinant had just been mentioned.

A more general pattern for correcting a non-neural variable is given below. In the

pattern above, the tutor asks the student to identify the main determinant so that only one

7
This text was generated in the RR stage of problem 3 (CC decreases) by giving correct values for all
variables except SV.

141

determinant need be evaluated, while in the following pattern, the tutor requests the value

of all the determinants and then asks the student how to combine them. The knowledge

used by the TIPS planner includes representations of potential dialogues rather than simply

representations of the rules so that alternatives like these can be made available.

Correct-via-determinants (?v):

PQ: ?v is not neural

?v is not the primary variable

Ensure-student-knows (has-set-of-determinants (?v, ?s))

For each determinant ?d in ?s

Teach-info (has-value(?d, DR, ?val))

Derive-value-from-determinants (?v, ?s)

The form teach-info is used instead of ensure-student-knows to ensure that some text will

be generated even if the values of the determinants had been discussed earlier in the

conversation. Like the preceding pattern, this pattern is rarely found in the transcripts in its

entirety, but the lower-level routine derive-value-from-determinants is sometimes invoked

by the tutors. The following two examples illustrate three instances of derive-value-from-

determinants.

(76) T: So since CC (one determinant) is unchanged and the other one increased,

what must happen to SV?

(K28:10)

(77)→ T: Well, you made predictions about how RAP and CC would change as a

result of the pacemaker malfunction. What do you think will happen to

SV?

S: It doesn�t change.

→ T: Well, you predicted that RAP would in fact go down and you predicted

that CC would not change. So what happens to SV?

(K14:51�53)

The following example shows how correct-via-determinants can be successful even

though a number of nested subschemata were required before the first subgoal could be

142

satisfied.

(78) T: � First, what are the determinants of RAP?

S: (after several failed attempts)

Then it�s CO.

T: Super! Now since we know how the CO changed, what will the change in

RAP be?

(K30:64�70)

For the variables CO and MAP, instead of asking the student for the determinants,

the tutor has the option of asking for an equation giving the value of the variable. The

equations referred to are CO = SV * HR and MAP = CO * TPR.

4.7.2 Moving forward along an arrow in the concept map

Move-forward is a version of correct-via-determinants which applies when there

exists exactly one determinant, that determinant happens to be the last variable discussed,

and teach-info is instantiated with convey-info. The purpose of move-forward is to change

the topic of conversation from one variable to the next one, following a logical solution

sequence for the problem. In the early transcripts, tutor and student converse after every

variable, which makes move-forward more common than it is likely to be in CIRCSIM-

Tutor. The following excerpt shows a typical example of move-forward.

(79) T: � Now when CO falls, how does that affect RAP?

(K31:84)

The following example shows two invocations of move-forward, one ending with convey-

info and one with elicit-info.

(80) T: � Since CO goes up early in the response, that will cause RAP to fall.

Now, what will happen to SV?

(K2:32)

143

The following example of move-forward invokes a deeper level of the concept map.

(81) T: When MAP increases, it�s harder for the ventricle to pump blood. So what

would that do to SV?

(K31:80)

In the examples above, the tutor identifies both variables on the solution path. In the

example below, the tutor identifies the earlier variable, then requests the second variable

from the student.

(82) T: � Now let�s go back to CO. You said that it would increase. What

variable would that affect?

(K4:35)

In each of the following examples, the tutor uses two instances of move-forward in

succession to move through the concept map.

(83) T: If HR is increased, which variable will be immediately and directly

increased by this change?

S: CO.

T: Right. And if CO is up what will change next?

(K48:62�64)

(84) T: � If SV falls, what parameter would that affect?

S: CO falls.

T: Great. Now, when CO falls, how does that affect RAP?

(K31:82�84)

In the following example, the student responds with both variables and values although

only variables were requested. By accepting this opportunistic response, the tutor avoids

the necessity of requesting the values as a separate step.

(85) T: I�d like you to think about some of the other variables in the table.

Especially variables that are immediately and directly determined by HR�

S: HR increases and CO increases.

T: Great�

(K5:21�23)

144

4.8 Other methods for correcting variables

4.8.1 Primary variable tutoring

The term �primary variable tutoring� refers to tutoring the student about the

identification of the procedure variable (first variable affected), the primary variable (first

core variable affected), and their direction of change according to the rules in

Section 2.4.2. Since these rules are similar to the propagation rules tutored in the previous

two sections, the same or similar schemata can be used to tutor them, although primary

variable tutoring often invokes a deeper level of the concept map. In the following

example, the tutor requests the primary variable and its direction separately. The tutor�s

response includes a positive content-oriented reply (�The vascular smooth muscle��)

which supports the student�s answer.

(86) T: OK, then predict the first variable that would be affected by injecting the

alpha agonist.
�

S: TPR.

T: Sure. The vascular smooth muscle contains alpha receptors. In what

direction will TPR change?

(K32:18�22)

In the following example, the tutor requests the primary variable and its direction at the

same time. After the student gives the wrong direction, the tutor uses a negative content-

oriented reply to hint at the correct direction. In the terminology of Section 4.5.2, the

tutor is supporting the negation of the student�s statement.

(87) T: Begin by predicting the first variable that is affected by the pacemaker

malfunction. And the direction in which that variable will change.

S: HR decreases.

T: No. The pacemaker went from 70 to 120 beats per minute.

S: HR increases.

(K7:15�18)

145

In the following excerpt, the tutor uses a negative content-oriented reply to redirect the

student�s attention. In this example the tutor is denying prerequisites for the student�s

statement to be true.

(88) T: OK, then predict the first variable that would be affected by injecting the

alpha agonist.

S: CC.

T: The myocardium only contains beta receptors and hence can�t respond to

an alpha agonist.

(K32:18�20)

The following example shows a typical construction used by the human tutors. We do not

expect to use yes/no questions in CIRCSIM-Tutor because they do not give as much

information as other types of questions.

(89) S: RAP decreases.

T: Is RAP the first variable that will be affected by the pacemaker

malfunction?

S: No.

T: Then what is the first variable that is changed?

S: HR.

T: And how will it change?

S: HR increases.

(K15:16�22)

4.8.2 Pointing to the answer

According to Hume et al. [1995], the tutor can �point to� the answer as an

alternative to conveying information. Hume et al. call this pattern a PT-hint (PT = �point

to�). The following example shows the frequent usage of this pattern in version 2 of

CIRCSIM-Tutor.

146

T: � What is the correct value of SV?

S: Up.

T: No, SV does not increase.

→ Consider the value of RAP.

What is the correct value of SV?

(CIRCSIM-Tutor v. 2)

This pattern is not common in the transcripts. The following excerpt, where the tutor

mentions a noun without giving information about it, is an example of the pattern.

(90) T: � Think about the effect of the change in MAP.

(K54:2)

The following examples, where the tutor responds with a question instead of a declarative

statement, are also potential examples of this construct.

(91) T: � How about the influence of a change in CO on RAP?

(K11:65, cf. Hume et al. [1995], example 1)

(92) S: Then MAP would increase even more.

→ T: What does the baroreceptor reflex do?

(K31:101�102, cf. Hume et al. [1995], example 9)

4.8.3 Giving the student the answer

Although the human tutors do not like to do it, it is possible to give the student the

answer if further dialogue seems like a waste of time. Thus give-answer is a simple schema

which contains the semantic form convey-info. The following example shows give-answer

used during primary variable tutoring.

(93) T: In this example, the first variable (in the predictions table) to change is

RAP. Its effective change is to decrease (relative to what happens in the

ventricle)�

(K20:98)

4.9 Conveying and eliciting information

This section discusses a number of ways to implement the convey-info and elicit-

147

info forms which are invoked by higher-level schemata and used in addition in content-

oriented replies.

4.9.1 Conveying a definition

There are several kinds of domain knowledge, including definitions, facts and rules,

which can be conveyed to the student by roughly similar methods. Since the knowledge

incorporated in a definition is usually part of a lower-level concept map, it is probably

better to restrict CIRCSIM-Tutor�s ability to use this tactic until it can understand any terms

it introduces. In this section we show several examples of conveying a definition to the

student.

Anatomical and physiological concepts can be defined in a declarative sentence,

sometimes nested inside a remember clause or a similar construct:

(94) T: Remember CO is a measure of the rate at which blood is being taken from

the central venous compartment.

(K33:164)

(95) T: [Alpha receptors] cause an increase in intracellular calcium concentration

and thereby trigger the effects of the sympathetic nerves or whatever cells

have the receptors in their membranes.

(K31:20)

The definition of the DR stage occurs frequently because it is a common way to instantiate

the current-stage subgoal of the correct-neural schema.

(96) T: � DR is defined as the period of time before any reflex activity can occur

and hence before the sympathetic nervous system could change its firing�

(K26:58)

(97) T: � DR is before there are any neural changes�

(K5:39)

(98) T: Reminder, the DR occurs before there are any reflex (neural) changes�

(K3:41)

148

(99) T: � The DR occurs during the period of time before any reflex response to

the perturbation of the system takes place.

(K16:43)

In the following example, the definition is nested inside two enclosing clauses, one for

remind and one for predict. However, from the point of view of CIRCSIM-Tutor, the

predict clause does not contribute to the semantics of the sentence. Thus we may be able

to generate it as an alternative to the options above during lexical insertion without

needing to understand the details of this use of predict. (Of course, we still need predict in

the lexicon for other purposes, such as asking the student to predict a value.)

(100) T: � Now I would remind you that you are predicting what would happen

before there are any reflex changes. Would you like to change any of your

predictions?

(K31:56)

Sometimes, as in the following example, the form of the definition preferred by our

experts violates the semantics of a word as it is usually used in CIRCSIM-Tutor. For

example, although cardiac output is usually a measure, it is equated to a process in the

following excerpt.

(101) T: � CO is a process in which venous blood is transferred to the arterial

tree�

(K2:28)

Two cases where this frequently occurs are the definitions of preload and afterload.

In the following example, the tutor has incorporated a definition and a request for a

value into one sentence.

(102) T: What I was asking is what determines how much blood is ejected from the

heart each time it beats (i.e. the SV).

(K14:49)

149

4.9.2 Conveying a fact

Facts are a second kind of domain knowledge which the tutor may wish to convey

to a student. The following examples show some ways the tutor can convey a fact from

the domain knowledge base.

(103) T: No. [TPR] is neurally controlled. Try again.

(K7:27)

(104) T: Remember, [TPR] is a neurally controlled variable. The reflex is

responding to an increase in MAP in the DR. Try again.

(K7:73)

(105) T: No, [CC] is under neural (sympathetic) control�

(K5:31)

In the following excerpt, the tutor refers to a task-specific fact. The mechanism used is

identical.

(106) T: � We�re talking about what happens before there are any neural changes.

(K11:51)

4.9.3 Conveying a rule

Rules are a third kind of domain knowledge which the tutor may need to convey. By

stating a rule, the tutor is trying to convey one of the underlying goals of the system

directly instead teaching it by example. In the following example, the tutor is trying to

convey rule algebraic-SS from Section 2.4.4.

(107) T: � When you have a situation where a parameter changes in one direction

in DR and in a different direction in RR, usually (not always) the DR

change is greater�

(K33:126)

Although the current protocol does not permit the tutor to control the order in which

variables are predicted (see Section 3.3.2), the tutor can teach the student about the

150

importance of a logical prediction order.

(108) T: � Before we go on, I want to call to your attention something you did in

making your predictions. You predicted a value (change) for RAP before

you knew what the determining variables had done. That�s not possible.

You need to proceed causally in making your predictions�

(K32:64)

The methods in this section can be listed in sequence from most common to least

common as follows:

• Give a definition
• Convey a domain fact
• Convey a domain rule
• Convey a task-specific fact

For text generation, however, what is important is not the relative frequency but the

conditions under which each type of semantic forms is chosen.

4.10 Switching between domain models

4.10.1 Temporarily switching to a deeper domain model

If the student�s response is a step on the correct path, one option is to temporarily

switch to a view of the cardiovascular system which includes the concept just mentioned

by the student. This concept may be a variable from a deeper-level concept map or an item

from a functional model. Once the student understands the concept in terms of the deeper

domain model, the tutor attempts to return the conversation to the core variables, either as

part of the new schema or by returning to the original schema.

In the following example, the tutor wants the answer �nervous system� as the

determinant of TPR. The answer �radius of arterioles� is a step on the correct path. Since

it is not on the top-level concept map, the tutor switches to a lower-level concept map,

151

replacing the goal elicit-info (has-mechanism(TPR, neural)), or its equivalent:

Elicit-info (determines(nervous-system, TPR))

by the two-part schema:

Elicit-info (determines(radius-of-arterioles, TPR))

Elicit-info (determines(nervous-system, radius-of-arterioles)).

The first part of this schema has already been satisfied by the student�s response. By

responding correctly to the second part, the student will have answered the original

question and returned to the top-level concept map, allowing the tutor to continue with

correct-neural.

(109) T: What is the primary mechanism of control of TPR?

S: Radius of arterioles.

→ T: Yes. And what is the primary mechanism by which arteriolar radius is

controlled?

S: Sympathetics. (i.e. sympathetic nervous system)

T: Yes. And we�re dealing with the period before any change in nervous

activity occurs. So what do you think about TPR now?

S: It stays the same.

T: Correct�

(K12:37�43)

The following example is similar.

(110) T: Yes and what variable would [MAP] affect directly?

S: Afterload.

T: Super. And the afterload does what to which variable?

S: Decreases SV.

T: Great. Correct. So SV goes down and as you said, this causes CO to fall.

What effect would this have on RAP?

S: It increases.

(K32:50�63)

In the next example, the student gives a more detailed answer which is incorrect. The tutor

gives the student the correct answer at the same level of detail, stating that size of the

152

arterioles is more important than pressure, then continues as in the previous example,

asking for the determinant of size. The correct answer to this question brings the student

back to the top level of the concept map. Now the tutor can continue with the correct-

neural schema.

(111) T: How is TPR controlled?

S: Besides pressure at the pre-capillary, or arteriole level?

T: TPR is determined primarily by the size of the arterioles. In blood pressure

regulation (our present topic of discussion) how are changes in arteriolar

size brought about?

S: O.K. Autonomic nervous system innervation.

T: Correct. So what direction would TPR change in the DR period?

(K34:68�72)

In the following example, the tutor again wants the answer �nervous system� as the

determinant of CC. The tutor asks a diagnostic question, then chooses a part of the

student�s answer which answers the original question. This allows the tutor to return to

the top-level concept map and use derive-value-from-determinants to elicit the value of

CC. In CIRCSIM-Tutor, we only generate such questions when we expect to be able to

understand the answer.

(112) T: Do you know what physiological inputs determine [the value of CC]?

S: Calcium.

T: How does calcium determine contractility?

S: A direct ratio of the amount of calcium to excite the cardiac muscle fibers.

Along with the sodium channels and [the sympathetic nervous system].

T: You�re right, changing sympathetic inputs to the heart does change

contractility by varying � Now, if CC is determined by the sympathetic

nervous system, what change in CC will occur in DR?

(K44:62�66)

Usually a shift to a deeper model is precipitated by the student, but occasionally it is

the tutor who shifts to a new model. In the following example, the tutor introduces deeper

information and uses it as the basis of a question, then uses the correct answer to the

153

question to return at the top level.

(113) S: RAP increases.

T: RAP is correct. But �increase� is a problem. Let me remind you about the

vascular function curve�
�

T: The vascular function curve relates CO and central venous pressure.
8

�

T: So when CO increases, what happens to central venous pressure?

S: It decreases.

T: Great. What variable has the same value as central venous pressure?

(K6:28�35)

In the following example, the tutor decides to move to a functional model after failing to

elicit the determinants of RAP. We label the marked statement as referring to a functional

model instead of a deeper-level concept map because it describes an abstract concept, any

compliant structure, rather than a specific anatomical structure. The tutor�s comments

here are part of a larger structure for teaching the relationship of RAP and CO; the rest of

the argument has been instantiated as nil.

(114) S: (gives wrong determinants for RAP)

T: Try to look at it this way. The right atrium is like the end of the venous

system. And the veins are very compliant.
�

→ T: The pressure in any compliant structure is determined by the volume

contained by that structure and the compliance of that structure.

S: Then it�s CO.

T: Super!�

(K30:65�70)

8
This transcript is from a protocol where RAP is a core variable and central venous pressure (CVP) is
not.

154

4.10.2 Moving to a higher-level model

In the previous section, the new schema ended by inquiring about the same variable

as the original schema. If it does not, the tutor must explicitly try to move the

conversation back to the core variable being corrected.

In the following example, the tutor wants to correct the value of SV. Since one of

the determinants supplied by the student is not stated in terms of a core variable, the tutor

must elicit the name of the corresponding core variable before continuing with the outer

schema.

(115) (the beginning of this transcript is missing, but it is likely that the student

said that the determinants of SV are CC and preload right before the

system crashed)

T: To continue, determinants of SV are CC and something related to preload.

Do you know what is meant by preload?

S: Preload refers to the amount of blood available in the left ventricle before

systole.

→ T: Sure. What variable in our list reflects this?

S: RAP.

T: Right. And what happened to RAP?

S: It increased.

T: So since CC (one determinant) did not change and the other one increased,

what must happen to SV?

S: It must increase.

(K28:3�11)

The following example is similar. The tutor accepts the student�s response but immediately

directs the conversation back to the corresponding core variable.

(116) S: Determinants for SV are CC and filling of the left ventricle.

T: Right. What parameter here reflects filling of the left ventricle?

(K27:65�66)

In the following example, the tutor restates the student�s statement with the aim of moving

the conversation back to the top level. In each of these examples, from a linguistic point of

155

view, the tutor�s utterance might be considered a response, but from a pedagogical point

of view we consider it to be new material since it serves the goal of returning the

conversation to the top-level concept map.

(117) T: � How is TPR controlled?

S: Sympathetic vasoconstriction.

→ T: Right. TPR is primarily under neural control�

(K11:49�51)

4.11 Generation of previously observed phenomena

Previous students of the CIRCSIM-Tutor transcripts have analyzed them with respect

to a variety of phenomena. These phenomena include surface grammatical and lexical

phenomena as well as psychological criteria such as the analyst�s belief about what the

student is thinking. For text generation purposes, we must define semantic forms which

represent the tutor�s intentions. Thus surface phenomena cannot be used as a basis for

analysis, as a particular surface phenomenon may be generated by more than one semantic

form.

An additional disadvantage of using surface phenomena to classify tutorial patterns

is the fact that text can undergo a variety of transformations before it is uttered. In the

mechanized tutor, these transformations are part of the turn planning step. Since multiple

semantic forms may have been combined to generate one sentence, an underlying

representation must be posited if we are to have an accurate representation. For example,

a hint generated by convey-info and a request for a new value of a variable generated by

elicit-info may be combined into one surface question. Unless we have posited an

underlying representation, results obtained by counting instances of surface structures

cannot give accurate data about the planning process. In this section we examine tutorial

phenomena defined by others and demonstrate how we would generate the same text.

156

4.11.1 Summaries

The term summary has been used to describe a number of distinct phenomena. In

the most common case [Sanders 1995], the term is used to refer to a portion of the

solution to a procedure, as in the following example:

(118) T: � So let�s see where we are. HR went up and therefore CO went up. CO

went up and therefore MAP went up�

(K3:31)

To generate a text like this, we use a series of instances of convey-info, one for each step

in the problem-solving procedure. To obtain a summary, each instance must be

instantiated as a declarative sentence. If some of them are instantiated as questions, we

obtain an interactive explanation, as shown in the example below. Thus this type of

summary is a special case of a more general review mechanism.

(119) T: And if HR goes down, what happens to CO?

S: CO decreases.

T: And if CO is down, what happens to RAP?

S: RAP will increase.

T: And if RAP is increased, what will happen to SV?

(K36:96�100)

Hume et al. [1995] also use the term summary to describe the statement of a rule, as in the

following example.

(120) T: � Let me summarize. There are three neurally controlled CV effectors:

CC, HR and TPR. If the stimulus that we apply to the system doesn�t act

directly on any of them none of them will change in the DR�

(K34:74, cf. Hume et al. [1995], dialogue 1)

This excerpt occurs at the end of DR for a student who had gotten all of the neural

variables wrong. The tutor had already corrected each of the neural variables individually.

In the following example, the term summary is used to describe a regular

157

instantiation of one of the subgoals of correct-neural preceded by the cue phrase �we just

said that ��.

(121) T: � But we just said that were dealing with a period in which there are not

yet any changes in neural activity�

(K34:58, cf. Hume et al. [1995], example 6)

Finally, the term summary can refer to a restatement of previous items mentioned in the

conversation, as in the example below. This mechanism is one we have not studied yet.

(122) T: � Here�s what we know and agree on: CC doesn�t change; MAP

increases�

(K31:76, cf. Hume et al. [1995], example 5)

4.11.2 Explanations

The examples below show three excerpts labeled explanations by Hume et al.

[1995]. We would generate the following example with give-answer.

(123) T: � What happens to central venous pressure when CO increases?

S: (gives a long answer)

→ T: Well you�re partly correct. When CO increases, it does so at the expense of

the central blood volume (venous volume). During that period, CO exceeds

venous return. When the venous return finally catches up, CO equals

venous return. However venous return never exceeds CO so the veins

cannot be refilled without reversing the original process, i.e. reducing CO.

(K9:27�29, cf. Hume et al. [1995], dialogue 2)

The next two examples are content-oriented replies, one positive and one negative. They

might also be tabulated as hints.

(124) T: � Now lets talk about your predictions. First, what are the determinants

of RAP?

S: TPR.

→ T: Not really. Try to look at it this way. The right atrium is like the end of the

venous system. And the veins are very compliant.

S: Is it the MAP then?

158

→ T: No. The pressure in any compliant structure is determined by the volume

contained by that structure and the compliance of that structure.

(K30:64�68, cf. Hume et al. [1995], example 4)

4.11.3 �Directed lines of reasoning� (DLRs)

Sanders [1995] defines a directed line of reasoning as a standard series of questions

which the tutor uses to teach a specific point. If the student does not give the expected

response at any point in the series, the tutor must abandon the line of reasoning and try a

different tactic.

From a planning perspective, a DLR or interactive explanation is generated when

some or all of the subgoals making up a schema are realized as questions. With respect to

text generation, there is no difference between the recurrent two- and three-turn

sequences which are among the human tutors� most frequently used mechanisms and the

longer and more complex ones which are usually labeled DLRs.

The following example can be generated from a series of instances of move-forward

where each instance has been realized as a question.

(125) T: � Now considering that the first things that are going to change are the

things that are under neural control, which of these determinants would be

the first affected?

S: CC.

T: Of course! And in what direction?

S: Decrease.

T: Right again. And how would that affect SV?

S: Decrease.

T: Sure. And what effect would that have?

S: Decrease CO.

T: Yes again. Then what?

S: MAP decreases.

T: Yes, again. And in this regard it is MAP that is regulated by the

BAROreceptor reflex. That�s why it�s called that�

(K12:65�74, cf. Hume et al. [1995, example 3],

also cited by Sanders [1995, p. 94])

159

4.11.4 Hints

Hume et al. [1995] define a hint as any response by the tutor after the student gives

an incorrect answer to a question, unless the tutor gives the correct answer. This

definition, which includes phenomena which can be cross-classified as summaries,

explanations, interactive explanations and negative acknowledgments, is much broader

than the everyday use of the word �hint.� The phenomena classified as hints by this

definition can be generated by almost any combination of semantic forms. For example,

Hume labels the marked turn below as a CI-hint (CI = �convey information�):

(126) T: How would HR and CC be DIRECTLY AFFECTED by the administration

of the alpha agonist?

S: Would the heart rate decrease because it is not getting enough oxygen

because the coronaries are constricted?

→ T: No, the local metabolic control of the coronaries is more powerful than the

neural vasoconstriction that the alpha agonist is producing. HR and CC are

determined by the nervous system. In DR all neural effects haven�t

happened yet, so predict what will happen to them.

(K35:102�104, cf. Hume et al. [1995], dialogue 3)

We would generate this turn using the following series of semantic forms:

• Negative acknowledgment: �No.�

• Rebuttal: �the local metabolic controls … producing.�

• An instance of correct-neural:
• Subgoal has-mechanism realized using convey-info.
• Subgoal current-stage realized using convey-info.
• Request for value realized using elicit-info.

Dictionary definitions of �hint� depend on terms such as �indirect suggestion� and

�slight indication.� Since such definitions depend on human judgment, it is difficult to use

them to determine which textual phenomena should be considered hints. For example,

should sentences generated by the first two subgoals of the correct-neural schema (�HR

and CC are determined by the nervous system. In DR all neural effects haven�t happened

160

yet�) be considered a hint? They sound like a hint in this context, but if they appeared

alone we might consider them an explanation.

We showed above that many CI-hints can be generated by choosing a variety of

realizations for the semantic form convey-info. CI-hints and PT-hints are generated by

separate schemata; the latter are considered briefly in Section 4.8.2. Sections 4.5.2 and

4.11.2 include examples of hints which appear to belong to the content-oriented reply

section of the turn.

4.11.5 Negative acknowledgments

Spitkovsky [Spitkovsky 1992; Evens et al. 1993] identifies ten categories of

negative acknowledgments. According to his categorization, the term �negative

acknowledgment� includes any utterance where a hearer could infer the tutor�s belief that

something the student said was incorrect. This definition is too broad to be useful for text

generation. We only want to label text as a negative acknowledgment if that was the

tutor�s direct intention.

Two of Spitkovsky�s cases are generated as negative acknowledgments in our

classification. In the following examples, one negative acknowledgment has been realized

as a particle and the other as a complete sentence.

(127) T: Do you know a formula that gives you a deterministic statement about

MAP?

S: Diastolic volume minus end systolic volume.

→ T: No, that would tell you stroke volume.

(Spitkovsky [1992], category 1)

(128) S: � because your body always needs the same amount of blood with

oxygen.

→ T: Well, first of all, what you said isn�t really correct.

(Spitkovsky [1992], category 2)

161

In the following two examples, the tutor uses a negative content-oriented reply to correct

something the student has said.

(129) T: (asks which parameter student will predict next)

S: SV.

→ T: In order to predict a parameter, you have to have predicted its

determinants�

(K25:20�22, cf. Spitkovsky [1992], category 3)

(130) T: What does CO do to the volume of blood in the central venous

compartment?

S: It�s increasing it.

→ T: It�s increasing it? It seems to me that every time the heart beats, it�s pulling

a stroke volume of blood out of the central venous compartment.

(Spitkovsky [1992], category 5)

In the following two examples, the tutor wants to question something the student has said.

We would generate the first as a pseudo-diagnostic question and the second using the

show-contradiction schema.

(131) T: Well, what is the reflex attempting to do?

S: It�s attempting to lower HR, I would imagine back to normal.

→ T: Is it HR that�s under control?

(Spitkovsky [1992], category 6)

(132) T: You predicted that CO would stay the same. You predicted TPR would go

up. You predicted MAP would stay the same. Is that possible?

(Spitkovsky [1992], category 7)

The following excerpt shows a diagnostic question. We generally avoid generating open-

ended questions such as this one because of the burden they place on the input

understander.

(133) T: What did you predict CO would do?

S: I would say it wouldn�t change.

→ T: Why do you say that?

(Spitkovsky [1992], category 8)

162

In the following case, the tutor gives the student the answer rather than continuing to

explore the question. Although the give-answer schema most often occurs in conjunction

with an explicit negative acknowledgment, it need not.

(134) T: Do reflexes fully compensate for a disturbance?

S: I don�t know. That�s what I was predicting, but maybe not.

→ T: They do not.

(Spitkovsky [1992], category 10)

The final example shows the motivation for generating text a turn at a time in the

mechanized system instead of one semantic form at a time. In this example, the pressure

has two determinants. The tutor�s response could be generated by a mixed

acknowledgment followed by an elicitation of the missing determinant. In this example,

the tutor combined these semantic forms to generate the concise response shown.

Equivalent but less concise responses would include combining the two forms as in �What

is the other determinant?� or uttering separate sentences, as in �There is a second

determinant. What is it?�.

(135) T: What determines the pressure in the central venous compartment?

S: The amount of blood that�s in there.

→ T: And?

(Spitkovsky [1992], category 9)

4.12 Problems with cooperative conversation

A cooperative conversation can be defined as a conversation where each speaker

has goals to achieve and a plan to achieve them. This definition distinguishes a cooperative

conversation from one where one agent has a goal and a plan to achieve it, and the other�s

job is mainly to go along with the plan.
9
A fully cooperative conversation can be compared

9
The subordinate agent is still being cooperative in the sense of Grice [1975].

163

to two children building a tower of blocks together, as opposed to one child telling the

other what to do. In the cooperative case, neither may be able to predict the shape of the

resulting tower.

Most conversations between humans and computers are led by one party or the

other. For example, in a database front-end or an ITS used for exploring a topic, the

human user is likely to be asking questions, and the program is just answering. Conversely,

in an advice-giving system or a program such as an automatic teller machine, the program

leads and the human�s job is to respond. Although some programs, such as a database

system which uses forward reasoning, may appear to be contributing actively to the

conversation, such a conversation is not in fact a plan-based activity.

Many human-to-human tutoring sessions are also mainly led by one party or the

other. In this regard, one might contrast our experimental setup, where the tutor has an

agenda to fulfill, with the tutoring sessions described by Fox [1993], where the student

chooses the agenda for the tutoring session.

Although many researchers have studied multiple-agent conversations, it is not yet

feasible for a broad-coverage ITS to deal with the situation where both entities have plans.

In addition there is the increased difficulty of understanding exchanges begun by the

student. In the absence of a cooperative conversation model, the need for plan recognition

or general student initiative processing does not arise.

The following conversation fragment shows some examples of cooperative

phenomena which are outside the range of our model.

(136) T: What other variable is under neural control primarily?

S: CC?

T: Yes. You predicted that it would go up. Still feel that way?

S: Yes.

→ T: But remember that we�re dealing with the period before there can be any

164

neural changes. How can CC go up if it�s under neural control?

S: (explains how he/she believes CC can go up using terms from deeper

concept map)

T: (attempts to deal with student�s confusion)

Do you see the difference?

S: No, this concept is hard for me to grasp.

T: (explains further) OK?

→ S: Is increased calcium the only thing that can increase contractility?

T: Yes.

S: OK. So would it be accurate to say that (asks a follow-up question)?

T: Yes and (answers follow-up question). OK?

S: OK.

T: So what�s your prediction of CC in the DR?

(K10:39�53)

In the first marked statement, the tutor encourages the student to give an explanation in

terms of a deeper-level concept map via an open-ended question. Starting with the second

marked statement, the student takes the initiative, referring to a concept mentioned in the

answer to the earlier question and which is now in the shared mental model of tutor and

student.

The following excerpt shows some additional examples.

(137) T: � Can you tell me how TPR is controlled?

S: Autonomic nervous system.

T: Yes. And the predictions that you are making are for the period before any

neural changes take place. So what about TPR?

→ S: I thought TPR would increase due to higher flow rate through vasculature.

T: You just said that the primary control over the TPR was via the autonomic

nervous system. The autonomic nervous system activity would not have

had time to change yet in the DR period.

→ S: OK. I was thinking about TPR intrinsically and extrinsically. So the

autonomic nervous system would affect the system extrinsically and control

it but wouldn�t there be more friction on the fluid going through the tube?

T: TPR is a function of the extent of contraction of the vascular smooth

muscle. That determines the vascular radius, present in the resistance

equation for each blood vessel as an inverse fourth power function. Sure,

increasing the flow by increasing the pressure gradient would occur but the

165

calculated TPR wouldn�t change.

S: OK.

(K10:29�36)

CIRCSIM-Tutor can handle a student response like the first marked example. Although we

cannot make use of the explanation given by the student, the human tutor does not make

use of this information either. The second marked example is different. Understanding the

student�s response is beyond the state of the art in natural language understanding.

Although a program could be taught to interpret this statement, it is not currently possible

for a system to understand this level of complexity on a general basis. There are two

principal reasons for this difficulty. One is the abstract nature of the phrase intrinsically

and extrinsically, a meta-statement which refers to explanations which will occur later in

the discourse. The other problem is lining up referents for the abstract physics in the last

sentence. The human tutor knows that the student is considering blood in the peripheral

arterial system as an instance of a fluid in a tube and uses this information to form a

response. Since the mechanized tutor cannot understand this statement, we are obliged to

come up with other ways to generate a useful response.

This example is relatively easy for expert human tutors since they can understand the

student�s erroneous ideas. CIRCSIM-Tutor will have even more difficulty when the

student�s language is logically confused or does not map well into the mental model used

by the program. Borchardt [1994] demonstrates the difficulties of understanding causal

reasoning even when the use of natural language is not an issue. Even in the tutor-led

conversations which we expect to conduct with CIRCSIM-Tutor, we can reduce the burden

on the input processor by using short-answer questions instead of open-ended ones and by

ending turns with explicit questions instead of relying on the student�s ability to follow

turn-taking rules. This topic is discussed further in Section 5.3.7.

166

Chapter 5
Architecture of the Discourse Planner

What is the real function, the essential function,

the supreme function of language? Isn�t it

merely to convey ideas and emotions?
�Mark Twain

This chapter describes an architecture for the TIPS text generator which will enable

CIRCSIM-Tutor to generate conversations based on the model developed in the last

chapter. In Section 3.2 we looked at the shortcomings of CIRCSIM-Tutor v. 2 and what

would be required to ameliorate them. In Chapter 4 we looked at empirical data from

transcripts of expert tutors. In Chapter 1 we looked at earlier work in text generation and

the design of ITSs. In this chapter we pull this information together to design a system

which will be a qualitative advance over previous work. A detailed set of goals for v. 3 is

CIRCSIM-Tutor is listed in the Introduction.

The discourse planner contains two main components, the tutorial planner and the

turn planner. We begin this chapter by describing the two principal knowledge

representations used in the planner, the plan operators which represent the schemata

isolated in Chapter 4, and the semantic forms which are the intermediate representation

between the tutorial planner and the turn planner. We describe the architecture of the

planner, including the control flow of the system and the function of each component. We

give examples of knowledge representation and control flow for both normal and

exceptional cases.

167

5.1 Representation of tutorial knowledge

5.1.1 Conceptual overview of the planning process

In the previous chapter, we abstracted textual schemata from the discourse of expert

tutors. In this chapter, we demonstrate how to generate dialogues which are structurally

similar to those in Chapter 4. Each schema is represented as a plan operator. In this

section we show how these plan operators can be used to move from an analysis of the

tutoring situation to a decision about text to be uttered.

The following decisions must be made for each turn to be generated by the tutor.

• Choice of schema
• Choice of level of interactivity
• Choice of pragmatic, syntactic and lexical elements

In choosing the correction schema, the tutor can use any available information about the

tutorial situation. A list of potentially relevant factors is included in Section 5.3.4. These

factors must be stored in the student model for future reference. Note that a schema might

do something simpler or more complicated than teaching one concept. For example, we

might know the correct thing to say to the student at a particular point in the conversation

without being able to give the concept a meaningful name.

There is an intimate relationship between the knowledge we use to make

instructional planning decisions and the student model. If our discourse plans were directly

related to the concepts we wanted the student to learn, such as the fact that neural

variables don�t change in the DR stage, we would need to keep track of whether or not we

had taught this concept or believed that the student has learned it. But our schemata

describe ways of teaching content rather than the content itself. As a result, it is more

important to keep track of which discourse mechanisms we have used and how often. This

168

method has the additional advantage of giving us information which is useful for

increasing the variety of our language. It also permits us to rely more on real knowledge

about the student, e.g. the historical record of the student�s productions, rather than on

postulated concepts such as student difficulties, which can only be inferred from the

student�s productions.

Once a correction schema is chosen, planning continues until enough primitive

semantic forms have been generated to complete the first turn. At some point during this

process it is usually necessary to choose the degree of interactivity desired. An abstract

semantic form such as S-knows or T-teaches can be realized using a predicate such as

T-conveys, which generates non-interactive text, or with a predicate such as T-elicits, if

more interactive conversation is desired. For example, Section 4.6.1 describes the standard

schema for correcting neural variables. Sections 4.6.2, 4.6.3 and 4.6.4 describe the

instantiation of that schema to form an interactive explanation, a monologic explanation

and a hint, respectively. Although our domain experts prefer active plans involving a lot of

questions, if the student is not responsive they may switch to a plan involving more

explanations. Note that if a correction schema uses more specific semantic forms instead

of the abstract ones used above, it may not be possible to develop multiple variations at

this stage. This may be appropriate when attempting to model specific discourse

phenomena used by our expert tutors.

Finally, we must determine the surface realization of the turn. The decisions to be

made here are somewhat but not completely related. Although we describe this process as

a series of sequential choices for ease of explication, it could be implemented in a variety

of ways, varying from a close analogue of the description given here to a constraint

satisfaction system. First we must decide how to combine the chosen semantic forms into

169

sentences. For each sentence we must decide what syntactic form to use: declarative,

direct question, indirect question or imperative. In Section 5.2.3 we show that this

decision is independent of the decisions made in the previous step about the level of

interactivity. The following decisions lead step by step toward the creation of a surface

form for the sentence: choosing a primary verb and argument structure, choosing lexical

items, and creating a grammatical sentence.

Of course, students do not necessary respond the way we expect them to.

Sections 5.3.5 and 5.3.6 describe methods for changing the agenda when an unexpected

student response occurs.

5.1.2 Motivation for the use of schemata

A major decision which must be made in any text generation system is the tradeoff

between the derivation of forms from intentions and the use of precompiled forms such as

schemata. Schemata are a logical representation for CIRCSIM-Tutor because they provide a

natural model for the patterns identified in Chapter 4. Schemata provide a straightforward

and legible way to encode the tutor�s goals. They provide a method of connecting our

knowledge about pedagogy, i.e. �what to say when,� with our knowledge of discourse,

i.e. �how to say it.� Since having a coherent argument is one of the factors which

contributes to coherence in text, the use of schemata also helps to insure coherence in the

generated text.

In addition, the schema-based approach offers several more specific advantages for

CIRCSIM-Tutor. First, it allows us to control what multi-turn tutoring patterns will look

like in the generated conversation. Without the use of schemata, we could not easily

guarantee that we could generate the patterns identified in Chapter 4. Second, non-schema

based discourse generation rules to ensure coherence in dialogues and other multi-

170

paragraph texts have not yet been developed. Third, the pedagogical knowledge needed to

derive the desired tutorial patterns from domain knowledge alone is not available. As all

experienced teachers know, there is a gap between knowing how to solve a problem in a

domain and knowing how to teach another person to do so. Finally, schemata require

significantly less processing time than other approaches. The use of a schema-based

approach is a basic difference between our work and the work of such authors as

Chu-Carroll and Carberry [1995], Smith [1992], Horacek [1992], and Moore [1995].

Figures 5.1 and 5.2 show logical derivations of the value of a neural variable and a

non-neural variable respectively, using the rules proposed in Chapter 2. These diagrams

demonstrate several reasons why some form of discourse knowledge must be represented,

i.e. why domain knowledge does not suffice for knowing how to teach something. First,

many of the proof steps do not involve cardiovascular physiology at all, but deal with

mathematical calculations such as the definition of shortest path. Second, not all of the

proof steps shown are equally important for pedagogical purposes. For example, the

concept we want to impress on the student is the fact that neural variables don�t change in

DR. If we tried to derive our language directly from these diagrams, we would clutter up

this basic statement with extraneous clauses like �� unless it�s primary.� Last but not

least, there are many ways to teach the student about the concepts represented in these

diagrams besides following the proof step by step.

The use of schemata in CIRCSIM-Tutor avoids many of the disadvantages which have

been associated with schemata in the past. First, since the primitives of our system are

semantic rather than syntactic forms, the use of schemata does not unduly constrain the

eventual surface structure. Second, since our planner can switch schemata whenever the

student responds in an unexpected manner, the use of schemata does not constrain our

171

pedagogical flexibility. Third, our schema syntax is flexible enough to encode the tutorial

patterns without difficulty. Finally, since our schemata are encoded as plan operators, each

schema can only be used in situations where its prerequisites are satisfied. Thus we can

restrict the application of schemata to appropriate contexts.

5.1.3 Categories of schemata

The schemata needed to implement the model proposed in the previous chapter can

be loosely grouped into four categories. First, schemata are used to control the

hierarchical behavior of the planner at all levels, including the selection and sequencing of

variables, the choice of tutorial methods for each variable, and repetitive low-level

phenomena. Second, a small number of schemata are needed to model the methods used

by our expert human tutors for correcting variables. Since many observed tutoring

phenomena differ only in their degree of interactivity, it is possible to use a single dialogue

Current stage is DR If V is neural and not primary,

then V doesn�t change in DR

(Neural-DR)

If V is neural and not primary,

then V doesn�t change

TPR is neural

If TPR is not primary,

then TPR doesn�t change

TPR isn�t primary

TPR is unchanged

Figure 5.1: Derivation of the value of a neural variable

172

schema to generate any of several tutoring phenomena, such as a hint, an explanation, or

an interactive explanation. On the other hand, since each schema represents one way of

teaching a concept, two ways of teaching the same concept, such as a PT-hint and a

CI-hint, require different schemata. Third, adjunct schemata, such a schema to correct the

student�s language or to differentiate cardiac contractility from the Frank-Starling effect,

are used to recover when a student gives an unexpected response. Finally, low-level

schemata are used to provide multiple ways to instantiate semantic forms. Some examples

of the latter are given below in Section 5.2.2.

5.2 The initial set of semantic forms and their realization

5.2.1 Major domain-independent semantic primitives

For CIRCSIM-Tutor v. 3 the choice of which semantic forms to leave as primitive is

more a practical than a theoretical one. If the tutorial planner does not need to make a

distinction between two concepts, then we can use the same semantic primitive to

represent both. Although some work has been done on abstracting semantic primitives

from the transcripts, this work is far from complete. In this section, we define some major

domain-independent semantic forms which will be needed in CIRCSIM-Tutor regardless of

which set of semantic primitives is eventually chosen.

In the following definitions P(x) represents a proposition about an item in the

domain knowledge base.

1) S-knows(P(x))

This form is used when we want to make sure that P(x) has been

included in the discourse at some point. In a philosophical sense, we

cannot know what the student knows, so we use the operational

definition of asking whether one of the speakers has stated the

concept.

173

2) T-teaches(P(x))

This form is used when we want the proposition P(x) to be taught at

this point even if it has been stated earlier in the conversation. This

form occurs frequently in our dialogue schemata because many

argumentative structures require information to be stated explicitly.

(For example, there is a big difference between �I�m not going� and

�I�m not going because it�s raining,� even if everyone knows that it�s

raining.)

3) T-conveys(P(x))

This form is used to state the proposition P(x).

4) T-elicits(x, P(x))

This form is used when the tutor wants to obtain some information

from the student. The additional argument is used to identify the

desired information.

HR and SV determine CO

If HR has a value

and SV doesn�t,

then value(CO) = value(HR)

SV has no value yet

If HR has a value,

then value(CO) = value(HR)

HR increases

CO increases

If D
1
and D

2
determine V

and D
1
has a value

and D
2
doesn�t,

then value(V) = value(D
1
)

(Prop-2n)

Figure 5.2: Derivation of the value of a non-neural variable

174

These semantic forms are related as follows:

S-knows(P(x)) if P(x) is already known or T-teaches(P(x))

T-teaches(P(x)) if T-elicits(x, P(x)) or T-conveys(P(x))

5.2.2 Domain-dependent semantic forms

Since every plan operator expresses a communicative act, the term semantic form

can be used to describe any plan operator, but the term seems most appropriate for low-

level schemata which do not interact with the student. Such schemata are used to provide

further detail about the language to be generated. For example, the following schemata

show two ways to implement the semantic form introduce-stage.

Introduce-stage (?stage):

State-existence-of (errors)

Point-at (?error1)

Introduce-stage (?stage):

Review-predictions (student-predictions (?stage))

Together these two schemata can be used to generate all of the examples in Section 4.3.2.

The first example below could be generated by the first decomposition above, while the

remaining examples require the use of the second.

T: � There are some errors here. Let�s start with this issue�

(K14:31)

T: � Now let�s review some of your predictions�

(K32:46)

T: � Let�s take a look at some of your predictions�

(K10:29)

T: � let�s talk about your predictions�

(K27:50)

In Section 5.4.3 we will examine the lexical entries necessary to generate these examples.

175

We do not make a formal distinction between plan operators which interact with the

student and those which don�t because many operators can be implemented both ways.

For example, introduce-stage could also be implemented by an operator which asked the

student to identify the next stage.

5.2.3 Independence of semantic primitives and surface structure

The choice of semantic primitive does not constrain the form of the eventual surface

structure. For example, T-elicits(x, P(x)) does not require that the resulting text have the

surface form of a question, but could be instantiated using any of the major sentence

structures:

Interrogative: (direct) How is TPR controlled?

(indirect) Could you tell me how TPR is controlled?

Imperative: Please tell me how TPR is controlled.

Declarative: I�d like to know how TPR is controlled.

Similarly, T-conveys(P(x)) need not be realized only by a declarative sentence:

Interrogative: Did you forget that TPR is neural?

Imperative: Remember that TPR is neural.

Declarative: TPR is neural.

176

5.3 Tutorial planning: Generation of semantic forms

5.3.1 Architecture of the discourse planner

Figure 5.3 shows an overview of the CIRCSIM-Tutor system from the point of view

of text generation. CIRCSIM-Tutor can be viewed as a combination of two coroutines, one

for input processing and one for output. The input processor accepts the student�s input

and converts it into one or more logic forms. It then passes control to TIPS, which

generates a reply to be displayed on the student�s terminal. The TIPS planner is a top-

down global planner which can be considered a variant of a �classical� planner. The

underlying model of TIPS is that responding to the student is a text planning problem, i.e.

�what to say and how to say it.� The top-level goal of the TIPS planner can be expressed

as �generate text in which the tutor guides the student to the correct values of the

variables.�

Input

Processing

Tutorial

Planner

Turn

Planner

Input

as

logic

form

Discourse

goals

Student�s

Turn

Tutorial

History
Tutorial

Agenda

Discourse

Tree

Domain

Knowledge

Base

Tutorial

Knowledge

Base
Tutor�s

Turn

Linguistic

Knowledge

Base

Figure 5.3: CIRCSIM-Tutor v. 3 from the point of view of text generation

177

TIPS contains two primary modules, the tutorial planner, which controls the

conversation as a whole, and the turn planner, which assembles individual turns from the

raw material provided by the tutorial planner. The tutorial planner does high-level

discourse processing, i.e. it implements the larger-scale phenomena seen in the transcripts,

including the dialogue structure and the high-level hierarchical structure (procedure, stage,

variable and attempt) of the tutor�s discourse. Thus the tutorial planner decides �what to

say.� For large-scale argumentative decisions, such as the type of argument to be used for

each variable or when to drop one form of argument and try another, the tutorial planner

also decides �how to say it.� The turn planner decides �how to say it� within a turn, i.e.

how to break the turn into sentences and the lexical and syntactic realization of each

sentence. Since decisions such as pronoun use may require reference to previously

generated turns, the turn planner must be able to access information about previous turns.

Although classical planners are often used for planning monologues, a planner

cannot be used in the same way to plan a dialogue. A dialogue cannot be completely

planned in advance because we cannot predict how the student will respond. Instead, the

architecture required for dialogue planning is similar to that required for playing a two-

person game such as chess. A chess program can plan many moves ahead, but it must be

ready to change its plan based on its opponent�s response. Similarly, the tutor can set up

multi-turn plans, but it must be ready to change those plans if the student does not respond

as predicted.

We plan until the next move has been determined, then execute that move and wait

for the student�s response. We store the tutorial agenda so that when the tutorial planner

gains control again, we can resume where we left off. For efficiency, we do not expand

nodes until they are needed.

178

Each correction mechanism is expressed as a dialogue schema which contains the

raw material for achieving a communicative goal. A dialogue schema contains one or more

turns, each of which comprises one or more subgoals. Each schema is represented as a

plan operator. The prerequisites of the plan operators control the decision-making

process. Some of the conditions tell the tutorial planner when the schema applies. Others

tell the planner which responses on the part of the student are sufficient to continue the

schema. The prerequisites are written in a declarative style, but they utilize a small number

of executable modules, such as for sequencing the variables to be corrected. If the student

gives a wrong or unexpected response, the planner will search for another schema, either

an error recovery schema or an alternative method of tutoring.

The TIPS planner implements the planning process described in Section 5.1.1. A

high-level plan built from operators such as those in Sections 4.3 and 4.4 chooses the

sequence of variables to correct in each stage. In each step of this plan, we plan text for

correcting one variable. Sections 4.6 and 4.7 describe major plans for correcting neural

and non-neural variables respectively. Instructional planning, i.e. deciding which text plan

to use next, is implemented via the prerequisites of the tutorial plan operators.

Section 5.3.4 describes inputs which can be used in prerequisites. Curriculum planning

could also be implemented through the use of plan operators and prerequisites.

The tutorial planner chooses a set of primitive semantic forms to express the

content of the turn. The turn planner turns the semantic forms
1
into a cohesive piece of

text which fits in the context of the previous turns. From the point of view of the tutorial

planner, the turn planner is the plan execution module. The following chapter describes the

1
Where there is no ambiguity, we often refer to primitive semantic forms simply as semantic forms. More
generally, we use the term semantic form to refer to any plan operator, especially one which does not
interact with the student. This type of plan operator is discussed in section 5.1.3.

179

work done by the turn planner to create a coherent paragraph from the set of semantic

forms.

There are two primary reasons to accumulate a turn�s worth of semantic forms

before calling the turn planner. First is the fact that multiple semantic forms might

contribute information to one sentence. Second is the issue of maintaining focus inside the

turn. This requirement implies that we cannot choose the surface structure independently

for each sentence.

We have chosen to use the LONGBOW system [Young 1994], a general-purpose

discourse planner, described in Section 1.2.2, as the basis for the tutorial planner.

Therefore we must build a mechanism to permit intermittent planning with the LONGBOW

system.

5.3.2 Knowledge sources used in text generation

The tutorial planner maintains two knowledge sources and uses two others for

reference:

• Domain knowledge base

The domain knowledge base contains the physiological facts and

rules which CIRCSIM-Tutor deals with. It contains domain-specific

non-discourse based knowledge. In addition to pure domain

knowledge, i.e. the facts and rules of cardiovascular physiology, it

contains domain-specific pedagogical information, such as the

preferred order for correcting variables.

• Tutorial planning knowledge base

The tutorial planning knowledge base or plan library contains plan

operators for the tutorial planner. It contains methods for teaching

each concept and information about when to use each method. This

information is domain-specific, discourse-based pedagogical

knowledge.

180

• Tutorial planning agenda

The tutorial planning agenda contains the currently open goals of the

tutorial planner. It is an agenda, not a stack, because the tutor may

need to change the top goals in order to respond better to the

student.

• Tutorial planning history

The tutorial planning history contains historical information about the

tutorial planning process, i.e. which goals the tutor has selected, how

they were implemented and which input from the student triggered

their use.

The turn planner uses one knowledge source for its own use and one for reference:

• Linguistic knowledge base

The linguistic knowledge base contains syntactic and lexical

information necessary for realizing primitive syntactic forms as text.

• Discourse tree

The discourse tree contains a representation of the generated text. It

is used to ensure cohesion between the turn being generated and

previous turns. The creation and use of the discourse tree are

discussed further in Section 5.4.7.

5.3.3 Goals of the input processing phase

The goal of the input processing phase is to produce a logic form representing the

student�s input. Input processing has four major goals:

• Spelling correction
• Parsing
• Semantic interpretation
• Identifying the goal which the student is addressing

Since the input processor and the text generator communicate only via logic forms, the

choice of methods for parsing and semantic interpretation and the degree to which these

functions are performed in series or in parallel do not affect the text generator.

Furthermore, the input processor does not need to understand everything the student says

181

or understand everything to the same level of detail. Note that we do not have to respond

to every aspect of the student�s input. If the student argues that �X because Y,� we may

have a response which is appropriate whenever the student says �X,� whatever the reason.

As long as the logic form contains enough information for the tutorial planner to choose

an appropriate response, even a full parse may not be necessary.

Most existing software assumes that the human-machine interaction is structured by

one party or the other. Since conversations with CIRCSIM-Tutor are structured by the

tutor, we can assume that the student, as a cooperative conversation partner, does not

have an independent plan. Therefore, instead of a formal plan recognition phase, it is

sufficient to identify the goal which the student is replying to. In most cases, we can

assume that the student�s reply refers to the question most recently asked. Checking the

tutorial agenda is a useful way to identify situations such as the following, where the

student�s reply refers to a higher-level open goal on the agenda:

(1) T: What is the value of CVP?

S: I don�t know.

T: OK, what are the determinants of CVP?

S: Oh, I know! CVP increases�

Although identification of the student�s goal could be accomplished by the tutorial

planner, considering it part of the input understanding phase allows the input processor to

use information about the student�s goals to disambiguate situations in the parsing and

semantic interpretation tasks which would otherwise require additional parsing

knowledge.

Once the student�s input has been interpreted, control passes to the tutorial planner.

182

5.3.4 Knowledge used for making instructional planning decisions

The tutorial planner obtains control once per turn. When it obtains control, it

searches a library of plan operators to determine possible responses to the student�s input.

The plan operators decompose communicative goals into smaller goals until primitive

semantic forms, which are undecomposable, are obtained.

The tutorial planner can use many types of available input to decide which plan

operator to invoke. Here are some possibilities:

• Student�s most recent statement
• Content of the student�s response.
• Classification of the student�s response as described in Section 4.2.2.

• Domain knowledge

Is the variable neural?

• Pedagogical history (non-discourse related)
• How accurate are the student�s original responses in the prediction

table?
• Is the student responding to the tutor�s hints?

• Pedagogical history (discourse-related)
• How many attempts have been made to tutor this variable?
• Are we currently in the middle of a multi-turn plan?

• Discourse history

Although syntactical and lexical information is available and might

occasionally be useful for ensuring cohesion, this information is not in

general relevant to the high-level decision-making being discussed

here.

• Tutor�s personal style

This factor is primarily applicable to the human tutors, as we do not

attempt to formalize this issue for machine-generated text.

• Random choice

We do not always have enough pedagogical knowledge to make a

principled distinction between similar forms. Thus random choice is a

useful aid to encourage the use of a variety of schemata.

183

We maintain a history of our interactions with the student, containing information

about the classification of the student�s input and the goals chosen in response, for use by

the tutorial planner in future planning steps. This history can be used in order to ensure

that we don�t unnecessarily repeat plans from our plan library.

5.3.5 Generating material for a turn: the replanning operators

Sections 4.2.2 and 4.5 describe the structure and content of the turns emitted by our

expert tutors. We recall that a turn has the following sections:

Turn:

Response to student�s previous statement

Acknowledgment of student�s statement (optional)

Content-oriented reply (optional)

New material (optional)

According to the protocol described in Section 5.3.7 below, the turn must end in a

question or request for the student.

The first step in tutorial planning is to decide whether to issue an explicit

acknowledgment. If the potential acknowledgment is negative, this decision must be made

in conjunction with a decision about issuing an explicit rebuttal. If an acknowledgment is

to be issued, the tutor chooses the direction and strength for the acknowledgment and

formulates a semantic form. This semantic form will be the first entry in the buffer to be

passed to the turn planner for this turn.

One of the factors that makes much computer-generated text sound artificial is that

each idea is fully spelled out, whereas human beings are used to using their reasoning

powers to understand a less explicit form of language. Therefore we want to model our

acknowledgments on human tutor behavior, although much work remains to be done on

classifying exactly when and how to acknowledge. For example, when the student makes

184

an error, we know that human tutors give an explicit negative acknowledgment only about

25% of the time, whereas CIRCSIM-Tutor v. 2 always does. It has been suggested that the

tutor is more likely to choose an explicit acknowledgment if the student�s response

contained a hedge (e.g. maybe or I think).

Some examples of discourse knowledge which CIRCSIM-Tutor v. 3 could use

include:

• If the student gives values for two variables and only one of them is

correct, it is often not necessary to give an explicit negative

acknowledgment. If we say �the value of V1 is correct,� the student

will infer that the value of V2 is wrong.

• If we ask the student which variable is affected next and we get a

wrong answer, it is not necessary to give an explicit negative

acknowledgment. Our not following up on that variable is sufficient

indication to the student that an inappropriate variable has been

chosen.

Once the acknowledgment has been determined, we begin to plan the content-

oriented part of the response. If the student has given the expected response, usually the

correct answer, we take the next subgoal from the top of the agenda and begin to plan it.

The planner runs, expanding the node at the top of the agenda during each cycle. When a

primitive semantic form is reached, it is added to the turn buffer. Since a turn ends when a

response from the student is required, the first primitive semantic form to request a

response from the student ends the turn. At that point control is passed to the turn

planner. The agenda is saved for the tutorial planner when it regains control.

If the student did not give the expected response, we can recover in one of three

ways. First, we can retry the tutor�s last goal with a new instantiation. Second, we can add

a goal to the top of the agenda, an operation known as operator preposing

[Wilkins 1988]. If the student�s answer is pedagogically close to the desired answer, we

185

may have a schema to help the student take the next step. If it is linguistically close, we

would like to give the student a better way to state the answer. If we recognize the

student�s wrong answer as indicative of a particular confusion, we might have a correction

schema to respond to it.

Alternatively, we can switch to a schema with more potential. This operation is

known as operator replacement. If we don�t understand the student�s response or there is

no schema available to respond specifically to it, we can drop the current schema and

choose a new one. Our human tutors often use a cue phrase such as �Let me try again� to

mark a new approach. Since schemata can be nested, the agenda contains all higher-level

goals in process as well as the younger siblings of each of those nodes. The latter

represent the future steps of each schema currently in play. If we are not currently

processing the last subgoal of the current schema, its remaining subgoals of the current

schema must be removed from the agenda before a new schema is chosen.

Although we can remove undesired subgoals of a failing schema from the agenda,

we do not want to lose track of turns already uttered in service of the already-satisfied

subgoals. For example, suppose we wanted to terminate a four-subgoal plan after the

second subgoal. As we can�t �unsay� a turn, the already-generated text would still be part

of the conversation and would still be relevant when attempting to increase the cohesion

of later turns. For this reason we must maintain a data structure for the developing

conversation separate from the tutorial planning agenda. This discourse tree is described

in Section 5.4.7.

Since we accumulate semantic forms until we reach a form requiring a response

from the student, the semantic forms comprising a turn may (and probably do) originate in

different schemata. A semantic form may be derived from the acknowledgment, the

186

content-oriented reply or the new material. Within the new material, since planning goals

may be nested, semantic forms may be generated from multiple subgoals at several levels.

5.3.6 Replying to student initiatives

Although we do not handle the most general type of student initiative, we can

handle most of the initiatives we expect students to use. Examples of student initiatives

which we can handle include the following:

• Request for an explanation of something the tutor has said
• Request for a definition
• General request for help

Since users do not expect the computer to be a full conversation partner, we expect the

majority of student initiatives which CIRCSIM-Tutor will encounter to be included in these

categories. The TIPS planner handles these initiatives just as it would handle any other

unexpected response from a student. Depending on which matching plan operators it finds

in the plan library, it can respond in one of the following ways:

• Put the student�s request on the top of the agenda
• Save the student�s request for future consideration
• Add a discourse goal to explain to the student that the request must be

deferred

5.3.7 Pragmatic restrictions on turn design

CIRCSIM-Tutor ends each turn with an explicit request for information from the

student although our human tutors occasionally leave it implicit. There are several reasons

for this decision. First, it improves our chances of getting the kind of answer we want.

Second, the use of explicit questions reduces the chance that the student will say

something which the input processor cannot understand. A third reason for the use of

explicit questions is philosophical. Since the program can never really know whether the

187

student understands the material, an operational definition, such as whether the student

can correctly answer questions, is extremely useful. Finally, people expect to deal with a

computer in a question-and-answer mode. Turn-taking rules work in person-to-person

conversation because we are socialized to understand and use them [Sacks, Schegloff &

Jefferson 1974]. But people have different expectations from a computer [Dahlbäck &

Jönsson 1989].

For example, the human tutor might say �First we need to know how TPR is

controlled,� knowing that the student will respond cooperatively. CIRCSIM-Tutor can

achieve the same communicative intent with short-answer questions such as �By what

mechanism is TPR controlled?� or �What controls TPR?�.

A second pragmatic restriction on turn design is to prefer short-answer questions

such as the ones suggested above to open-ended questions such as �How is TPR

controlled?�. In general, we do not want to ask questions to which we might not

understand the answer. Even if the input processor could understand the reply to a

particular open-ended question, the available domain knowledge is not deep enough to

make use of an arbitrary reply for pedagogical planning purposes.

These two pragmatic restrictions do not reduce the range of topics we can discuss.

However, since the use of open-ended diagnostic questions is restricted, the tutor must

use other avenues to identify the source of the student�s confusion. Alternatively, the tutor

can use heuristics for choosing a response which do not require explicit identification of

the student�s problem. We generally choose the second approach.

5.3.8 Syntax and semantics of the tutorial planning operators

In this section we give a formal definition of the tutorial plan operators. Plan

operators in CIRCSIM-Tutor have four fields:

188

• Name
• Effects
• Constraints
• Decomposition

The intended interpretation of the plan operator is as follows:

• The name field identifies the communicative act which the rule is

intended to implement.

• The effects field identifies any state changes which can be assumed to

be true as a result of the operator.

• The constraints field refers to a priori preconditions which must be

true before the operator will be considered. Constraints are also

called filters.

• The decomposition field describes how to implement the

communicative act represented by the name, or equivalently how to

obtain the state described by the effects, in terms of lower-level

operators or primitive semantic forms. If it contains more than one

entry, the subgoals must be satisfied sequentially. We also have a

notation which means �as many times as possible� so that indefinite

repetition, such as iterating over each incorrect variable, can be

expressed efficiently.

A plan operator may be selected for use if its name (including the arguments) or its effects

can be matched against the current entry in the decomposition of the plan operator

currently being expanded. Arguments are matched using full unification.

The planning literature contains three kinds of preconditions for plan operators:

• Preconditions which must be a priori true; the planner will not try to

make them true. For example, an ambulance will take you to the

hospital, but it does not make sense to have an accident to get a ride

to the hospital. In addition to ruling out inappropriate behavior, this

type of constraint is useful for reducing the search space.

• Preconditions which the planner can try to make true. If they are

already true, then no action need be taken. This is the most common

case in planning other than text planning.

189

• Preconditions which the planner must instantiate even if they are

already true. This category is used where the planner must generate

text to make a coherent argument even if it has already been said or

the student already knows it. This type of precondition is often used

to generate the premises of an argument when they are realized as

subordinate clauses. For example, a speaker might say, �Since it is

raining, we cannot go swimming,� even though the hearer already

knows it is raining.

The TIPS planner handles all three types of preconditions. The first type is located in the

constraints field of the plan operator. The second and third types of preconditions both

occur in the decomposition field. Since plan operators may match on either the operator

name or the effects, we adopt the convention that entries which contain the name of an

operator must be implemented, while entries stated in terms of a desired effect are skipped

if the effect is already true. The intention is that if the plan operator calls for a specific

communicative act on the part of the tutor, the tutor must perform that act. If the plan

operator simply requests that a state be true, no action need be taken if the state is already

true.

Plan operators are named from a third-party point of view, e.g. T-elicits to describe

an action taken by the tutor and S-knows to describe the student�s desired state. For plan

operators which could be implemented either way, we use a passive form such as

variable-is-introduced or a non-specific form such as introduce-variable. Most of our

operators are defined from the tutor�s point of view because we know the tutor�s goals.
2

From a philosophical point of view, we can never be sure what the student knows or

believes. We prefer to define our plan operators using things which we have direct

knowledge of, such as the dialogue thus far and the tutor�s goals, rather than things we

2
In Chapter 4, we name all of the schemata from the tutor�s point of view because the analysis of the
transcripts was done from the tutor�s point of view. In that chapter, we use forms such as ensure-
student-knows to describe the desired state of the student from the teacher�s point of view.

190

can only guess at. Furthermore, describing a goal from the tutor�s point of view is

sometimes required when the text to be generated is part of a larger tutorial pattern. If we

cannot control how the different parts of the pattern are realized, we may not be able to

ensure that they have the desired relation to one another.

Since subgoals are recursively evaluated, the fact that a schema is implemented as a

single plan operator does not determine how many turns it will eventually generate.

Section 4.6 gives examples showing that one schema can generate dialogues of varying

length. Additional subgoals can be generated if a subgoals invokes a nested schema or if

the student responds incorrectly to a question inside a schema.

Adjunct schemata, such as schemata for generating rebuttals or restatements of the

student�s statements often generate a single turn or a part of a turn. Other schemata which

often generate a single turn include give-definition, give-rule and give-answer. Hints are

usually generated by longer schemata from which only one subgoal is chosen to generate

text. Other plans, such as interactive explanations, take place over several turns as long as

the student gives �cooperative� (in the Gricean sense) responses.

5.4 Turn planning: Realization of semantic forms as surface structure

5.4.1 Functions of the turn planner

The turn planner is responsible for assembling semantic forms generated by the

tutorial planner into a coherent turn which fits into the evolving conversation. Except for

the fact that turns must fit coherently into the evolving conversation, any general-purpose

paragraph planner could potentially be used for the turn planning function. In this section

we will sketch the functions of the turn planner and show some of the goals which it needs

to accomplish, but we will not propose a detailed implementation.

191

Turn planning includes the following functions:

• Organization of semantic forms into sentences
• Lexical insertion
• Text realization
• Post-linearization editing
• Ensuring intra-turn coherence
• Ensuring inter-turn coherence

The turn planner starts by choosing which semantic forms will be realized in each

sentence to be emitted, creating an intermediate form known as the deep syntactic form.

The use of an intermediate form allows many kinds of transformations. Thus our ability to

generate coherent text is not limited by the knowledge representation. The use of an

intermediate form also simplifies the potential addition of the ability to do multi-language

generation since only the lexicon and grammar refer to a specific natural language.

The lexical insertion process converts each deep syntactic form to a surface

syntactic form. Lexical insertion includes the following functions:

• Choosing a main verb for a process
• Determining the syntax required by that verb
• Choosing natural language representations for the arguments and

modifiers of the verb

The text realization process creates the surface text. This step includes making

syntactic and morphological choices, including decisions about morphological forms,

agreement, word order, and the selection of closed class forms. We plan to use the FUF

package [Elhadad 1993] for this step. Post-linearization editing refers to syntactic choices

which cannot be made until the word order of the sentence is known, such as decisions

about when to use pronouns.

Intra-turn coherence means that the sentences of a turn need to flow together as a

paragraph. To ensure this requires coordination between the syntactic choices made for

192

the sentences in a turn in order to maintain a smooth flow from each topic to the next.

Other factors such as pronoun usage also influence intra-turn coherence. Inter-turn

coherence means that the turn fits into the evolving conversation.

5.4.2 Accumulation of semantic forms into sentences

Even within a turn, the use of schemata or their equivalent is required for a system

with the desired speed and coverage of CIRCSIM-Tutor. To generate text via intention-

based planning is impractical not only because of the volume of computation required

[Appelt 1985; Moore 1995], but because the rhetorical knowledge necessary for

combining semantic forms into sentences is not available for the large number of cases

which we expect CIRCSIM-Tutor to handle.

Since our domain logic consists mostly of simple causal chains, in many cases we

can generate reasonable text by realizing each semantic form as a sentence. However,

there are cases where a more natural result or a useful variation can be obtained by

combining multiple semantic forms into one sentence. The human tutors often combine an

acknowledgment with a content-based reply, as in the following examples.

(2) T: Right, SV goes down�

(K14:55)

(3) T: � What is the stimulus for the baroreceptor reflex?

S: A change in the pressure in the system.

→ T: Right, a change in MAP�

(K36:78�80)

In the following example, an acknowledgment is combined with new material, namely a

semantic form derived from the current correction schema.

193

(4) T: � And what will follow from this change in SV?

S: CO will decrease.

→ T: Right, so what happens to RAP in DR?

(K37:218�220)

In the following example, a partial acknowledgment is built from multiple semantic forms.

In the student�s answer, CC is correct but HR is wrong.

(5) S: CC would also decrease and so would the HR.

T: Right, except remember in this guy HR is determined by the artificial

pacemaker so the reflexes can�t affect it�

(K2:39�40)

In the following example, the first sentence includes an instance of start-new-attempt and

the first semantic form from show-contradiction. The show-contradiction schema

continues with the next sentence.

(6) T: � But let�s go back to your definition of DR, and remember that you

predicted that TPR would increase. Do you want to rethink this?

(K37:52)

5.4.3 Lexical insertion

Lexical insertion refers to the process of choosing a lexical item for each concept

represented in the deep syntactic form.

In Section 5.2.2 we showed two potential implementations for introduce-stage:

Introduce-stage (?stage):

State-existence-of (errors)

Point-at (?error1)

Introduce-stage (?stage):

Review-predictions (student-predictions (?stage))

To realize each of these options as surface text, lexical entries would be necessary for the

following verbs (the term �verb� here includes phrasal verbs):

194

• Review
• Take a look at
• Talk about

Although each of these verbs has a slightly different semantic range, the distinctions

between them are not relevant to CIRCSIM-Tutor. Since each lexical entry for a verb points

to the appropriate case information for its arguments, all that remains is to instantiate the

arguments and modifiers and build the surface form of the sentence.

If the speaker were an employee wishing to show an error to the boss instead of a

tutor wishing to show an error to a student, we might want to generate text with the

semantic content of review but in a different register. For example, we might want to

generate a sentence such as the following:

(7) I�m having trouble understanding some of your predictions.

We could implement the ability to generate this sentence either by adding additional lexical

insertion rules for an existing semantic form or by adding a new semantic form. Although

there is a conceptual difference between these options, there is no practical difference with

regard to the generation of the sentence. In the long run, one of the choices might lead to

a more logical set of semantic primitives.

Thus we take a pragmatic view toward the set of semantic primitives. For example,

here are some ways to express the fact that an increase in HR causes an increase in CO:

(8) An increase in HR causes an increase in CO.

When HR increases, CO increases.

If HR increases, CO increases.

HR increasing causes CO to increase.

CO increased because HR increased.

HR determines CO.

195

Additional information on the range of sentences to be generated and the context in which

they will appear is required in order to decide how many of these must be differentiated.

There are two reasons why it is useful to have a number of realizations available for one

semantic form. In some contexts, the topic/focus rules discussed in the following section

restrict which of these forms can be used in a given context. Even if those rules do not

apply, lexical equivalence is one way to increase variety in our generated texts.

Reiter [1991] points out the importance of making principled decisions in the lexical

insertion process. However, there are cases where random selection appears to be

sufficient. For example, it is often claimed that human tutors tend to use the word family

previously used by the student when choosing, for example, between the word families go

up/go down and increase/decrease. The transcripts do not bear this out. Of course, if

desired, this feature is easy to implement by having the input understander set a flag

indicating that one of the target verbs has been encountered. The discourse tree

(Section 5.4.7) can be used to discover whether we are still in a discourse segment where

one of the target verbs has been used.

Backtracking with respect to lexical insertion is an open issue. If the tutorial planner

can request a retry with a new lexical choice, then there must be a way to signal that no

additional choices are available.

5.4.4 Intra-turn coherence

We generate text a turn at a time in order to ensure that the input necessary to

create coherent turns is available. Although coherence is one of the most complex aspects

of text generation, studying the output of v. 2 leads us to believe that it is only necessary

to consider a few of the most common phenomena in order to generate reasonable text for

v. 3. In this section we briefly consider three of the most frequently occurring phenomena:

196

topic/focus rules, pronoun usage, and the use of discourse markers.

Consider the following sentences:

(9) TPR is a neurally controlled variable.

TPR is neurally controlled.

TPR is neural.

TPR is controlled by the nervous system.

The nervous system controls TPR.

In some cases, sentences such as the following might be added to the list.

(10) Did you forget that TPR is neural?

Remember that TPR is neural.

Although all of the sentences in (9) could be generated by the same semantic form, they

are not equivalent in all contexts because topic/focus relationships dictate which of the

previously mentioned nouns in a paragraph can be the subject of the succeeding sentence.

Additionally, depending on the previous sentences in the turn, it might be necessary to

replace one of the nouns by a pronoun in order to obtain a natural-sounding paragraph.

There are several approaches available to help ensure intra-turn coherence. If a turn

is built from a pre-planned pattern or contains only one semantic form other than the

acknowledgment, then the issue does not arise. However, in other cases it may be useful

to implement rules such as those discussed by McKeown [1985, ch. 3] or Hovy and

McCoy [1989].

Finally, discourse markers play an important role in creating coherence. Since

discourse markers such as so or and are usually associated with a schema entry, they can

contribute either to intra-turn or to inter-turn coherence, depending on how the schema is

instantiated. The following section contains some examples of the use of discourse

markers.

197

5.4.5 Inter-turn coherence

The use of a global planner with schemata for generating text contributes greatly to

inter-turn coherence because coherence of the argument is one of the key factors in

assuring inter-turn coherence.

Second, the use of discourse markers [Schiffrin 1987] is a small element which

greatly increases the readability of the resulting text. Consider how each of the following

examples would sound if the so were omitted from the final sentence.

(11) T: � Can you tell me how TPR is controlled?

S: Autonomic nervous system.

→ T: Yes. And the predictions that you are making are for the period before any

neural changes take place. So what about TPR?

(K10:29�31)

(12) T: � What are the determinants of MAP?

S: CO and TPR.

→ T: Correct. And you have predicted CO increases and TPR increases. So how

can you say MAP decreases?

(K32:226�228)

Chapter 4 contains many additional examples of the use of discourse markers.

These two factors suffice for the dialogues currently proposed for CIRCSIM-Tutor

v. 3. A third factor which has been mentioned is the ability to generate syntactic

parallelism. For example, surface forms which belong to the same interactive explanation

might all begin with �And ...�, �So ...�, or a more complex grammatical structure. This

feature can be implemented by having either the parent goal or the first sibling set a flag

which will be checked in the prerequisites of later plan operators. This situation is similar

to the selection of parallel lexical items described in Section 5.4.3.

198

5.4.6 Text realization and post-linearization editing

We plan to use the FUF package [Elhadad 1993] for surface realization. Several

aspects of FUF and the accompanying SURGE grammar seem especially well-suited to

CIRCSIM-Tutor:

• FUF forms have a coherent ontology.
• FUF forms have the power to say most things we need to generate,

such as compound and complex sentences and subordinate time

clauses.
• FUF forms are extensible.

Some features of the surface syntax, such as choosing to use a pronoun or to combine two

clauses into a single clause with a plural subject, cannot be determined until the surface

word order is known. Some basic rules on the use of pronouns are provided by Fox

[1987]. We expect that post-linearization editing to be minimal in the initial CIRCSIM-Tutor

implementation.

5.4.7 Building the discourse tree

The turn planner adds the form to be uttered to a discourse tree based on

Conversation Analysis principles (see Section 1.3.4). Some examples of the discourse tree

are shown in Section 5.5.3. As mentioned in Section 5.3.5, when a pedagogical schema is

dropped, turns which have already been uttered must still be represented in the discourse

tree. In addition, we would like to use the discourse tree to make decisions on items such

as pronoun usage. Thus we do not want the structure of the discourse tree to be restricted

by the need to be consistent with the pedagogical goals. For example, supposes the tutor

challenges a student idea by saying, �In that case we could deduce �� Although that

statement is obviously the response to a student utterance, depending on the content of the

statement, it might make more sense to consider it the beginning of a new exchange. When

199

the student gives an incorrect answer and the tutor shifts course, it is not always obvious

when a new discourse topic has been started. Since the purpose of the discourse tree is to

provide information for the generation of later turns, this issue can remain unresolved until

we are ready to make decisions based on this information.

Sometimes we need to wait until the student�s response is received before we know

how to categorize the tutor�s previous statement. For example, if the student gives a

serious answer to a pseudo-diagnostic question, we are more likely to want to treat the

question as part a T-elicit exchange than if the student realizes our intention.

5.5 Examples of the dynamic behavior of the discourse planner

5.5.1 Example showing options in the planning process

With plan operators based on the schemata in Chapter 4, we can use the planner

described in this chapter to produce multiple ways to tutor any concept in the domain of

CIRCSIM-Tutor. In this section we demonstrate this proposition for two cases, a non-neural

variable and a neural variable.

Consider the broken pacemaker problem in Section 2.4.2. Suppose the student gives

the correct value for heart rate but not for cardiac output. There are a large number of

ways we can proceed in order to correct cardiac output. Here is one instantiation of each

method.

1) Teaching via determinants (Section 4.7.1)

T: What are the determinants of CO?

S: SV and HR.

T: Which is the major determinant?

S: HR.

T: What is the value of HR?

S: It increases.

T: So what is the value of CO?

200

2) Teaching via main determinants (Section 4.7.1)

T: What determines CO?

S: HR.

T: And what is the relation between HR and CO?

S: Direct.

T: So what is the correct value of CO?

3) Building on the previous step (Section 4.7.2)

S: HR increases.

T: And what other variables does that affect?

4) Pointing out a contradiction (Section 4.5.4)

T: You said HR increases but CO decreases. How can that be?

5) Invoking an equation

T: Can you give me an equation relating SV, HR and CO?

6) Invoking a definition (Section 4.9.1)

T: Can you give me the definition of CO?

7) Switching to deeper concept map (Section 4.10.1)

T: CO is the volume of blood pumped by the ventricle in one minute�

Each method can be instantiated using varying degrees of interactivity. Here are two

snippets of dialogue, both generated with show-contradiction, but with varying degrees of

interactivity.

T: � What are the determinants of CO?

S: HR and SV.

T: Correct. And you have predicted HR increases and CO increases. So how

can you say SV decreases?

T: HR and SV determine CO. You predicted that both HR and CO would

increase. So how can CO decrease?

Within the chosen plan, the basic functions of asking for information and giving the

student information can be implemented in a variety of ways. Here are some examples.

201

• Eliciting information

What is the value of HR?

Can you tell me the value of HR?

Please tell me the value of HR.

I�d like to know the value of HR.

• Conveying information

Did you forget that HR increases?

Remember that HR increases.

HR increases.

But SV increases.

Finally, here is a small sample of the variety of lexical and syntactic alternatives available.

• Choosing lexical items

HR increases.

HR goes up.

HR rises.

• Choosing syntactic forms

HR increases.

There�s an increase in HR.

Because of the increase in HR, �

In summary, combinatorial explosion is a welcome feature here, as it enables us to

generate a large number of dialogues at modest cost.

We now present a similar set of options for the correction of a neural variable.

There is only one basic schema for correcting the first incorrect neural variable. Here are

several ways to choose different levels of interactivity for it.

• Interactive explanation

T: How is HR controlled?

S: Nervous system.

T: Right. And we�re talking about what happens before there are any neural

changes. Now what do you say about HR?

• Explanation with follow-up question

T: HR is a neurally controlled variable. But DR is the period before there are

any neural changes. So what value would you assign to HR in DR?

202

• Hint

T: Remember that we�re talking about what happens before there are any

neural changes. Now what do you say about HR?

Here are some ways to implement individual plan steps which are useful in the neural

domain.

• Eliciting information

How is HR controlled?

Could you tell me how HR is controlled?

Please tell me how HR is controlled.

I�d like to know how HR is controlled.

• Conveying information

Did you forget that HR is neural?

Remember that HR is neural.

HR is neural.

Finally, here are some syntactic and lexical choices which are useful in the neural domain.

• N + to be + adjective

HR is neural.

HR is neurally controlled.

• Verb to control + arguments

HR is controlled by the nervous system.

The nervous system controls HR.

• N + to be + N

HR is a neurally controlled variable.

HR is a neural variable.

The actual number of dialogues which CIRCSIM-Tutor can generate is greater than

predicted by combinatorial explosion alone because of the way it can switch schemata in

response to student errors. In the following example, the tutor starts with a short form of

show-contradiction, then switches to a longer form of show-contradiction, then gives the

student part of the answer and switches to building on the previous step.

203

(13) T: You said HR increases and CO decreases. Is that possible?

S: Yes.

T: Let�s try again. What is the value of HR?

S: It increases.

T: And what is the value of SV?

S: I don�t know.

T: Well, at this point, SV is unchanged. Now if HR increases and SV is

unchanged, what happens to CO?

The following two sections give detailed examples showing the use of adjunct

schemata and the replanning algorithm, respectively.

I have

no idea

TPR is

neurally

controlled

(2)

(1)

(3)

Sympathetic

vasoconstriction
Nervous system

Radius of

arterioles

Right

TPR is neural

Right And what

controls that?

Nervous

system

Right

Which is

neurally

controlled

So what do you think about TPR now?

Can you tell me how TPR is controlled? /

What is the primary mechanism which controls TPR?

And we�re in the pre-neural period now /

Remember that we�re in the pre-neural period

Figure 5.4: Dialogues which CIRCSIM-Tutor can generate

204

5.5.2 Example showing dialogues which can be generated

Figure 5.4 shows in condensed form a set of dialogues which our system can

generate from the correct-neural schema of Section 4.6.1:

Correct-neural (?v):

PQ: ?v is neural

?v is not the primary variable

S-knows (has-mechanism(?v, neural))

S-knows (current-stage(DR))

S-knows (has-value(?v, DR, no-change))

Each path through the diagram shows the effect of a different implementation of the

first subgoal. Each item in italics represents text which could be generated by one semantic

form. For the sake of variety, we try to provide multiple possible realizations for each

semantic form. In a few cases we have shown two possible realizations separated by a

slash. The numbers correspond to the sequence of the subgoals in the schema above. The

student�s responses are shown in roman type. In the leftmost path, the student gives the

desired answer immediately. In the second path, the student gives an answer which is true

but does not use the tutor�s desired language. The tutor adds a goal to correct the

student�s language before continuing with the schema. In the third branch, the student

gives an answer which is on the path toward the correct answer. The tutor helps the

student toward the correct answer, using T-elicits and T-conveys respectively in the two

sub-branches to implement the correction schema. In the final branch, the tutor uses the

give-answer schema to satisfy the first subgoal.

By varying the instantiation of the other subgoals of this schema, as well as utilizing

the option to switch to a different schema, we can generate a rich variety of dialogues for

teaching this concept.

205

5.5.3 Example showing the replanning algorithm

This example demonstrates the operation of the replanning operators discussed in

Section 5.3.5. Additionally, it shows discourse trees which could have been generated

from the plan trees shown. Again, we use the correct-neural schema introduced in

Section 4.6.1.

Correct-neural (?v):

PQ: ?v is neural

?v is not the primary variable

S-knows (has-mechanism(?v, neural))

S-knows (current-stage(DR))

S-knows (has-value(?v, DR, no-change))

Since our planning algorithm only expands one subgoal at a time, a full goal tree never

appears at a detailed level. To make the example easier to follow, Figure 5.5 shows what

Correct-variable (TPR)

T-teaches

(has-mechanism

(TPR, neural))

T-elicits (?x,

has-mechanism

(TPR, ?x))

S-knows

(has-mechanism

(TPR, neural))

S-knows

(has-value

(TPR, DR, no-change))

T-teaches

(has-value

(TPR, DR, no-change))

T-elicits (?x,

has-value

(TPR, DR, ?x))

S-knows

(current-stage

(DR))

T-conveys

(current-stage

(DR))

T-teaches

(current-stage

(DR))

Figure 5.5: Conceptual tutoring agenda

206

such a tree would look like. The tutoring goals actually on the agenda after two plan steps

are shown in Figure 5.6.

The following text, which is derived from one of our live tutoring sessions, could be

generated from this plan.

(14) 1 T: How is TPR controlled?
2 S: Nervous system.
3 T: Right. And we�re talking about what happens before there are any neural

changes. Now what do you say about TPR?
4 S: It doesn�t change.
5 T: Right.

(K11: 49�53, slightly abridged)

Correct-variable(TPR)

T-teaches

(has-mechanism

(TPR, neural))

T-elicits

(has-mechanism(TPR, ?x))

S-knows

(has-mechanism

(TPR, neural))

S-knows

(has-value(TPR, DR, ?x))

S-knows

(current-stage(DR))

Figure 5.6: Initial tutoring agenda

207

Section 5.4.7 describes the creation of the discourse tree. The discourse tree

corresponding to this tutoring plan is shown in Figure 5.7. The Conversation Analysis

terminology is defined in Section 1.3.4. Note that turns are not coterminous with

exchanges; in fact, a turn often ends one exchange and starts another.

To simplify the diagram, the acknowledgment (�Right.�) is turn 3 has been omitted

from Figure 5.7. In general, an acknowledgment closes a T-elicit exchange. Yet it does

not seem altogether natural to separate the acknowledgment from the following sentence

with which it is intimately related.

Now let us assume that the student does not give the correct answer in turn 2 above.

Here is the text we would like to generate:

(15) 1 T: How is TPR controlled?
2 S: Autoregulation.
3 T: No, that�s too slow to be relevant here. What is the primary mechanism of

control of TPR?
4 S: The radius of the arterioles.
5 T: And what is the primary mechanism by which the arteriolar radius is

controlled?
6 S: I don�t know.
7 T: The sympathetic nervous system controls TPR. And we�re dealing with the

period before any change in nervous activity occurs. Now what do you say

about TPR?
8 S: It doesn�t change.
9 T: Right.

208

This dialogue has been constructed from actual turns selected from different transcripts in

order to show a large number of phenomena in a short text. In turn 2, the student gives a

wrong answer. In turn 3, the tutor decides to explicitly reject the student�s wrong answer

before continuing. In turn 4, the student gives an answer which is worthwhile but not the

desired answer; the statement is true but it doesn�t respond directly to the point the tutor

is trying to make. So the tutor asks a follow-up question in turn 5. In fact, students usually

respond extremely well to such follow-up questions, but for the sake of the example we

will assume that the student asks for help instead. The tutor could respond in a number of

ways, such as with an explanation or another tutoring plan. In this case the tutor decides

to give the student the answer and go on. In the continuation of turn 7, the tutor goes on

to the remainder of the original tutoring plan.

Figure 5.8 shows the agenda of the tutoring planner during the planning of turn 3.

An additional planning operator, T-denies, has been added as part of a revised plan for

Correct-variable-transaction(TPR)

T-elicit-exch T-inform-exch T-elicit-exch

T-elicit S-reply T-inform T-elicit S-reply

Mechanism

of TPR?

Nervous

system

Nervous system

not operative yet

Value

of

TPR?

No

change

Turn 1 Turn 2 Turn 4Turn 3

Figure 5.7: Initial discourse tree

209

T-teaches. The purpose of the additional operator is to create an explicit rejection of the

previous wrong answer. Note that the T-elicits goal in Figure 5.8 corresponds to the

question in turn 3. The question in turn 1 is no longer shown because it is no longer part

of the current plan for T-teaches(has-mechanism(TPR, neural)). However, text has

already been generated for this goal. This text is still part of the conversation and could

possibly be involved in future decisions about topics such as pronoun usage. It is to handle

this situation that we maintain two knowledge structures, one for the current tutorial goals

and one for the evolving conversation.

Suppose instead of revising the plan for T-teaches, the tutor had decided to revise

the parent goal instead, by choosing a new plan for correct-variable. For example, if the

student is having trouble, the tutor might replace a plan involving questions with an easier

plan involving mostly explanations. In that case, both of the younger siblings of T-teaches

would be removed from the agenda without ever having been expanded. The replanning

rules in Section 5.3.5 enable us to continue a coherent conversation regardless of the

student�s input.

210

Finally, Figure 5.9 shows the first seven turns of the completed conversation. (The

others are omitted for reasons of space.) Turns 1 and 2 still belong to this transaction even

though they were not part of the final plan for teaching the student about the value of

TPR. In this diagram one can also see how the rejection of the student�s error (T-denies)

which was added during plan repair becomes an T-inform exchange, while the student�s

statement in turn 6 generates an S-inform exchange. We do not always know until after a

response has been interpreted what the most logical place is to hook it into the discourse

tree.

Correct-variable(TPR)

T-teaches

(has-mechanism

(TPR, neural))

S-knows

(current-stage(DR))

S-knows

(has-value

(TPR, DR, ?x))

T-denies

(has-mechanism

(TPR, autoreg.)

T-elicits

(has-mechanism

(TPR, ?x))

S-knows

(has-mechanism

(TPR, neural))

Figure 5.8: Tutoring agenda with rebuttal

211

Correct-variable-transaction(TPR)

Mechanism

of TPR?

T-elicit-exch T-inform-exch

T-elicit S-reply

Autoregulation

T-inform

No, that�s

too slow

T-elicit-exch

T-elicit S-reply

Mechanism

of TPR?

Arteriolar

radius

Turn 3Turn 1 Turn 4Turn 2

T-elicit-exch

T-elicit

Mechanism

of arteriolar

radius?

Turn 5

S-inform-exch

S-inform

I don�t know

Turn 6

T-inform

T-elicit-exch

T-inform T-elicit

T-inform-exch

Nervous

system

controls TPR

Nervous

system not

operating yet

Value

of TPR?

Turn 7

Figure 5.9: Final discourse tree

212

Chapter 6
Conclusions

The only reason for writing anything is to

answer one�s own questions. In the process of

finding the answers, however incomplete or

provisional, you might answer someone else�s

questions.
�Stanley Morison

In this section we present a summary of our results. We describe our conclusions

about the structure of tutoring discourse and outline the architecture we have proposed

for modeling these results in a large-scale, practical ITS. We summarize the main

accomplishments of this research and propose short-term goals and long-term directions

for future research.

6.1 Summary

We began this work by stating that our goal was to demonstrate how the use of

theories and methods from the field of natural language generation could be used to

improve the quality of text generated by an ITS.

We accomplished this goal by dividing it into three subgoals:

• Developing a model of the dialogue of human tutors based on current

research in natural language generation.

• Analyzing a corpus of human-to-human tutoring sessions in

cardiovascular physiology in terms of this model.

• Designing a large-scale, practical ITS which implements the model.

213

Using the corpus analysis and an analysis of the output of an older version of the CIRCSIM-

Tutor system, we developed a list of requirements for a new ITS. We concluded that an

architecture consisting of a high-level discourse planner and a turn planner running in

parallel, rather than a separate pedagogical planner and a discourse planner, would best

meet the requirements.

The following two sections summarize our major conclusions about the language

used by the tutors in the transcripts. They can be loosely divided into two categories,

depending on whether they relate to the hierarchical structure of the conversation or the

interplay between tutor and student. These sections are followed by a brief summary of the

proposed architecture.

6.1.1 Conclusions about the hierarchical structure of tutoring discourse

The following points summarize our major conclusions about the hierarchical

aspects of the conversation:

• The tutor maintains global control of the conversation while

responding turn by turn to the student�s utterances.

• The global plan is shown by the hierarchical structure of the

dialogue, which contains the following levels: physiological stage,

core variable, attempts to teach each variable.

• Only the variables which the student missed are discussed, in a

sequence related to a solution trace for the problem.

• The tutor has a variety of methods for teaching the value of each

variable, including both single-turn and multi-turn plans.

• Methods may be nested. If the student gives an incorrect answer, the

tutor has several options:
• Give the student the answer and go on
• Provide the student with additional information and try again
• Try a new method at any level

214

• Most variables are corrected using one of five schemata. These

schemata are used for the following cases:
• Primary variable (i.e. first variable in the solution trace)
• First incorrect neural variable
• Subsequent incorrect neural variable
• Non-neural variable, taught based on its determinants
• Non-neural variable, taught based on the value of an earlier variable in

the conversation

6.1.2 Conclusions about dialogue-related aspects of tutoring discourse

The following points summarize our major conclusions about the dialogue-related

aspects of the conversation:

• Each turn has the following structure. Each of the sections is

optional.

Response to student�s previous statement

Acknowledgment of student�s statement

(e.g. yes, no, etc.)

Content-oriented reply

New material

• A turn ends with a question for the student (or an imperative).

Usually the question or imperative is explicit, but sometimes the tutor

makes a statement from which the student can infer the type of

response desired.
1

• Acknowledgments are interpersonal transactions which are domain-

independent. When the tutor needs to convey domain knowledge as

part of the reply, the content-oriented reply section is used. The type

of reply depends on the type of the student�s utterance. Some of the

more common types of student utterances include:
• Correct answer
• Wrong answer
• Hedged answer, right or wrong
• Linguistically close but not exact answer

1
CIRCSIM-Tutor will not emulate these indirect requests because students expect explicit requests from a
program. See Section 5.3.7.

215

• A step toward the correct answer
• Student initiative (i.e. student changes the topic)
• A combination of the above

Some of the more common types of content-oriented replies include:
• A restatement of the student�s statement in more precise language
• A statement supporting or denying the student�s statement
• An interactive formula which points out a contradiction in the

student�s utterances

• After replying to the student�s statement, the tutor may continue with

the next step from the teaching plan. If no new material is included,

then the content-oriented reply must be present and must end with a

question.

6.1.3 Summary of proposed architecture for a text-based ITS

This section lists the salient points of the architecture proposed in Chapter 5.

• The system is divided into two routines running in parallel, the

tutorial planner, which makes discourse decisions for units larger

than a turn, and the turn planner, which assembles individual turns.

The tutorial planner generates a series of semantic forms. The turn

planner collects the semantic forms for a turn and generates text for

them as a unit. The turn planner is also responsible for connecting the

turn to the ongoing conversation.

• It can maintain a dialogue, including appropriate responses to wrong

or partially correct responses on the part of the student, while

carrying out a global tutoring plan. It can use multi-turn plans and

amend or drop them if the student does not respond as expected.

• It can provide specific content-based responses to common student

errors.

• It can use the same input to generate multiple tutorial discourse

phenomena similar to the hints, explanations and interactive

sequences generated by expert human tutors.

• It can teach the same concept in multiple ways.

• It can say the same thing in multiple ways.

216

6.2 Contributions of this work

The following list summarizes the major accomplishments of this dissertation:

• Establishing a new model for conversational turns in CIRCSIM-Tutor

through the use of Conversation Analysis.
• Identification of the acknowledgment, the content-oriented reply and

new material from the tutorial plan as potential parts of every turn.
• Distinguishing the functions of the acknowledgment and the content-

oriented reply.
• Initial characterization of the types of content-oriented reply.

• Establishing a knowledge representation for tutorial knowledge,

namely a schema which is a sequence of discourse goals.
• Demonstration that tutorial knowledge (�how to tutor�) cannot be

derived from domain knowledge (�what to tutor�).
• Identification of the basic schemata required for correcting variables,

including a schema, tutoring non-neural variables based on variables

tutored earlier in the conversation, which had not been previously

described.
• Description of new schemata for replying to student utterances, such

as show-contradiction and the pseudo-diagnostic question.

• Characterizing crucial aspects of system design for an interactive

natural-language ITS.
• Demonstration that text generation provides a superior model for a

text-based ITS, i.e. that the fundamental distinction in CIRCSIM-Tutor

should be between the tutorial planner and the turn planner, not

between the pedagogical planner and the discourse planner.
• Demonstration that text must be generated a turn at a time in order to

ensure coherent turns.
• Characterization of the dynamic behavior of the tutorial planner: how

to integrate responses to the student with the global plan, how to

backtrack when the student makes a mistake, how to use multi-turn

plans and how to abandon them when necessary, how to respond to

student initiatives.
• Characterization of the behavior of the turn planner, including a

description of how the turn planner builds and uses a discourse tree

separate from the plan history in order to ensure inter-turn coherence.

217

• Characterizing the semantic primitives required to implement the

system.
• Identification a list of potential semantic primitives abstracted from the

transcripts.
• Identification of a list of basic semantic primitives sufficient for a

prototype.
• Demonstration of how to derive multiple observed phenomena, such

as hints, explanations and interactive explanations, as different ways of

realizing the same schema.

• Contributing to a deeper understanding of phenomena in the CIRCSIM-

Tutor transcripts previously described only at the surface level.
• Definition of previously described phenomena, i.e. acknowledgments,

hints, explanations, interactive explanations, summaries and student

initiatives, in a manner suitable for text generation
• Demonstration that identifying which part of a turn an observed

phenomena belongs to, i.e. response to the student or new material, is

essential to the description.

• Contributing to the understanding of the potential capabilities and

limitations of v. 3 of CIRCSIM-Tutor.
• Identification of key factors, i.e. good language, variety, interactivity,

and coherence, which influence student understanding and retention.
• Identification of methods for using deeper levels of the domain

concept map in dialogue.
• Identification of places where a functional model of the domain could

contribute to CIRCSIM-Tutor.

• Developing a declarative model of the domain knowledge required

for CIRCSIM-Tutor

• Contributing to the understanding of tradeoffs in ITS design
• Cooperative conversation vs. mainly tutor-led conversation
• Full vs. restricted student initiative processing
• Free-text input vs. short-answer questions
• Use of turn-taking rules vs. use of explicit questions
• Plan recognition vs. goal recognition
• Depth vs. breadth of generation

218

6.3 Feasible enhancements using the current architecture

6.3.1 Creating realistic tutorial and linguistic knowledge bases

In order to model the syntactic and lexical usage of the expert tutors as well as their

high-level pedagogical and discourse goals, we need to mine lexical and syntactic

information from the transcripts. Although this process is tedious, there are several

advantages to doing it this way instead of by introspection. In addition to greater fidelity

to what human tutors actually do, we obtain more natural speech patterns. We also obtain

a greater variety of constructions, since introspection is difficult in a realm such as lexical

choice where humans usually operate without much conscious thought.

In addition to identifying concepts used by the tutors and the syntactic forms used to

express them, it would be worthwhile to identify ways in which the tutors combine

semantic forms into sentences. This information would enable us to expand the list of

combination rules in the turn planner and thus generate more complex turn structures.

6.3.2 Using CIRCSIM-Tutor to study discourse rules

Many types of linguistic rules, such as those governing change of topic and focus,

the introduction of discourse particles, and the combination of concepts into sentences,

have not yet been formulated in a precise enough form for text generation. CIRCSIM-Tutor

provides an opportunity to write and test such rules. In particular, a worthwhile topic to

study is the degree to which such rules can be deduced by the turn planner instead of being

specified in a tutorial planning schema.

6.3.3 Implementing opportunistic planning

The use of opportunistic planning provides an opportunity to handle some

categories of student initiatives. There are two places where opportunistic planning could

219

be used to shorten the conversation if desired. First, when a student gives the correct

value for one variable while the tutor is trying to elicit the value for another variable, we

could accept this information instead of ignoring it. Second, when a student uses a phrase

like �Now I get it� to indicate that the rest of the argument is now superfluous, the tutor

could skip the rest of the current variable or another appropriate subsection. However, our

pedagogical consultants are currently opposed to the use of tutoring methods which do

not require an explicit conversation for each variable.

6.3.4 Adding functional knowledge to the domain knowledge base

The addition of a functional model to the domain knowledge base would allow the

generation of more complex explanations. With respect to lexicon and syntax, it is

generally a good idea not to generate text which we could not understand if the student

chooses to use it. However, this principle does not hold for larger concepts because the

student�s response will always be guided by a question which we have asked. Thus it is

feasible for us to generate text based a functional model even though we would not be

able to understand such a functional explanation as input. For example, a physical

metaphor for some aspect of blood flow might be useful to the student as part of a

generated explanation even if we are not prepared to discuss it.

6.3.5 Improving error handling through increased use of intention-based planning

In the current design, in order for CIRCSIM-Tutor to give a specific response to a

student error, it needs an adjunct schema tailored to that error. Although schemata are a

good representation for CIRCSIM-Tutor�s methods of teaching new material, greater use of

intention-based planning during error handling would permit us to provide specific

responses to a larger number of errors.

220

It is not yet feasible to implement deep intention-based planning for CIRCSIM-Tutor

as a whole. At the tutorial level, even expert teachers cannot often explain why they teach

the way they teach. At the turn planning level, the axioms relating most types of phrases

and clauses to communicative goals have not yet been worked out. Although some small-

scale systems have been created, the technology is not yet feasible for a broad-coverage

system.

6.4 Evaluating potential long-term research directions

6.4.1 Free-text input, student initiatives and plan recognition

CIRCSIM-Tutor is primarily a tutor-driven system although it can handle simple

student initiatives such as requests for help. One reason we do not usually ask open-ended

questions in order to diagnose a student�s misconceptions is that we cannot understand

totally free text, especially when the student�s statement does not make sense according to

our domain model.
2
We cannot handle free-text student initiatives for the same reason.

Finally, we cannot handle interruptions which need to start a stacked discourse plan. These

restrictions, which are acceptable in our intended application, express the limitations of the

CIRCSIM-Tutor model. Putting these facts together, CIRCSIM-Tutor can handle most things

which happen in a tutor-led tutoring session, but it cannot handle a true cooperative

conversation with two independently planning agents.

SCHOLAR [Carbonell 1970] could switch back and forth between tutor-led and

student-led sections of a conversation. We can do �mixed-initiative� processing in this

sense. Allowing a fully general form of student initiative, i.e. letting the student change the

2
A second reason is that many of the misconceptions involve functional roles, which our domain model
does not support. Since we have many other sources of information (see Section 5.3.4), we do not need
an explicit diagnosis to respond appropriately to the student.

221

topic, would require the ability to handle a fully cooperative conversation and thus the

need to maintain multiple discourse contexts.

Since the ability to understand unrestricted free-text input is beyond the capability of

a working ITS and the technology for using multi-agent plans is still experimental, we

conclude that the ability to handle a fully cooperative conversation is too difficult for a

broad-coverage ITS. As the tutor knows what needs to be corrected, it is not

unreasonable for the tutor to be in charge of the conversation. Additionally, empirical data

collected from live tutors shows that they maintain a general control over the conversation

even when they give the student a certain amount of leeway.
3

The importance of cooperative conversation is not in the conversation itself, but in

interactivity, which keeps the student actively involved with the material. Therefore we

have suggested several ways to use the text generation capability of the ITS to increase

interactivity in spite of the unavoidable limitations on natural language understanding.

CIRCSIM-Tutor has several ways of using language which increase interaction with the

student but don�t require full interactivity. First, through the use of schemata, we can

achieve both pedagogical and linguistic variety, i.e. we have a variety of ways to teach a

concept and a variety of ways to express each of them. Second, we have a variety of ways

to respond to student errors and other types of unexpected input.

Plan recognition involves inferring the other speaker�s plans from his or her

utterances [Carberry 1990]. Alternative approaches have been suggested by Traum and

Hinkelman [1992] and McRoy [McRoy & Hirst 1995]. The former especially is less

computationally intensive. As long as conversations are led by the tutor and every turn

must end in an explicit question or request, plan recognition is not a major issue. The

3
Michael Glass points out that the best-known AI program which allows the student to lead the
conversation is ELIZA [Weizenbaum 1967]. Unfortunately ELIZA is of limited value as a tutor.

222

student is expected to follow the tutor�s lead, not to carry out an independent discourse

plan. When the student does not respond to the immediately preceding question, we can

generally identify the student�s goal from a short list which includes responding to a

higher-level goal on the agenda, requesting a definition, asking for help, or hedging an

otherwise direct response.

In summary, modeling the student�s goals as well as the tutor�s would require a

significantly more complex architecture. While this is an interesting and worthwhile

research objective, it is probably too complex to contribute much to a working ITS in the

near future.

6.4.2 Application to other genres and other languages

Nothing in the CIRCSIM-Tutor design is specific to cardiovascular physiology. With

suitable knowledge base entries for the rhetorical forms needed, CIRCSIM-Tutor could be

used to generate text in other genres. Additionally, again due to the modular nature of the

design, generating text in another language would require only a new grammar and

lexicon.

6.5 Conclusions

The purpose of this dissertation was to demonstrate the utility of natural language

generation as the underlying model for an intelligent tutoring system (ITS) in

cardiovascular physiology. To achieve that goal, we divided it into three subgoals:

developing a model of the tutorial dialogue of human tutors, analyzing a corpus of human-

to-human tutoring sessions in cardiovascular physiology in terms of this model, and

designing an ITS which implements the model. We have given a detailed analysis of our

corpus using this model, including a discussion of how tutors sequence their corrections,

begin and end phases of the discourse, acknowledge responses, convey information to the

223

student, provide hints, conduct interactive explanations and switch between domain

models. We have presented a design for an ITS which uses this model to show that it can

be implemented with current technology.

We expect this model to produce longer, more complex and more varied dialogues

than previous work. Version 3 can handle nested goals, recovery from student errors,

simple student initiatives, and many other phenomena which its predecessor could not.

Additionally, we hope that people will find CIRCSIM-Tutor useful as a testbed for theories

about discourse, including areas such as topic/focus, given/new, and the use of discourse

markers, especially in situations involving dialogues. Finally, we hope that CIRCSIM-Tutor

will be useful to the medical students who inspired it.

224

References

Appelt, Douglas E. 1985. Planning English Sentences. Cambridge: Cambridge University

Press. An earlier version was published as the author�s Ph.D. thesis at Stanford

University in 1981.

Austin, J. L. 1962. How to Do Things with Words. Oxford: Clarendon Press.

Barrett, Anthony, Keith Golden, Scott Penberthy and Daniel Weld. 1994. UCPOP User�s

Manual. Technical Report 93�09�06, Department of Computer Science and

Engineering, University of Washington.

Bilange, Eric. 1991. �A Task Independent Oral Dialogue Model,� Proceedings of the

Fifth Conference of the European Chapter of the Association for Computational

Linguistics, Berlin, pp. 83�88.

Borchardt, Gary C. 1994. Thinking Between the Lines: Computers and the

Comprehension of Causal Descriptions. Cambridge, MA: MIT Press.

Brown, John S., Richard R. Burton and Frank Zdybel. 1973. �A Model-Driven Question-

Answering System for Mixed-Initiative Computer-Assisted Instruction,� IEEE

Transactions on Systems, Man, and Cybernetics 3(3): 248�257.

Carberry, Sandra. 1990. Plan Recognition in Natural Language Dialogue. Cambridge,

MA: MIT Press.

Carbonell, Jaime R. 1970. �AI in CAI: Artificial Intelligence Approach to Computer

Assisted Instruction,� IEEE Transactions on Man-Machine Systems 11(4): 190�

202.

Cawsey, Alison. 1992. Explanation and Interaction: The Computer Generation of

Explanatory Dialogues. Cambridge, MA: MIT Press.

Chevallier, R. 1992. �Studia: un système tutoriel coopératif fondé sur la négotiation et sur

un modèle dynamique de dialogue.� In [Frasson, Gauthier & McCalla 1992, pp. 58�

65].

Chu-Carroll, Jennifer and Sandra Carberry. 1995. �Response Generation in Collaborative

Negotiation,� Proceedings of the 33rd Annual Meeting of the Association for

Computational Linguistics, Cambridge, pp. 136�143.

225

Clancey, William J. 1987. Knowledge-Based Tutoring: The GUIDON Program. Cambridge,

MA: MIT Press. An earlier version was published as the author�s 1979 Ph.D. thesis

at Stanford University.

Cohen, Philip R. and C. Raymond Perrault. 1979. �Elements of a Plan-Based Theory of

Speech Acts,� Cognitive Science 3(3): 177�212. Reprinted in [Grosz, Sparck Jones

& Webber 1986]. Based on Cohen�s 1978 Ph.D. thesis at the University of Toronto.

Cohen, Philip R., C. Raymond Perrault and James F. Allen. 1982. �Beyond Question

Answering.� In Wendy G. Lehnert and Martin H. Ringle, eds., Strategies for

Natural Language Processing, Hillsdale, NJ: Lawrence Erlbaum, pp. 245�274.

Collins, Allan, Eleanor H. Warnock, Nelleke Aiello and Mark L. Miller. 1975. �Reasoning

from Incomplete Knowledge.� In Daniel G. Bobrow and Allan Collins, eds.,

Representation and Understanding: Studies in Cognitive Science, New York:

Academic Press, pp. 383�415.

Collins, Allan, Eleanor H. Warnock and Joseph J. Passafiume. 1975. �Analysis and

Synthesis of Tutorial Dialogues.� In Gordon H. Bower, ed., The Psychology of

Learning and Motivation, v. 9, New York: Academic Press, pp. 49�87.

Collins, Allan. 1977. �Processes in Acquiring Knowledge.� In Richard C. Anderson, Rand

J. Spiro and William E. Montague, eds., Schooling and the Acquisition of

Knowledge. Hillsdale, NJ: Lawrence Erlbaum, pp. 339�363.

Collins, Allan and Albert L. Stevens. 1982. �Goals and Strategies of Inquiry Teachers.� In

Robert Glaser, ed., Advances in Instructional Psychology, v. 2, Hillsdale, NJ:

Lawrence Erlbaum, pp. 65�119.

Collins, Allan and Albert L. Stevens. 1991. �A Cognitive Theory of Inquiry Teaching.� In

Peter Goodyear, ed., Teaching Knowledge and Intelligent Tutoring, Norwood, NJ:

Ablex, pp. 203�230. Earlier version published in Charles M. Reigeluth, ed.,

Instructional Design: Theories and Methods.

Dahlbäck, Nils and Arne Jönsson. 1989. �Empirical Studies of Discourse Representations

for Natural Language Interfaces,� Proceedings of the Fourth Conference of the

European Chapter of the Association for Computational Linguistics, Manchester,

pp. 291�298.

226

Dale, Robert, Eduard Hovy, Dietmar Rösner and Oliviero Stock, eds. 1992. Aspects of

Automated Natural Language Generation. Proceedings of the Sixth International

Workshop on Natural Language Generation, Trento, Italy. (Springer-Verlag Lecture

Notes in AI, no. 587.) Berlin: Springer-Verlag.

Danlos, Laurence. 1987. The Linguistic Basis of Text Generation. Cambridge: Cambridge

University Press. Originally published in French in 1985.

Dickinson, C. J., C. H. Goldsmith and David L. Sackett. 1973. �MACMAN: A Digital

Computer Model for Teaching Some Basic Principles of Hemodynamics,� Journal

of Clinical Computing 2(4): 42�50.

Elhadad, Michael. 1992. Using Argumentation to Control Lexical Choice: A Functional

Unification Implementation. Ph.D. thesis, Department of Computer Science,

Columbia University.

Elhadad, Michael. 1993. FUF: The Universal Unifier, User Manual, Version 5.2. Available

from Department of Computer Science, Ben Gurion University of the Negev.

Evens, Martha W., John Spitkovsky, Patrick Boyle, Joel A. Michael and Allen A. Rovick.

1993. �Synthesizing Tutorial Dialogues,� Proceedings of the 15th Annual

Conference of the Cognitive Science Society, Boulder. Hillsdale, NJ: Lawrence

Erlbaum.

Fawcett, Robin P. 1987. �Semantics of Clause and Verb for Relational Processes in

English.� In M. A. K. Halliday and Robin P. Fawcett, eds., New Developments in

Systemic Linguistics, v. 1: Theory and Description, London: Pinter, pp. 130�183.

Fikes, Richard E. and Nils J. Nilsson. 1971. �STRIPS: A New Approach to the Application

of Theorem Proving to Problem Solving,� Artificial Intelligence 2(3�4): 189�208.

Fox, Barbara. 1987. Discourse Structure and Anaphora: Written and Conversational

English. Cambridge: Cambridge University Press.

Fox, Barbara. 1993. The Human Tutorial Dialogue Project. Hillsdale, NJ: Lawrence

Erlbaum.

Frasson, Claude, Gilles Gauthier and Gordon I. McCalla, eds. 1992. Intelligent Tutoring

Systems: Second International Conference (ITS �92), Proceedings, Montreal.

(Springer-Verlag Lecture Notes in Computer Science, no. 608.) Berlin: Springer-

Verlag.

227

Frasson, Claude, Gilles Gauthier and Alan Lesgold, eds. 1996. Intelligent Tutoring

Systems: Third International Conference (ITS �96), Proceedings, Montreal.

(Springer-Verlag Lecture Notes in Computer Science, no. 1086.) Berlin: Springer-

Verlag.

Freedman, Reva. 1995. �Using Pedagogical Knowledge to Structure Text Generation in

an Intelligent Tutoring System,� Proceedings of the 1995 Midwest Artificial

Intelligence and Cognitive Science Society Conference, Carbondale.

Freedman, Reva. 1996a. �Using a Text Planner to Model the Behavior of Human Tutors

in an ITS.� In Michael Gasser, ed., Online Proceedings of the 1996 Midwest

Artificial Intelligence and Cognitive Science Conference, Bloomington, IN.

URL http://www.cs.indiana.edu/event/maics96/Proceedings/Freedman/

freedman.html or freedman.ps.

Freedman, Reva. 1996b. �Using Tutoring Patterns to Generate More Cohesive Text in an

Intelligent Tutoring System� In Daniel C. Edelson and Eric A. Domeshek, eds.,

International Conference on the Learning Sciences, Proceedings of ICLS �96,

Evanston, pp. 75�82.

Freedman, Reva and Martha W. Evens. 1996. �Generating and Revising Hierarchical

Multi-turn Text Plans in an ITS.� In [Frasson, Gauthier & Lesgold 1996, pp. 632�

640].

Gerlach, Michael and Helmut Horacek. 1989. �Dialog Control in a Natural Language

System,� Fourth Conference of the European Chapter of the Association for

Computational Linguistics: Proceedings of the Conference, Manchester, pp. 27�34.

Grice, H. Paul. 1975. �Logic and Conversation.� In Peter Cole and Jerry L. Morgan, eds.,

Speech Acts (Syntax and Semantics, v. 3), New York: Academic Press, pp. 41�58.

Grosz, Barbara J. and Candace L. Sidner. 1986. �Attention, Intentions and the Structure

of Discourse,� Computational Linguistics 12(3): 175�204.

Grosz, Barbara J., Karen Sparck Jones and Bonnie Lynn Webber, eds. 1986. Readings in

Natural Language Processing. Los Altos, CA: Morgan Kaufmann.

Halliday, M. A. K. and Ruqaiya Hasan. 1976. Cohesion in English. London: Longman.

Halliday, M. A. K. 1985. An Introduction to Functional Grammar. London: E. Arnold.

228

Hollan, James D., Edwin L. Hutchins and Louis Weitzman. 1984. �STEAMER: An

Interactive Inspectable Simulation-Based Training System,� AI Magazine

5(2): 15�27.

Helmut Horacek. 1992. �An Integrated View of Text Planning.� In [Dale et al. 1992,

pp. 29�44].

Hovy, Eduard H. 1988. �Planning Coherent Multisentential Text,� Proceedings of the

26th Annual Meeting of the Association for Computational Linguistics, Buffalo.

Hovy, Eduard H. and Kathleen F. McCoy. 1989. �Focusing Your RST: A Step toward

Generating Coherent Multisentential Text,� Program of the 11th Annual

Conference of the Cognitive Science Society, Montreal. Hillsdale, NJ: Lawrence

Erlbaum.

Hovy, Eduard H. 1991. �Approaches to the Planning of Coherent Text.� In [Paris,

Swartout & Mann 1991, pp. 83�102].

Hovy, Eduard H., et al. 1992. �Employing Knowledge Resources in a New Text Planner

Architecture.� In [Dale et al. 1992, pp. 57�72].

Huang, Xueming and Gordon I. McCalla. 1992. �Instructional Planning using Focus of

Attention.� In [Frasson, Gauthier & McCalla 1992, pp. 443�450].

Hume, Gregory D. 1995. Using Student Modelling to Determine When and How to Hint

in an Intelligent Tutoring System. Ph.D. thesis, Department of Computer Science,

Illinois Institute of Technology.

Hume, Gregory D., Joel A. Michael, Allen A. Rovick and Martha W. Evens. 1993. �The

Use of Hints as a Tutorial Tactic,� Proceedings of the 15th Annual Conference of

the Cognitive Science Society, Boulder. Hillsdale, NJ: Lawrence Erlbaum.

Hume, Gregory D., Joel A. Michael, Allen A. Rovick and Martha W. Evens. 1995.

�Controlling Active Learning: How Tutors Decide When to Generate Hints,�

Proceedings of the 8th Florida Artificial Intelligence Research Symposium,

Pensacola.

Hume, Gregory D., Joel A. Michael, Allen A. Rovick and Martha W. Evens. 1996.

�Hinting as a Tactic in One-on-One Tutoring,� Journal of the Learning Sciences

5(1): 32�47.

229

Jönsson, Arne. 1991. �A Dialogue Manager using Initiative-Response Units and

Distributed Control,� Proceedings of the Fourth Conference of the European

Chapter of the Association for Computational Linguistics, Manchester, pp. 233-

238.

Jullien, Cléo and Jean-Charles Marty. 1989. �Plan Revision in Person-Machine Dialog,�

Fourth Conference of the European Chapter of the Association for Computational

Linguistics: Proceedings of the Conference, Manchester, pp. 153�160.

Kempen, Gerard. 1987. Natural Language Generation: New Results in AI, Psychology

and Linguistics. (NATO ASI Series, series E: Applied Science, no. 136.)

Dordrecht: Martinus Nijhoff.

Khuwaja, Ramzan A. 1994. A Model of Tutoring: Facilitating Knowledge Integration

using Multiple Models of the Domain. Ph.D. thesis, Department of Computer

Science, Illinois Institute of Technology.

Khuwaja, Ramzan A., Allen A. Rovick, Joel A. Michael and Martha W. Evens. 1995. �A

Tale of Three Protocols: The Implications for Intelligent Tutoring Systems.� In

E. A. Yfantis, ed., Intelligent Systems: Third Golden West International

Conference, Las Vegas, 1994 (Theory and Decision Library, Series D: System

Theory, Knowledge Engineering, and Problem Solving, v. 15), Dordrecht: Kluwer

Academic.

Kim, Nakhoon. 1989. CIRCSIM-Tutor: An Intelligent Tutoring System for Circulatory

Physiology. Ph.D. thesis, Department of Computer Science, Illinois Institute of

Technology.

Levinson, Stephen C. 1983. Pragmatics. Cambridge: Cambridge University Press.

Li, Jun, Jai Seu, Martha W. Evens, Joel A. Michael and Allen A. Rovick. 1992.

�Computer Dialogue System (CDS): A System for Capturing Computer-Mediated

Dialogue�, Behavior Research Methods, Instruments, & Computers 24(4): 535�

540.

McCoy, Kathleen F. and Jeanette Cheng. 1991. �Focus of Attention: Constraining What

Can Be Said Next.� In [Paris, Swartout & Mann 1991, pp. 103�124].

McDermott, Drew. 1981. �Artificial Intelligence Meets Natural Stupidity.� In John

Haugeland, ed., Mind Design: Philosophy, Psychology, Artificial Intelligence,

Cambridge, MA: MIT Press, pp. 143�160.

230

McKeown, Kathleen R. 1985. Text Generation: Using Discourse Strategies and Focus

Constraints to Generate Natural Language Text. Cambridge: Cambridge University

Press. An earlier version was published as the author�s Ph.D. thesis at the University

of Pennsylvania in 1982.

McRoy, Susan W. and Graeme Hirst. 1995. �The Repair of Speech Act Misunder-

standings by Abductive Inference,� Computational Linguistics 21(4): 435�478.

Maier, Elisabeth A. and Eduard H. Hovy. 1991. �A Metafunctionally Motivated

Taxonomy for Discourse Structure Relations,� Proceedings of the Third European

Workshop on Text Generation, Innsbruck.

Mann, William C. 1985. �An Introduction to the Nigel Text Generation Grammar.� In

James D. Benson and William S. Greaves, eds., Systemic Perspectives on Discourse,

v. 1: Selected Theoretical Papers from the Ninth International Systemic Workshop,

Toronto, 1982 (Advances in Discourse Processes, v. 15), Norwood, NJ: Ablex,

pp. 84�95.

Mann, William C. and James A. Moore. 1981. �Computer Generation of Multiparagraph

English Text,� American Journal of Computational Linguistics 7(1): 17�29.

Mann, William C. and Sandra A. Thompson. 1986. �Relational Propositions in

Discourse,� Discourse Processes 9: 57�90.

Mann, William C. and Sandra A. Thompson. 1988. �Rhetorical Structure Theory: Toward

a Functional Theory of Text Organization,� Text 8(3): 243�281.

Martin, Jim R. 1983. �Conjunction: The Logic of English Text.� In János S. Petöfi and

Emil Sözer, eds., Micro and Macro Connexity of Texts (Papiere zur Textlinguistik,

v. 45), Hamburg: Helmut Burke Verlag, pp. 1�72.

Maybury, Mark T. 1992. �Communicative Acts for Explanation Generation,�

International Journal of Man-Machine Studies 37(2): 135�172.

Maybury, Mark T. 1991. Planning Multisentential English Text Using Communicative

Acts. Ph.D. thesis, University of Cambridge Computer Laboratory. Technical Report

239.

Meteer, Marie W. 1992. Expressibility and the Problem of Efficient Text Planning.

London: Pinter. An earlier version was published as the author�s Ph.D. thesis at the

University of Massachusetts at Amherst in 1990.

231

Moore, Johanna D. 1995. Participating in Explanatory Dialogues: Interpreting and

Responding to Questions in Context. Cambridge, MA: MIT Press. An earlier

version was published as the author�s 1989 Ph.D. thesis at UCLA.

Moore, Johanna D. and Cécile L. Paris. 1989. �Planning Text for Advisory Dialogues,�

Proceedings of the 27th Annual Meeting of the Association for Computational

Linguistics, Vancouver.

Moore, Johanna D. and Martha Pollack. 1993. �A Problem for RST: The Need for Multi-

Level Discourse Analysis,� Computational Linguistics 18(4): 537�544.

Moore, Johanna D. and William R. Swartout. 1991. �A Reactive Approach to

Explanation: Taking the User�s Feedback into Account.� In [Paris, Swartout &

Mann 1991, pp. 3�48].

Neches, Robert, William R. Swartout and Johanna D. Moore. 1985. �Enhanced

Maintenance and Explanation of Expert Systems through Explicit Models of their

Development,� IEEE Transactions on Software Engineering, SE-11(11): 1337�

1351.

Paris, Cécile L. 1985. �Description Strategies for Naive and Expert Users,� Proceedings

of the 23rd Annual Meeting of the Association for Computational Linguistics,

Chicago.

Paris, Cécile L. 1988. �Tailoring Object Descriptions to a User�s Level of Expertise,�

Computational Linguistics 14(3): 64�78.

Paris, Cécile L. 1991. �Generation and Explanation: Building an Explanation Facility for

the Explainable Expert Systems Framework.� In [Paris, Swartout & Mann 1991,

pp. 49�82].

Paris, Cécile L. 1993. User Modelling in Text Generation. London: Pinter. An earlier

version was published as the author�s Ph.D. thesis at Columbia University in 1987.

Paris, Cécile L. and Kathleen R. McKeown. 1987. �Discourse Strategies for Describing

Complex Physical Objects.� In [Kempen 1987, pp. 97�115].

Paris, Cécile L., William R. Swartout and William C. Mann, eds. 1991. Natural Language

Generation in Artificial Intelligence and Computational Linguistics. Proceedings of

the Fourth International Workshop on Text Generation, Catalina Island, CA, 1988.

Boston: Kluwer.

232

Darwyn R. Peachey and Gordon I. McCalla. 1986. �Using Planning Techniques in

Intelligent Tutoring Systems,� International Journal of Man-Machine Studies,

24(1): 77�98.

Penberthy, J. Scott and Daniel S. Weld. 1992. �UCPOP: A Sound, Complete, Partial-Order

Planner for ADL,� Proceedings of the Third International Conference on Knowledge

Representation and Reasoning (KR-92), Cambridge, MA.

Reiter, Ehud. 1991. �A New Model of Lexical Choice for Nouns,� Computational

Intelligence 7(4): 240�251.

Reiter, Ehud. 1994. �Has a Consensus NL Generation Architecture Appeared, and is it

Psycholinguistically Plausible?,� Proceedings of the Seventh International

Workshop on Natural Language Generation, Kennebunkport, ME, pp. 163�170.

Also available from the cmp-lg archive as paper 9411032.

Reiter, Ehud. 1995. �NLG vs. Templates,� Proceedings of the Fifth European Workshop

on Natural Language Generation, Leiden. Also available from the cmp-lg archive

as paper 9504013.

Reiter, Ehud. 1996. �Building Natural-Language Generation Systems.� In Alison Cawsey,

ed., Proceedings of the AI and Patient Education Workshop, Glasgow, GIST

Technical Report G95.3, Department of Computing Science, University of Glasgow.

Also available from the cmp-lg archive as paper 9605002.

Resnick, Lauren B. 1977. �Holding an Instructional Conversation: Comments on Chapter

10 by Collins.� In Richard C. Anderson, Rand J. Spiro and William E. Montague,

eds., Schooling and the Acquisition of Knowledge. Hillsdale, NJ: Lawrence

Erlbaum, pp. 365�372.

Robin, Jacques. 1994. Revision-Based Generation of Natural Language Summaries

Providing Historical Background: Corpus-Based Analysis, Design, Implementation

and Evaluation. Ph.D. thesis, Department of Computer Science, Columbia

University. Technical Report CUCS-034-94.

Rösner, Dietmar and Manfred Stede. 1992. �Customizing RST for the Automatic

Production of Technical Manuals.� In [Dale et al. 1992, pp. 199�214].

Rovick, Allen A. and Lisa Brenner. 1983. �HEARTSIM: A Cardiovascular Simulation with

Didactic Feedback,� The Physiologist 26(4): 236�239.

233

Rovick, Allen A. and Joel A. Michael. 1992. �The Predictions Table: A Tool for Assessing

Students� Knowledge,� American Journal of Physiology, 263(6, part 3): S33�S36.

Also available as Advances in Physiology Education, 8(1): S33�S36.

Sacerdoti, Earl D. 1974. �Planning in a Hierarchy of Abstraction Spaces,� Artificial

Intelligence 5(2): 115�135.

Sacerdoti, Earl D. 1977. A Structure for Plans and Behavior. New York: Elsevier.

Sacks, Harvey, Emanuel A. Schegloff and Gail Jefferson. 1974. �A Simplest Systematics

for the Organization of Turn-Taking in Conversation,� Language 50(4): 696�735.

Sanders, Gregory A. 1995. Generation of Explanations and Multi-Turn Discourse

Structures in Tutorial Dialogue, Based on Transcript Analysis. Ph.D. thesis,

Department of Computer Science, Illinois Institute of Technology.

Schegloff, Emanuel A. and Harvey Sacks. 1973. �Opening up Closings,� Semiotica 7(4):

289�327.

Schiffrin, Deborah. 1987. Discourse Markers. Cambridge: Cambridge University Press.

Searle, John R. Speech Acts. 1969. Cambridge: Cambridge University Press.

Seu, Jai, Ru-Charn Chang, Jun Li, Martha W. Evens, Joel A. Michael and Allen A.

Rovick. 1991. �Language Differences in Face-to-Face and Keyboard-to-Keyboard

Tutoring Sessions,� Proceedings of the 13th Annual Conference of the Cognitive

Science Society, Chicago. Hillsdale, NJ: Lawrence Erlbaum.

Sidner, Candace L. 1983. �Focusing in the Comprehension of Definite Anaphora.� In

Michael Brady and Robert C. Berwick, eds., Computational Models of Discourse,

Cambridge, MA: MIT Press, pp. 267�330. Reprinted in [Grosz, Sparck Jones &

Webber 1986]. Based on the author�s 1979 Ph.D. thesis at MIT.

Sinclair, John M. and Richard M. Coulthard. 1975. Towards an Analysis of Discourse:

The English Used by Teachers and Pupils. London: Oxford University Press.

Sleeman, Derek H. and John S. Brown, eds. 1982. Intelligent Tutoring Systems. New

York: Academic Press.

Smith, Ronnie W. 1992. �Integration of Domain Problem Solving with Natural Language

Dialog: The Missing Axiom Theory.� In Applications of Artificial Intelligence X:

Knowledge-Based Systems (SPIE v. 1707), pp. 270�275.

234

Spitkovsky, John A. 1992. �Negative Acknowledgments in Natural Language Tutoring

Systems,� talk at Illinois Institute of Technology on July 22, 1992.

Stenström, Anna-Brita. 1994. An Introduction to Spoken Interaction. London: Longman.

Stevens, Albert L. and Allan Collins. 1977. �The Goal Structure of a Socratic Tutor,�

Proceedings of the 1977 Annual Conference of the Association for Computing

Machinery, Seattle.

Stevens, Albert L., Allan Collins and Sarah E. Goldin. 1979. �Misconceptions in Students�

Understanding,� International Journal of Man-Machine Studies 11(1): 145�156.

Reprinted in [Sleeman & Brown 1982, pp. 13�24].

Stevens, Albert and Bruce Roberts. 1983. �Quantitative and Qualitative Simulation in

Computer Based Training,� Journal of Computer-Based Instruction

10(1�2): 16�19.

Traum, David and Elizabeth Hinkelman. 1992. �Conversation Acts in Task-Oriented

Spoken Dialogue,� Computational Intelligence 8(3): 575�599.

Van Marcke, K. 1990. �A Generic Tutoring Environment,� In Luigia C. Aiello, ed., ECAI

�90: Proceedings of the Ninth European Conference on Artificial Intelligence,

Stockholm. London: Pitman.

Weizenbaum, Joseph. 1967. �Contextual Understanding by Computers,� Communications

of the ACM 10(8): 474�480.

Weld, Daniel S. 1994. �An Introduction to Least Commitment Planning,� AI Magazine

15(1�2).

Wenger, Etienne. 1987. Artificial Intelligence and Tutoring Systems: Computational and

Cognitive Approaches to the Communication of Knowledge. Los Altos, CA:

Morgan Kaufmann.

Wilkins, David E. 1988. Practical Planning: Extending the Classical AI Planning

Paradigm. San Mateo, CA: Morgan Kaufmann.

Williams, Michael, James Hollan and Albert Stevens. 1981. �An Overview of STEAMER:

An Advanced Computer-Assisted Instruction System for Propulsion Engineering,�

Behavior Research Methods & Instrumentation 13(2): 85�90.

235

Wong, Lung-Hsiang, Chee-Kit Looi and Hiok-Chai Quek. 1996. �Issues in Computerizing

the Inquiry Dialogue Planning Process.� In [Frasson, Gauthier & Lesgold 1996,

pp. 252�260].

Woo, Chong W. 1991. Instructional Planning in an Intelligent Tutoring System:

Combining Global Lesson Plans with Local Discourse Control. Ph.D. thesis,

Department of Computer Science, Illinois Institute of Technology.

Woolf, Beverly P. 1984. Context-Dependent Planning in a Machine Tutor. Ph.D. thesis,

Department of Computer Science, University of Massachusetts at Amherst. COINS

Technical Report 84�21.

Woolf, Beverly P. 1987. �Representing Complex Knowledge in an Intelligent Machine

Tutor,� Computational Intelligence 3(1). Reprinted in John Self, ed., Artificial

Intelligence and Human Learning, London: Chapman and Hall, 1988, pp. 3�27.

Young, R. Michael. 1994. A Developer�s Guide to the LONGBOW Discourse Planning

System. Technical Report 94�4, Intelligent Systems Program, University of

Pittsburgh.

Young, R. Michael and Johanna D. Moore. 1994a. �Does Discourse Planning Require a

Special-Purpose Planner?,� Proceedings of the AAAI Workshop on Planning for

Inter-Agent Communication, Seattle.

Young, R. Michael and Johanna D. Moore. 1994b. �DPOCL: A Principled Approach to

Discourse Planning,� Proceedings of the Seventh International Workshop on

Natural Language Generation, Kennebunkport, ME, pp. 13�20.

Young, R. Michael, Johanna D. Moore and Martha E. Pollack. 1994. �Towards a

Principled Representation of Discourse Plans,� Proceedings of the 16th Annual

Conference of the Cognitive Science Society, Atlanta. Hillsdale, NJ: Lawrence

Erlbaum, pp. 946�951.

Young, R. Michael, Martha E. Pollack and Johanna D. Moore. 1994. �Decomposition and

Causality in Partial Order Planning,� Proceedings of the Second International

Conference on AI and Planning Systems, Chicago, pp. 946�951.

Zhang, Yuemei. 1991. Knowledge-Based Discourse Generation for an Intelligent

Tutoring System. Ph.D. thesis, Department of Computer Science, Illinois Institute of

Technology.

236

Appendix A
Solutions to the Cardiovascular Problems

A.1 Table of variables

The following chart shows the abbreviations used in this Appendix and their

meanings.

Abbreviation Variable

Core variables CO Cardiac output

CVP Central venous pressure

HR Heart rate

IS Inotropic state

MAP Mean arterial pressure

SV Stroke volume

TPR Total peripheral resistance

Other procedure variables Ra Arteriolar resistance

BV Blood volume

Pit Intrathoracic pressure

VR Venous return

CBV Central blood volume

A.2 Table of procedure variables and primary variables

The following chart shows the major procedures, the procedure variable or first

variable to be affected, the primary variable or first core variable to be affected, and the

direction of change. We refer to the primary variable as clamped when it cannot change

further in RR (see Section 2.3.2).

Procedure Procedure Primary Clamped?

Variable Variable

Speed up artificial pacemaker HR + HR + Yes

Slow down artificial pacemaker HR − HR −

Give cholinergic antagonist (blocker) HR + HR + No

Give cholinergic agonist HR − HR −

Give beta-adrenergic antagonist HR −, IS − HR −, IS − No/depends

237

Give beta-adrenergic agonist HR +, IS + HR +, IS +

Increase Ra by 50% Ra + TPR + No

Decrease Ra Ra − TPR −

Give alpha-adrenergic agonist TPR + TPR + Depends

Give alpha-adrenergic antagonist TPR − TPR −

Transfusion BV + CVP + N/A

Hemorrhage BV − CVP −

Increase intrathoracic pressure (Pit) Pit + CVP + N/A

Decrease intrathoracic pressure (Pit) Pit − CVP −

Increase venous return (VR) VR + CVP + N/A

Decrease venous return (VR) VR − CVP −

Spin patient in centrifuge CBV − CVP − N/A

Notes:

1) �Depends� means that the variable will be clamped if a sufficient quantity of the

drug is administered. This information must be given in the statement of the

problem. The problems are usually set up so that a sufficient quantity of a drug

is administered to clamp the primary variable.

The problem involving Ra is defined as reducing Ra by 50%. This is not

sufficient to clamp TPR.

2) �N/A� refers to the fact that only neural variables can be clamped.

3) Beta-blockers have two primary variables. HR is not clamped. IS is clamped if a

sufficient quantity of the drug is given. (See Section 2.4.5.)

A.3 Summary of rules

Determinants:

HR, TPR and IS are neural.

The determinants of SV are CVP and IS, and MAP is a minor

determinant (inverse direction).

The determinants of CO are SV and HR.

The determinants of MAP are CO and TPR.

CO is the sole determinant of CVP (inverse direction).

238

Propagation-meta-rule:

Once a variable has been assigned a value in a stage, that value is never

recomputed during that stage.

Determine-DR:

1. Determine the procedure variable and its direction from the

perturbation.

2. Derive the primary variable and its direction from the procedure

variable.

3. Determine the values of the neural variables.

4. Propagate values to variables on the shortest path to MAP.

5. Propagate values to the variables on the secondary path.

Determine-RR:

1. Determine values for the neural variables.

2. Propagate values to variables on the most important path to MAP.

3. Propagate values to variables on the secondary path.

Determine-SS:

1. Determine the value of the primary variable.

2. Determine values for the remaining neural variables.

3. Propagate values to variables on the shortest path to MAP.

4. Propagate values to variables on the secondary path.

Determine-shortest-path:

The shortest path is determined by the primary variable.

HR primary: HR → CO → MAP

HR and IS primary: HR → CO → MAP

No primary variable: HR → CO → MAP

IS primary: IS → SV → CO → MAP

TPR primary: TPR → MAP

CVP primary: CVP → SV → CO → MAP

Determine-secondary-path:

The secondary path is determined by the path which has already been

traversed.

HR → CO → MAP: CO → CVP → SV

IS → SV → CO → MAP: CO → CVP

TPR → MAP: MAP → SV → CO → CVP

CVP → SV → CO → MAP: (none)

239

Determine-most-important-path:

No clamped variable: HR → CO → MAP

IS clamped: HR → CO → MAP

TPR clamped: HR → CO → MAP

HR clamped: IS → SV → CO → MAP

HR and IS clamped: TPR → MAP

Det-procedure-variable:

When the value of the perturbation is propagated, the procedure

variable is the first variable on the extended concept map to receive a

value.

Det-primary-variable:

When the value of the procedure variable is propagated, the primary

variable is the first core variable to receive a value.

Neural-DR:

Neural variables which are not primary do not change in DR.

Prop-1:

When a variable has one determinant, then the value of that

determinant (increased, decreased or unchanged) determines the value

of the variable.

Prop-1-Pit:

The following case is an exception to rule Prop-1. When intrathoracic

pressure (Pit) is the primary variable, SV is inversely determined by

CVP.

Prop-2n:

(no value) If a variable has two determinants and one of them has a

value and the other one does not have a value yet, then the value of the

one with a value determines the value of the variable.

Prop-2u:

(unchanged value) If a variable has two determinants and one of them

has increased or decreased and the other one is unchanged, then the

value of the one which has changed determines the value of the

variable.

240

Prop-2e:

(equal values) If a variable has two determinants and both of them

have the same value, then that value becomes the value of the variable.

Prop-2sv:

(conflicting values for SV) In DR, if the two determinants of SV

(i.e. IS and CVP) have conflicting values (one increases and the other

decreases), the value of CVP determines the value of SV.

Prop-2c:

(conflicting values for CO and MAP) If a variable other than SV has

two determinants with conflicting values, and one determinant is

neural and the other is not, then the non-neural determinant takes

precedence unless the neural determinant is primary.

Prop-minor:

If a variable has two determinants and neither of them has a value

other than �unchanged,� but there is a minor determinant with a value,

then the value of the minor determinant determines the value of the

variable.

Neural-RR:

If MAP went up in DR, then any non-clamped neural variable will go

down in RR, and vice versa.

Clamped-RR:

Clamped neural variables do not change in RR.

Algebraic-SS:

The value of a variable in SS is the �algebraic sum� of its qualitative

predictions in DR and RR. If the DR and RR values have opposite

signs, the DR value prevails.

Primary-SS:

If a variable is primary, it has the same value in SS as it did in DR.

Neural-SS:

If a neural variable is not primary, it has the same value in SS as it did

in RR.

241

Denervate-DR:

If the baroreceptors have been denervated, then no variables change

their values in DR.

Denervate-RR:

If the baroreceptors have been denervated, then all the neural variables

rise in RR.

Clamped-RR-previous:

If a variable is clamped during the first perturbation of a multiple-

perturbation problem, it does not change in RR of the second step

except in the case where the variable in question is HR and the second

procedure involves a broken pacemaker.

Denervate-RR-longterm:

If the first procedure involves denervating the baroreceptors, then no

variables change in RR in the second procedure.

A.4 Solutions for the DR stage

A.4.1 DR: HR is the primary variable

Primary variable:

HR: Assume that the perturbation causes HR to rise.

Neural variables:

TPR: Since DR is by definition the stage before the baroreceptor reflex

is activated, a neural variable can�t change in the DR stage unless

it�s the primary variable. So TPR is unchanged.

(Neural-DR, V = TPR)

IS: By the same reasoning, IS is unchanged.

(Neural-DR, V = IS)

Shortest path to MAP:

CO: Since HR went up and SV has no value yet, CO (= HR * SV)

must go up.

(Prop-2n, V = CO, Dchanged = HR, Dno-value = SV)

MAP: CO going up will cause MAP to go up, since MAP = CO * TPR

and TPR is unchanged.

(Prop-2u, V = MAP, Dchanged = CO, Dunchanged = TPR)

242

Secondary path:

CVP: CO going up will cause CVP to go down.

(Prop-1, V = CVP, D = CO)

SV: Since CVP went down and IS is unchanged, SV will decrease.

(Prop-2u, V = SV, Dchanged = CVP, Dunchanged = IS)

A.4.2 DR: TPR is the primary variable

Primary variable:

TPR: Assume that the perturbation causes TPR to rise.

Neural variables:

IS: Since DR is by definition the stage before the baroreceptor reflex

is activated, a neural variable can�t change in the DR stage unless

it�s the primary variable. So IS is unchanged.

(Neural-DR, V = IS)

HR: By the same reasoning, HR is unchanged.

(Neural-DR, V = HR)

Shortest path to MAP:

MAP: Since MAP = CO * TPR, CO has no value yet, and TPR has

risen, MAP will rise.

(Prop-2n, V = MAP, Dchanged = TPR, Dno-value = CO)

Secondary path:

SV: CVP has no value yet and IS is unchanged, so the minor

determinant (MAP) comes into play. MAP going up will cause SV

to decrease.

(Prop-minor, V = SV, D1 = CVP, D2 = SV, Dm = MAP)

CO: Since SV went down and HR is unchanged, CO will decrease.

(Prop-2u, V = CO, Dchanged = SV, Dunchanged = HR)

CVP: Since CO decreased, CVP will increase.

(Prop-1, V = CVP, D = CO)

243

A.4.3 DR: IS is the primary variable

Primary variable:

IS: Assume that the perturbation causes IS to rise.

Neural variables:

HR: Since DR is by definition the stage before the baroreceptor reflex

is activated, a neural variable can�t change in the DR stage unless

it�s the primary variable. So HR is unchanged.

(Neural-DR, V = HR)

TPR: By the same reasoning, TPR is unchanged.

(Neural-DR, V = TPR)

Shortest path to MAP:

SV: Since IS went up and CVP has no value yet, SV will rise.

(Prop-2n, V = SV, Dchanged = IS, Dno-value = CVP)

CO: Since SV went up and HR is unchanged, CO (= HR * SV) will go

up.

(Prop-2u, V = CO, Dchanged = SV, Dunchanged = HR)

MAP: Since CO went up and TPR is unchanged, MAP (= CO * TPR)

will go up.

(Prop-2u, V = MAP, Dchanged = CO, Dunchanged = TPR)

Secondary path:

CVP: CO going up will cause CVP to go down.

(Prop-1, V = CVP, D = CO)

A.4.4 DR: CVP is the primary variable

Primary variable:

CVP: Assume that the perturbation causes CVP to rise.

Neural variables:

IS: Since DR is by definition the stage before the baroreceptor reflex

is activated, a neural variable can�t change in the DR stage unless

it�s the primary variable. So IS is unchanged.

(Neural-DR, V = IS)

244

HR: By the same reasoning, HR is unchanged.

(Neural-DR, V = HR)

TPR: By the same reasoning, TPR is unchanged.

(Neural-DR, V = TPR)

Shortest path to MAP:

SV: Since CVP went up and IS is unchanged, SV will increase.

(Prop-2u, V = SV, Dchanged = CVP, Dunchanged = IS)

CO: Since SV went up and HR is unchanged, CO (= HR * SV) must

increase.

(Prop-2u, V = CO, Dchanged = SV, Dunchanged = HR)

MAP: Since CO increased and TPR is unchanged, MAP (= CO * TPR)

will go up.

(Prop-2u, V = MAP, Dchanged = CO, Dunchanged = TPR)

Secondary path:

None.

A.5 Solutions for the RR stage

Without loss of generality, we assume that MAP increased in DR.

A.5.1 RR: No clamped variables

If the primary variable is not clamped, the solution for RR does not depend on

which variable is primary.

Neural variables:

IS: Since MAP went up in DR, IS will decrease.

(Neural-RR, V = IS)

HR: By the same reasoning, HR will decrease.

(Neural-RR, V = HR)

TPR: By the same reasoning, TPR will decrease.

(Neural-RR, V = TPR)

245

Most important path to MAP:

CO: Since HR decreased and SV has no value yet, CO will go down.

(Prop-2n, V = CO, Dchanged = SV, Dno-value = HR)

MAP: Since CO and TPR both decreased, MAP will go down.

(Prop-2e, V = MAP, D1 = CO, D2 = TPR)

Secondary path:

CVP: CO going down will cause CVP to go up.

(Prop-1, V = CVP, D = CO)

SV: Since IS decreased and CVP has increased, qualitative reasoning

cannot decide. World knowledge tells us that SV will go up.

(Prop-2sv)

A.5.2 RR: HR is clamped

Neural variables:

IS: Since MAP went up in DR, IS will decrease.

(Neural-RR, V = IS)

HR: Since HR is clamped, it cannot change.

(Clamped-RR, V = HR)

TPR: Since MAP went up in DR, TPR will decrease.

(Neural-RR, V = TPR)

Most important path to MAP:

SV: Since IS decreased and CVP has no value yet, SV will go down.

(Prop-2n, V = SV, Dchanged = IS, Dno-value = CVP)

CO: Since SV went down and HR is unchanged, CO will go down.

(Prop-2u, V = CO, Dchanged = SV, Dunchanged = HR)

MAP: Since CO and TPR both decreased, MAP will go down.

(Prop-2e, V = MAP, D1 = CO, D2 = TPR)

Secondary path:

CVP: CO going down will cause CVP to go up because CO inversely

affects CVP.

(Prop-1, V = CVP, D = CO)

246

A.5.3 RR: TPR is clamped

Neural variables:

IS: Since MAP went up in DR, IS will decrease.

(Neural-RR, V = IS)

HR: By the same reasoning, HR will decrease.

(Neural-RR, V = HR)

TPR: Since TPR is clamped, it cannot change.

(Clamped-RR, V = TPR)

Most important path to MAP:

CO: Since HR went down and SV has no value yet, CO will go down.

(Prop-2n, V = CO, Dchanged = HR, Dno-value = SV)

MAP: Since CO decreased and TPR is unchanged, MAP will go down.

(Prop-2u, V = MAP, Dchanged = CO, Dunchanged = TPR)

Secondary path:

CVP: CO going down will cause CVP to go up because CO inversely

affects CVP.

(Prop-1, V = CVP, D = CO)

SV: Since IS decreased and CVP has increased, qualitative reasoning

cannot decide. World knowledge tells us that SV will go up.

(Prop-2sv)

A.5.4 RR: IS is clamped

Neural variables:

IS: Since IS is clamped, it cannot change.

(Clamped-RR, V = IS)

HR: By the same reasoning, HR will decrease.

(Neural-RR, V = HR)

TPR: By the same reasoning, TPR will decrease.

(Neural-RR, V = TPR)

247

Most important path to MAP:

CO: Since SV has no value yet and HR decreased, CO will go down.

(Prop-2n, V = CO, Dchanged = HR, Dno-value = SV)

MAP: Since CO and TPR both decreased, MAP will go down.

(Prop-2e, V = MAP, D1 = CO, D2 = TPR)

Secondary path:

CVP: CO going down will cause CVP to go up because CO inversely

affects CVP.

(Prop-1, V = CVP, D = CO)

SV: Since CVP increased and IS is unchanged, SV will increase.

(Prop-2u, V = SV, Dchanged = CVP, Dunchanged = IS)

A.6 Solutions for the SS stage

In this section, we give solutions using causal reasoning. Solutions using the

algebraic method can easily be determined using the rules given in Section 2.4.4.

A.6.1 SS: HR is the primary variable

Neural variables:

HR: Since HR is primary, it has the same value in SS as in DR, so it

rises.

(Primary-SS, V = HR)

TPR: Since TPR is not primary, it has the same value in SS as in RR, so

it decreases.

(Neural-SS, V = TPR)

IS: Since IS is not primary, it has the same value in SS as in RR, so it

decreases.

(Neural-SS, V = IS)

Shortest path to MAP:

CO: Since HR went up and SV has no value yet, CO (= HR * SV)

must go up.

(Prop-2n, V = CO, Dchanged = HR, Dno-value = SV)

248

MAP: CO went up and TPR went down. CO overrides TPR because

TPR isn�t primary, so MAP goes up.

(Prop-2c, V = MAP, Dnon-neural = CO, Dneural = TPR)

Secondary path:

CVP: CO going up will cause CVP to go down.

(Prop-1, V = CVP, D = CO)

SV: Since both CVP and IS went down, SV will decrease.

(Prop-2e, V = SV, D1 = CVP, D2 = IS)

A.6.2 SS: TPR is the primary variable

Primary variable:

TPR: Since TPR is primary, it has the same value in SS as in DR, so it

rises.

(Primary-SS, V = TPR)

Neural variables:

IS: Since IS is not primary, it has the same value in SS as in RR, so it

decreases.

(Neural-SS, V = IS)

HR: Since HR is not primary, it has the same value in SS as in RR, so

it decreases.

(Neural-SS, V = HR)

Shortest path to MAP:

MAP: Since MAP = CO * TPR, CO has no value yet, and TPR has

risen, MAP will rise.

(Prop-2n, V = MAP, Dchanged = TPR, Dno-value = CO)

Secondary path:

SV: IS decreased and CVP has no value yet, so SV will decrease.

(Prop-2n, V = SV, Dchanged = IS, Dno-value = CVP)

CO: Since SV and HR both went down, CO will decrease.

(Prop-2e, V = CO, D1 = SV, D2 = HR)

CVP: Since CO decreased, CVP will increase.

(Prop-1, V = CVP, D = CO)

249

A.6.3 SS: IS is the primary variable

Neural variables:

IS: Since IS is primary, it has the same value in SS as in DR, so it

rises.

(Primary-SS, V = IS)

HR: Since HR is not primary, it has the same value in SS as in RR, so

it decreases.

(Neural-SS, V = HR)

TPR: Since TPR is not primary, it has the same value in SS as in RR, so

it decreases.

(Neural-SS, V = TPR)

Shortest path to MAP:

SV: Since IS went up and CVP has no value yet, SV will rise.

(Prop-2n, V = SV, Dchanged = IS, Dno-value = CVP)

CO: SV went up and HR went down. SV overrides HR because HR

isn�t primary, so CO will go up.

(Prop-2c, V = CO, Dnon-neural = SV, Dneural = HR)

MAP: CO went up and TPR went down. CO overrides TPR because

TPR isn�t primary, so MAP will go up.

(Prop-2c, V = MAP, Dnon-neural = CO, Dneural = TPR)

Secondary path:

CVP: CO going up will cause CVP to go down.

(Prop-1, V = CVP, D = CO)

A.6.4 SS: CVP is the primary variable

Primary variable:

CVP: Since CVP is primary, it has the same value in SS as in DR, so it

rises.

(Primary-SS, V = CVP)

Neural variables:

IS: Since IS is not primary, it has the same value in SS as in RR, so it

decreases.

(Neural-SS, V = IS)

250

HR: Since HR is not primary, it has the same value in SS as in RR, so

it decreases.

(Neural-SS, V = HR)

TPR: Since TPR is not primary, it has the same value in SS as in RR, so

it decreases.

(Neural-SS, V = TPR)

Shortest path to MAP:

SV: Since IS decreased and CVP has increased, qualitative reasoning

cannot decide. World knowledge tells us that SV will go up.

(Prop-2sv)

CO: SV went up and HR went down. SV overrides because HR isn�t

primary, so CO increases.

(Prop-2c, V = CO, Dnon-neural = SV, Dneural = HR)

MAP: CO increased and TPR decreased. CO overrides because TPR

isn�t primary, so MAP goes up.

(Prop-2c, V = MAP, Dnon-neural = CO, Dneural = TPR)

Secondary path:

None.

251

A.7 Prediction tables for the simple cases

This section summarizes the results for each case. The left prediction table refers to

the case where the primary variable increases and the one on the right to the case where

the primary variable decreases.

A.7.1 HR is primary, non-clamped

Parameter DR RR SS Parameter DR RR SS

CVP − + − CVP + − +
IS 0 − − IS 0 + +
SV − + − SV + − +
HR + − + HR − + −
CO + − + CO − + −
TPR 0 − − TPR 0 + +
MAP + − + MAP − + −

A.7.2 HR is primary, clamped

Parameter DR RR SS Parameter DR RR SS

CVP − + − CVP + − +
IS 0 − − IS 0 + +
SV − − − SV + + +
HR + 0 + HR − 0 −
CO + − + CO − + −
TPR 0 − − TPR 0 + +
MAP + − + MAP − + −

252

A.7.3 TPR is primary, non-clamped

Parameter DR RR SS Parameter DR RR SS

CVP + + + CVP − − −
IS 0 − − IS 0 + +
SV − + − SV + − +
HR 0 − − HR 0 + +
CO − − − CO + + +
TPR + − + TPR − + −
MAP + − + MAP − + −

A.7.4 TPR is primary, clamped

Parameter DR RR SS Parameter DR RR SS

CVP + + + CVP − − −
IS 0 − − IS 0 + +
SV − + − SV + − +
HR 0 − − HR 0 + +
CO − − − CO + + +
TPR + 0 + TPR − 0 −
MAP + − + MAP − + −

A.7.5 IS is primary, non-clamped

Parameter DR RR SS Parameter DR RR SS

CVP − + − CVP + − +
IS + − + IS − + −
SV + + + SV − − −
HR 0 − − HR 0 + +
CO + − + CO − + −
TPR 0 − − TPR 0 + +
MAP + − + MAP − + −

253

A.7.6 IS is primary, clamped

Parameter DR RR SS Parameter DR RR SS

CVP − + − CVP + − +
IS + 0 + IS − 0 −
SV + + + SV − − −
HR 0 − − HR 0 + +
CO + − + CO − + −
TPR 0 − − TPR 0 + +
MAP + − + MAP − + −

A.7.7 CVP is primary

Parameter DR RR SS Parameter DR RR SS

CVP + + + CVP − − −
IS 0 − − IS 0 + +
SV + + + SV − − −
HR 0 − − HR 0 + +
CO + − + CO − + −
TPR 0 − − TPR 0 + +
MAP + − + MAP − + −

A.8 Special cases

A.8.1 Beta-blockers

Beta-blockers have two primary variables, HR and IS. The sino-atrial node, which

controls heart rate, contains both beta receptors and cholinergic receptors. Since beta-

blockers block only the effect of the nervous system on beta receptors (i.e. through the

sympathetic nervous system) and not on cholinergic receptors (i.e. through the

parasympathetic nervous system), HR will not be clamped. IS will be clamped if a

sufficient quantity of the drug is given.

254

As a result, the result of administering a beta-agonist or a beta-blocker is the same

as the result given for HR primary and non-clamped in A.7.1 except for IS:

Parameter DR RR SS Parameter DR RR SS

CVP − + − CVP + − +
IS + 0 + IS − 0 −
SV − + − SV + − +
HR + − + HR − + −
CO + − + CO − + −
TPR 0 − − TPR 0 + +
MAP + − + MAP − + −

The logic for deriving these values is as given above for HR primary and non-

clamped (A.4.1, A.5.1, and A.6.1) with the exception of IS and SV. For SV, although the

logic for deriving the result is different, the result is the same.

DR:

IS: IS is a primary variable; its direction of change depends on the

perturbation. Since IS and HR change in the same direction, we

assume IS increases here because HR increases in A.4.1.)

SV: Since IS increased and CVP decreased, qualitative reasoning

cannot decide. World knowledge tells us that SV will go down.

(Prop-2sv)

RR:

IS: Since IS is clamped, it cannot change.

(Clamped-RR, V = IS)

SV: Since CVP increased and IS is unchanged, SV will increase.

(Prop-2u, V = SV, Dchanged = CVP, Dunchanged = IS)

255

SS:

IS: Since IS is primary, it has the same value in SS as in DR, so it

rises.

(Primary-SS, V = IS)

SV: Since IS increased and CVP has decreased, qualitative reasoning

cannot decide. World knowledge tells us that SV will go down.

(Prop-2sv)

A.8.2 Changing intrathoracic pressure (Pit)

When intrathoracic pressure (Pit) increases, all of the structures inside the chest are

compressed, including the central veins and the chambers of the heart. Since the central

veins are compressed, pressure inside them rises, so the primary variable is central venous

pressure (CVP), which increases. Normally an increase in CVP would cause more blood

to flow into the heart on each beat, i.e. an increase in ventricular filling. This would cause

more blood to flow out per beat also, i.e. stroke volume (SV) would increase. But when

Pit increases, the arteries where the blood will go on leaving the heart are compressed

also. As a result, ventricular filling decreases, causing a decrease in SV.

Since this difference is propagated through the other variables, one obtains the

opposite of the normal case for many variables.

Parameter DR RR SS Parameter DR RR SS

CVP + − + CVP − + −
IS 0 + + IS 0 − −
SV − − − SV + + +
HR 0 + + HR 0 − −
CO − + − CO + − +
TPR 0 + + TPR 0 − −
MAP − + − MAP + − +

256

DR:

Primary variable:

CVP: Primary variable: assume that the perturbation causes CVP to rise.

Neural variables:

IS, HR, TPR: Since DR is by definition the stage before the baroreceptor

reflex is activated, a neural variable can�t change in the DR stage

unless it�s the primary variable. So all of these variables are

unchanged.

(Neural-DR, IS/HR/TPR)

Shortest path to MAP:

SV: Although an increase in CVP would normally cause an increase in

SV, SV decreases because the compression of the heart causes a

decrease in ventricular filling (see Section 2.4.5).

(Prop-Pit)

CO: Since SV went down and HR is unchanged, CO (= HR * SV)

must decrease.

(Prop-2u, V = CO, Dchanged = SV, Dunchanged = HR)

MAP: Since CO decreased and TPR is unchanged, MAP (= CO * TPR)

will go down.

(Prop-2u, V = MAP, Dchanged = CO, Dunchanged = TPR)

RR:

Neural variables:

IS, HR, TPR: Since MAP went down in DR, all of the neural variables

will increase.

(Neural-RR, V = IS/HR/TPR)

Most important path to MAP:

CO: Since HR increased and SV has no value yet, CO will go up.

(Prop-2n, V = CO, Dchanged = HR, Dno-value = SV)

MAP: Since CO and TPR both increased, MAP will go up.

(Prop-2e, V = MAP, D1 = CO, D2 = TPR)

257

Secondary path:

CVP: CO going up will cause CVP to go down.

(Prop-1, V = CVP, D = CO)

SV: Since IS increased and CVP has decreased, qualitative reasoning

cannot decide. World knowledge tells us that SV will go down.

(Prop-2sv)

SS:

Primary variable:

CVP: Since CVP is primary, it has the same value in SS as in DR, so it

rises.

(Primary-SS, V = CVP)

Neural variables:

IS, HR, TPR: Since the neural variables are not primary, they have the

same value in SS as in RR, so they increase.

(Neural-SS, V = IS/HR/TPR)

Shortest path to MAP:

SV: Although an increase in CVP would normally cause an increase in

SV, SV decreases as explained for DR.

(Prop-Pit)

CO: SV went down and HR went up. SV overrides because HR isn�t

primary, so CO decreases.

(Prop-2c, V = CO, Dnon-neural = SV, Dneural = HR)

MAP: CO decreased and TPR increased. CO overrides because TPR

isn�t primary, so MAP goes down.

(Prop-2c, V = MAP, Dnon-neural = CO, Dneural = TPR)

A.8.3 Denervating the baroreceptors

To enervate the baroreceptors means to cut the link from the baroreceptors to the

nervous system. Since the nervous system is not active in DR, this means that the effect of

the perturbation is not noticed in DR, i.e. no variables change. In RR, the complete

258

cessation of signals from the nervous system will appear to the receptors as a very steep

fall in MAP. As a result all of the neural variables will rise in RR, and none is clamped.

Parameter DR RR SS

CVP 0 − −
IS 0 + +
SV 0 − −
HR 0 + +
CO 0 + +
TPR 0 + +
MAP 0 + +

DR:

All variables: Since DR is by definition the stage before the baroreceptor

reflex is activated, disabling this effect will not be noticed in DR,

i.e. no variables will change.

(Denervate-DR, V = all)

RR:

Neural variables:

IS, HR, TPR: The complete cessation of signals from the nervous system

will appear to the receptors as a very steep fall in MAP. As a

result all of the neural variables will rise in RR.

(Denervate-RR, V = IS/HR/TPR)

Since there is no clamped variable, the remainder of RR follows

A.5.1. The signs are reversed because MAP rises in A.5.1.

Most important path to MAP:

CO: Since HR increased and SV has no value yet, CO will go up.

(Prop-2n, V = CO, Dchanged = HR, Dno-value = SV)

MAP: Since CO and TPR both increased, MAP will go up.

(Prop-2e, V = MAP, D1 = CO, D2 = TPR)

259

Secondary path:

CVP: CO going up will cause CVP to go down.

(Prop-1, V = CVP, D = CO)

SV: Since IS increased and CVP has decreased, qualitative reasoning

cannot decide. World knowledge tells us that SV will go down.

(Prop-2sv)

SS:

Neural variables:

IS, HR, TPR: Since none of these variables is primary, they have the

same value in SS as in RR, so they rise.

(Neural-SS, V = IS/HR/TPR)

Shortest path to MAP:

CO: Since HR increased and SV has no value yet, CO will go up.

(Prop-2n, V = CO, Dchanged = HR, Dno-value = SV)

MAP: Since CO and TPR both increased, MAP will go up.

(Prop-2e, V = MAP, D1 = CO, D2 = TPR)

Secondary path:

CVP: CO going up will cause CVP to go down.

(Prop-1, V = CVP, D = CO)

SV: Since IS increased and CVP has decreased, qualitative reasoning

cannot decide. World knowledge tells us that SV will go down.

(Prop-2sv)

A.8.4 Compound case: Beta-blocker, then broken pacemaker

When two perturbations occur in sequence, we process them sequentially and

illustrate the result by showing the prediction table after each perturbation.

The DR for the second procedure is based on the result of SS in the first procedure.

In other words, DR for the second procedure measures the change from the previous

steady state. This result differs from the regular DR in only one case. When the first

260

perturbation causes a variable to be clamped, it stays clamped in RR during the second

procedure, with the exception that a broken pacemaker in the second procedure can

override the result of clamping by a drug.

When a beta-blocker is followed by a broken pacemaker, the first prediction table is

the right-hand table in A.8.1 (beta-blockers). Here is the second table, showing the result

when the pacemaker increases or decreases, respectively. The logic for constructing this

table is shown below.

Parameter DR RR SS Parameter DR RR SS

CVP − − − CVP + + +
IS 0 0 0 IS 0 0 0

SV − + − SV + − +
HR + 0 + HR − 0 −
CO + + + CO − − −
TPR 0 − − TPR 0 + +
MAP + − + MAP − + −

DR:

Logic is the same as A.4.1 (DR for HR primary). (Also, note that IS

does not change in any case, as it is still clamped.)

RR:

Neural variables:

IS: Since IS is clamped by the beta-blocker, it cannot change.

(Clamped-RR-previous, V = IS)

HR: Since HR is clamped by the broken pacemaker, it cannot change.

(Clamped-RR, V = HR)

TPR: Since MAP went up in DR, TPR will decrease.

(Neural-RR, V = TPR)

261

Most important path to MAP:

MAP: Since MAP = CO * TPR, CO has no value yet, and TPR went

down, MAP will go down.

(Prop-2n, V = MAP, Dchanged = TPR, Dno-value = CO)

Secondary path:

SV: CVP has no value yet and IS is unchanged, so the minor

determinant (MAP) comes into play. MAP going down will cause

SV to increase.

(Prop-minor, V = SV, D1 = CVP, D2 = SV, Dm = MAP)

CO: Since SV went up and HR is unchanged, CO will increase.

(Prop-2u, V = CO, Dchanged = SV, Dunchanged = HR)

CVP: Since CO went up, CVP will go down.

(Prop-1, V = CVP, D = CO)

SS:

Neural variables:

HR: Since HR is primary, it has the same value in SS as in DR, so it

rises.

(Primary-SS, V = HR)

TPR: Since TPR is not primary, it has the same value in SS as in RR, so

it decreases.

(Neural-SS, V = TPR)

IS: Since IS is not primary, it has the same value in SS as in RR, so it

is unchanged. (Note that IS could not change in any case, as it is

still clamped.)

(Neural-SS, V = IS)

Shortest path to MAP:

CO: Since HR went up and SV has no value yet, CO (= HR * SV)

must go up.

(Prop-2n, V = CO, Dchanged = HR, Dno-value = SV)

262

MAP: CO went up and TPR went down. CO overrides TPR because

TPR isn�t primary, so MAP goes up.

(Prop-2c, V = MAP, Dnon-neural = CO, Dneural = TPR)

Secondary path:

CVP: CO going up will cause CVP to go down.

(Prop-1, V = CVP, D = CO)

SV: Since CVP went down and IS is unchanged, SV will decrease.

(Prop-2u, V = SV, Dchanged = CVP, Dunchanged = IS)

A.8.5 Compound case: Denervate the baroreceptors, then beta-blocker

When denervation of the baroreceptors is followed by a beta-blocker, the first

prediction table is given in A.8.3 (denervating the baroreceptors). The second prediction

table and the logic for deriving it are shown below.

Parameter DR RR SS

CVP + 0 +
IS − 0 −
SV + 0 +
HR − 0 −
CO − 0 −
TPR 0 0 0

MAP − 0 −

DR:

Same as DR in A.8.1 (beta-blocker). The signs are reversed because the

logic in A.8.1 shows the effect of a beta-agonist.

RR:

All variables: Since the nervous system receives no signals from the

baroreceptors, it cannot pass any on. Thus no variables change.

(Denervate-RR-longterm, V = all)

263

SS:

Neural variables:

IS: Since IS is primary, it has the same value in SS as in DR, so it

decreases.

(Primary-SS, V = IS)

HR: Since HR is primary, it has the same value in SS as in DR, so it

decreases.

(Primary-SS, V = HR)

TPR: Since TPR is not primary, it has the same value in SS as in RR, so

it is unchanged.

(Neural-SS, V = TPR)

Shortest path to MAP:

CO: Since HR went down and SV has no value yet, CO (= HR * SV)

must go down.

(Prop-2n, V = CO, Dchanged = HR, Dno-value = SV)

MAP: CO went down and TPR is unchanged, so MAP goes down.

(Prop-2u, V = MAP, Dchanged = CO, Dunchanged = TPR)

Secondary path:

CVP: CO going down will cause CVP to go up.

(Prop-1, V = CVP, D = CO)

SV: Since IS decreased and CVP has increased, qualitative reasoning

cannot decide. World knowledge tells us that SV will go up.

(Prop-2sv)

	Title
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1.1: Factors affecting rice growing
	2.1: A version of the concept map
	2.2: Prediction table
	2.3: A more detailed concept map
	3.1: C IRCSIM -Tutor screen interface
	5.1: Derivation of the value of a neural variable
	5.2: Derivation of the value of a non-neural variable
	5.3: C IRCSIM -Tutor v. 3 from the point of view of text generation
	5.4: Dialogues which C IRCSIM -Tutor can generate
	5.5: Conceptual tutoring agenda
	5.6: Initial tutoring agenda
	5.7: Initial discourse tree
	5.8: Tutoring agenda with rebuttal
	5.9: Final discourse tree

	Introduction
	1. Issues in the Design of Text-Based Intelligent Tutoring Systems
	Relation of domain, tutorial and discourse knowledge in ITSs
	Text planning: intentional and decompositional approaches
	From plan to text
	Planning and replanning in an ITS
	Plan-based explanation systems
	Causal and functional models

	2. Introduction to the Baroreceptor Reflex Domain
	Teaching cardiovascular physiology
	A laypersonís guide to the baroreceptor reflex
	Defining the problem space
	Solving the problems

	3. Introduction to the C IRCSIM -Tutor Project
	Computer-assisted instruction (CAI) systems for the baroreceptor reflex
	Comparison of v. 3 of C IRCSIM -Tutor to v. 2
	User view of C IRCSIM -Tutor v. 3

	4. A Model of Instructional Discourse for Cardiac Physiology
	Developing a model from naturalistic data
	Principal aspects of the model
	Discourse mechanisms used in high-level planning
	Discourse mechanisms used in correcting a variable
	Responding to the studentís turn
	Correcting neural variables
	Correcting non-neural variables
	Other methods for correcting variables
	Conveying and eliciting information
	Switching between domain models
	Generation of previously observed phenomena
	Problems with cooperative conversation

	5. Architecture of the Discourse Planner
	Representation of tutorial knowledge
	The initial set of semantic forms and their realization
	Tutorial planning: Generation of semantic forms
	Turn planning: Realization of semantic forms as surface structure
	Examples of the dynamic behavior of the discourse planner

	6. Conclusions
	Summary
	Contributions of this work
	Feasible enhancements using the current architecture
	Evaluating potential long-term research directions
	Conclusions

	References
	App. A. Solutions to the Cardiovascular Problems
	Table of variables
	Table of procedure variables and primary variables
	Summary of rules
	Solutions for the DR stage
	Solutions for the RR stage
	Solutions for the SS stage
	Prediction tables for the simple cases
	Special cases

