4.1 Recurrence Relations - Key Concepts

- Sequences of the form a_0, a_1, \ldots can often be defined recursively, using a recurrence relation having
 - One or more base cases: Exact values for one or more initial sequence terms, and,
 - A recurrence expression a_n as a recursive formula (one involving previous sequence terms).

A recurrence relation produces a sequence. A sequence can often be easily reformulated as a recurrence relation.

Example (Factorial Sequence)

- Define the sequence $\{n!\}_{n=0}^{\infty}$ recursively: Base case: $0! = 1$, recursive case: $n! = (n-1)! \cdot n$, for $n \geq 1$.

- Expressed as the sequence $\{a_n\}_{n=0}^{\infty}$, we have $a_0 = 1$ and $a_n = a_{n-1} \cdot n$, for $n \geq 1$. Using bottom-up iteration to compute the sequence of values, we get

<table>
<thead>
<tr>
<th>index n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula for a_n</td>
<td>base case</td>
<td>$a_0 \cdot 1$</td>
<td>$a_1 \cdot 2$</td>
<td>$a_2 \cdot 3$</td>
<td>$a_3 \cdot 4$</td>
<td>$a_4 \cdot 5$</td>
<td>$a_5 \cdot 6$</td>
</tr>
<tr>
<td>value of a_n</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>24</td>
<td>120</td>
<td>720</td>
</tr>
</tbody>
</table>

Example (Arithmetic Sequence)

- The arithmetic sequence $\{a_n\}_{n=0}^{\infty}$ with first term a and common difference d is defined as follows: base case $a_0 = a$, recursive case $a_n = a_{n-1} + d$. If $a = 23$ and $d = 3$, bottom-up iteration gives us

<table>
<thead>
<tr>
<th>index n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula for a_n</td>
<td>base case</td>
<td>$a_0 + 3$</td>
<td>$a_1 + 3$</td>
<td>$a_2 + 3$</td>
<td>$a_3 + 3$</td>
<td>$a_4 + 3$</td>
<td>$a_5 + 3$</td>
</tr>
<tr>
<td>value of a_n</td>
<td>23</td>
<td>26</td>
<td>29</td>
<td>32</td>
<td>35</td>
<td>38</td>
<td>41</td>
</tr>
</tbody>
</table>

Questions

1. Complete this definition of a general geometric sequence with first term a and common ratio r: Base case: $a_0 = a$; recursive case: $a_n = \ldots$. Generate the first six terms of a geometric sequence with $a = 3$ and common ratio $r = -2$.

2a. Generate the first six terms for the sequence $\{a_n\}_{n=3}^{\infty}$ with definition $a_3 = 0$ and $a_n = a_{n-1} + 2n - 7$.

2b. Guess a (non-recursive) formula for a_n and verify that it satisfies the recurrence.

Some material from MATH230 Dr. Robert Ellis IIT-AMAT, zyBooks Disc. Math., and Disc. Math. and its Appl., Rosen (7th Ed.) is included under the academic/nonprofit Fair Use exception of US Copyright Law. This document must NOT be distributed beyond participants in IIT’s CS330.
3a. Draw all the legal tilings for a 2×3 rectangle. For this problem, we want to tile a rectangular grid using three possible tile shapes: a 2×1 rectangle, and no tiles can overlap. Below are drawings of the four basic shapes plus the two possible 2×1 tilings.

Let \(t_n \) be the number of tilings for a 2×\(n \) rectangle. By inspection, there are 2 tilings for a 2×1 rectangle, and so \(t_1 = 2 \).

Question

3. For this problem, we want to tile a rectangular grid using three possible tile shapes: a 2×2 square, a 2×1 rectangle (if used vertically; it can also be used as a horizontal 1×2 rectangle), and a 1×1 square. (A tiling must cover every square of the rectangle, and no tiles can overlap.) Below are drawings of the four basic shapes plus the two possible 2×1 tilings. In addition, two of the possible 3×2 tilings are disallowed and are also shown below.

<table>
<thead>
<tr>
<th>Four Basic Shapes</th>
<th>The Two 2×1 Tilings</th>
<th>The Disallowed 3×2 Tilings</th>
</tr>
</thead>
<tbody>
<tr>
<td>S S V V H H s s</td>
<td>V₁ s₁ H₁ H₁ s₁ s₁</td>
<td>H₁ H₁ H₁ s₁ s₁ s₁</td>
</tr>
<tr>
<td>S S V H s</td>
<td>V₁ s₁ H₁ H₁ s₁ s₁</td>
<td>H₁ H₁ H₁ s₁ s₁ s₁</td>
</tr>
</tbody>
</table>

Let \(t_n \) be the number of tilings for a 2×\(n \) rectangle. By inspection, there are 2 tilings for a 2×1 rectangle, and so \(t_1 = 2 \).

3a. Draw all the legal tilings for a 2×2 rectangle to determine \(t_2 = \) _________ .

3b. For \(n \geq 3 \), one way to get a 2×\(n \) tiling is to take each of the \(t_{n-1} \) tilings for 2×(\(n-1 \)) and adding one column. There are _________ ways to add the last column, so \(t_n \geq t_{n-1} \times \) _________ .
3c. For \(n \geq 3 \), another way to get a \(2 \times n \) tiling is to take each of the \(t_{n-2} \) tilings for a \(2 \times (n-2) \) rectangle and adding two columns. There are \(\square \) ways are there to add those two columns, but \(\square \) of those ways are covered by adding 1 column and then 1 more column, so \(t_n \geq t_{n-2} \times \square \).

3d. For \(n \geq 3 \), how else can we get a \(2 \times n \) tiling from smaller tilings? Are these cases subsumed by the cases we already have for extending \(2 \times (n-1) \) and \(2 \times (n-2) \) tilings?

3e. Using all this information, give a definition for the sequence \(t_n \).

4.2 Mathematical Induction

- Mathematical Induction is a powerful, rigorous technique for proving that a predicate \(P(n) \) is true for every natural number \(n \), no matter how large. It’s often characterized using a ladder-climbing or domino-effect analogy. The first form of induction is as follows:

The First Principle of Mathematical Induction

\[
P(0) \\
(\forall n \geq 0) (P(n) \rightarrow P(n+1))
\]

\[\therefore (\forall n \geq 0) P(n)\]

Outline of an Inductive Proof

- Say we want to prove \(\forall n \in \mathbb{N} \ P(n) \):
 - **Base case (or basis step):** Prove \(P(0) \).
 - **Inductive step:** Prove \((\forall n)(P(n)\rightarrow P(n+1)) \)
 - Using a direct proof: Let \(n \in \mathbb{N} \), assume the inductive hypothesis, \(P(n) \). Under this assumption, prove \(P(n+1) \).
 - Or using an indirect proof (contraposition or contradiction)
 - Inductive inference rule then gives \(\forall n \in \mathbb{N} \ P(n) \).

Questions

4. Prove that the sum of the first \(n \) odd positive integers is \(n^2 \). That is, prove: \((\forall n \geq 1) \sum_{i=1}^{n} (2i - 1) = n^2 \).
5. Complete the following proof of the statement For all positive integers \(n \geq 4 \), we find \(2n + 3 \leq 2^n \), using mathematical induction. Lines with * have something missing.

Define the predicate \(P(n) \) to be \(2n + 3 \leq 2^n \) with domain \(n \in \mathbb{N} = \{0, 1, 2, \ldots\} \)

* Basis Step: \(P(\quad) \) is the statement:
 * Which simplifies to \(\quad \), so \(P(\quad) \) is true.

* Inductive Step: Let \(k \) be an integer with \(k \geq 1 \)
 * Assume \(P(k) \) is true. By definition, this means
 * Because \(k \geq 1 \), we have \(2 \leq 2^k \).
 * Add \(2 \leq 2^k \) to the inequality \(P(k) \) to obtain
 * Re-express both sides to get
 * Which is the inequality for \(P(k+1) \), so \(P(k+1) \) is true
 * By mathematical induction then,

6. Prove that \(\forall n > 0, n < 2^n \)