CS330 Recitation 4

Part 1
Review additional exercises from zyBook 2.3-2.4, the problems below, and any questions from HW 2.

1. Use a contrapositive proof to show that the square of an even number is also even.†
2. Use a contrapositive proof to show that if \(n \) is an even integer, then so is \(-n \).
3. Use a contrapositive proof to show that every odd integer is the difference of two squares.
4. Prove (using proof by contradiction) that for integer \(m \), \(n \), and \(p \), if \(m + n \) and \(n + p \) are even, then so is \(m + p \).
5. Prove (using proof by contradiction) that if \(n \) is a perfect square, then \(n + 2 \) is not a perfect square.

Part 2
Review additional exercises from zyBook 3.1-3.3, the problems below [from Rosen], and any questions from HW 3.

9. A *palindrome* is a string that reads the same forward and backward. Describe an algorithm for determining whether a string of \(n \) characters is a palindrome.

23. Describe an algorithm that determines whether a function from a finite set to another finite set is onto.

29. A *mode* of a list of integers is an element that occurs at least as often as each of the other elements. Devise an algorithm that finds a mode in a list of nondecreasing integers.

1. Determine whether each of these functions is \(O(x) \)
 a. \(f(x) = 10 \)
 b. \(f(x) = 3x+7 \)
 c. \(f(x) = x^2 + x + 1 \)
 d. \(f(x) = 5 \log x \)
 e. \(f(x) = \lfloor x/2 \rfloor \)
 f. \(f(x) = \lceil x/2 \rceil \)

7. Find the least integer \(n \) such that \(f(x) \) is \(O(x^n) \) for each of these functions:
 a. \(f(x) = 2x^3 + x^2 \log x + 1 \) [Hint: \(\log x \in O(x) \) but \(x \notin O(\log x) \)]
 b. \(f(x) = 3x^3 + (\log x)^6 \)
 c. \(f(x) = (x^4 + x^2 + 1) / (x^3 + 1) \)
 d. \(f(x) = (x^4 + 5 \log x) / (x^3 + 1) \)

9. Show that \(x^2 + 4x + 17 \in O(x^3) \) but that \(x^3 \notin O(x^2 + 4x + 17) \) [Hint: It's sufficient to show \(x^3 \notin O(x^2) \).]

3. Suppose that an element is known to be among the first 4 elements in a list of 32 elements. Would a linear search or a binary search locate this element more rapidly?