Last time → Lecture 1 - course mechanics

CS.illinois.edu/
ncs330

Logic - reason about properties
Propositional logic
- things are true or false

Proposition statements, judgements
- declarative stuff that is either true or false
Propositions - it's sunny now

\(t = \) is it 2:30 pm now?

- what time is it?
- not prop.

Proposition

Variables

stand for propositions \(T \) \(F \)

P191

atomic - can't be broken up into
nonatomic

smaller propositions
Combine propositions using connectives

- $\neg p$ negation “not p”
- $p \land q$ conjunction “p and q” conjuncts
- $p \lor q$ disjunction “p or q” inclusive or
- $p \oplus q$ exclusive or “p xor q” disjuncts

(math, logic, etc.)

$T \lor T = T$ $p \lor q$ one or more of p, q are true $T \lor F$ True

$T \land T = T$ $p \land q$ exactly one of p, q are true

(english statements)

it is raining \land we are having a picnic

$F \land F$ $T \land T$ $T \land F$ F
Truth tables - show the value of a connected prop. as a fun of its sub-props

$p | \neg p
T | F
F | T

$p, q | p \cdot q
F, F | F
F, T | F
T, F | F
T, T | T

$p, q | p \lor q
F, F | F
F, T | T
T, F | T
T, T | T

$p, q | p \oplus q
F, F | F
F, T | T
T, F | T
T, T | F
<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>p ∨ q ∨ r</th>
<th>normal English</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Translate English to prop logic:

- \(p \) = "I like cats"
- \(q \) = "I like dogs"
- \(r \) = "I like mammals"

\(p \oplus q \) = I like cats or dogs (but not both)

\(pvq \) = I like cats or dogs or both
Tautology - all rows of a T-Table's column are T

Contradiction - all rows are F

Contingency - at least 1 T and 1 F

<table>
<thead>
<tr>
<th>P</th>
<th>P \land Q</th>
<th>P \lor Q</th>
<th>P \Rightarrow Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>\neg P</th>
<th>P \lor P</th>
<th>P \Rightarrow P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Not taut = contr. or contingency
Not contr. = taut. or contingency

If \(p \) is a taut then \(\neg p \) is a contr.
If \(p \) is a contr. then \(\neg p \) is a taut.
Implication: \(p \rightarrow q \) conditional \[\begin{array}{c|c|c}
 p & q & p \rightarrow q \\
 T & T & T \\
 T & F & F \\
 F & T & T \\
 F & F & T \\
 \end{array} \]

Absurdity implies anything.

If \(1 + 1 = 1 \) then I'm Santa Claus

\[\{ \text{me}\} \]

\[\{ \text{s.c.}\} \]

\[\{ \text{me}, \text{s.c.}\} \]