CS 330 class 3

Tue Jan 26

- Classes 01, 02 - on Panopto <= 8B
- Fuller schedule posted
- Note exam dates

Bit more propositional logic

- English "or" - prop. \lor
- English "if" - prop. \iff biconditional
- Prop. "logical equivalence"

\(p \equiv q \) means \(p \iff q \) is a tautology

- Can replace equals for equals
 - \(p \equiv q \text{ and } q \equiv r \text{ implies } p \equiv r \)
 - \(p \equiv q \text{ and } p \equiv r \text{ implies } q \equiv r \)
\[F \land F = F \quad T \]

\[(p \iff q) \land (q \iff r) \iff (p \iff r)? \]

<table>
<thead>
<tr>
<th>T</th>
<th>F</th>
<th>F</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

No

see laws about propositions - table

Predicate logic
Add \(\{ \text{domain of values, variables, predicates} \} \) and quantifiers

defined
\[\text{thing 1} \equiv \text{thing 2} \]
\[p \iff q \equiv \neg p \lor q \]
Predicate - Statement that is true or false depending on values of variables

A predicate is like a function of values to T/F. \(P(x) \equiv x \text{ is a dog} \)

\[
P(x, y) \equiv x > y^2 \quad P(2, 1) \checkmark \\
P(3, 2) \checkmark \\
h(x) \checkmark \\
Q(n) \equiv n \text{ is prime} \land n < 100
\]
Quantifier - how many/which values make the predicate true?

Most important:

\(\forall \) - for all
\(\exists \) - there exists

\[\forall x \in \mathbb{Z} \ (x \geq 0) \]
\[\forall x \in \mathbb{Z} \ (x > 0) \]

\(\forall x \ P(x) \) - \(P(x) \) true for every \(x \) in domain

\(\exists x \ P(x) \) - \(P(x) \) true for at least one \(x \) in domain

\(\exists x \in \mathbb{Z} \ (x > 0) \) - witness value
\forall x \; P(x)

Loops!

while there is an unchecked \(x \) in domain

if \(P(x) \) false, exit loop with false for value of \(\forall x \; P(x) \)

get another \(x \)

use true for value of \(\forall x \; P(x) \)

\exists x \; P(x)

while there is an unchecked \(x \) in domain

if \(P(x) \) is true, exit loop with true

get another \(x \)

use false for \(\exists x \; P(x) \)
For finite domain, \(\forall \) is like \(\land \), \(\exists \) is like \(\lor \)

Say domain = \{1, 2, 3\}, \(P(x) \equiv x \) is prime

\[\forall x \in \text{domain}, P(x) \equiv P(1) \land P(2) \land P(3) \equiv \text{T} \land \text{F} \land \text{T} = \text{F} \]

\[\exists x \in \text{domain}, P(x) \equiv P(1) \lor P(2) \lor P(3) \equiv \text{F} \lor \text{T} \lor \text{T} = \text{T} \]

\[R(n) \equiv n \equiv 0 \]

\[\forall x \in \text{domain}, \exists x \in \text{domain} : P(x) \equiv P(1) \lor P(2) \lor P(3) \equiv \text{F} \lor \text{T} \lor \text{T} = \text{T} \]

Other quantifiers:

- \(\forall R(x) \): for exactly one \(x \)
- \(\exists R(x) \): for an infinite number of \(x \)
- \(\forall R(x) \): for a finite # of \(x \)
- \(\exists R(x) \): for a majority of \(x \) from finite domain
Unique existence: \(\exists! x \ P(x) \equiv \exists x \ P(x) \land \neg \exists y \ (P(y) \land y \neq x) \)

Domain: \(\mathbb{Z} \)

Domain: \(\mathbb{N} \)?

(\(\exists x \ P(x) \)) \land _ _ _ _ ?

Scope of quantifier:

Precedence:

\(\forall x \ P(x) \lor Q(x) \equiv (\forall x \ P(x)) \lor Q(x) \) ?

\((\forall y \ P(y)) \lor Q(x) \) ?

More? Less?

\(\forall x \) bind _ _ _ _ tightly

than other operators ? \lor, \land _ _ _ ?
Translating English to logic with quantifiers

"Every vegetable in the store is green"
∀x ∈ Veg (Green(x))

"Some vegetable in this store is not green"
∃x (∼Green(x))

\[
\begin{array}{c|c|c|c|c}
 x & m & \text{true} & \text{false} \\
 0 & 0 & F & T \\
 1 & 1 & F & T \\
\end{array}
\]

Nested Q's

∀x ∈ M (\exists m \left(m > x^2 \right))

x = 0, m = 1 witness (∀x) E
x = 1, m = 1 not witness
x = 2, \(m = 2 \) is ?

x = 2, \(m = 5 \)
Negating Quantified Predicates

\[\forall x \, P(x) \equiv \text{for every vegetable in this store is green} \]

\[\neg \forall x \, P(x) \equiv \text{it's not the case that every vegetable in this store is green} \]

\[\equiv \exists x \, \neg P(x) \equiv \text{there is a vegetable in this store that is not green} \]

\[\equiv \exists x \, \neg P(x) \]