1. Draw the Venn diagrams for each of these combinations of the sets $A, B,$ and C.
 a) $A \cap (B \cup C)$
 b) $\overline{A} \cap B \cap \overline{C}$
 c) $(B - A) \cup (C - A) \cup (C - B)$

2. Suppose that the universal set is $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Express each of these sets with bit strings where the i-th bit in the string is 1 if i is in the set and 0 otherwise.
 a) $\{3, 4, 5\}$
 b) $\{1, 3, 6, 10\}$
 c) $\{2, 3, 4, 7, 8, 9\}$

3. Give an example of a function from \mathbb{N} to \mathbb{N} that is
 a) one-to-one but not onto.
 b) onto but not one-to-one.
 c) both onto and one-to-one (but different from the identity function).
 d) neither one-to-one nor onto.
 Prove that your functions have the desired properties.

4. Find $f \circ g$ and $g \circ f$, where $f(x) = x^2 + 1$ and $g(x) = x + 2$, are functions from \mathbb{R} to \mathbb{R}.

5. Is it true that x^3 is $O(g(x))$, if g if the given function?
 a) $g(x) = x^2$
 b) $g(x) = x^3$
 c) $g(x) = x^2 + x^3$
 d) $g(x) = x^2 + x^4$
 e) $g(x) = 3^x$
 f) $g(x) = \frac{x^3}{2}$
 Prove your answers.

6. Show that for all real numbers a and b with $a > 1$ and $b > 1$, if $f(x)$ is $O(\log_b x)$, then $f(x)$ is $O(\log_a x)$.