Base Case Proof

\[T(3) = 9 = 3^2. \] Therefore, when \(n = 3 \), \(T(n) = n^2 \).

Inductive Hypothesis

If \(a = 3^b \) for \(b > 1 \), we assume \(T(a) = T(3^b) = a^2 = 9^b \).

Inductive Step

The next inductive step to be proved is: if the above hypothesis holds, the following is true

\[\text{If } a = 3^{b+1} \text{ for } b > 1, \quad T(a) = T(3^{b+1}) = a^2 = 9^{b+1}, \]

Proof

\[
\begin{align*}
T(3^{b+1}) &= 6T(3^b) + \frac{1}{3} \cdot (3^{b+1})^2 \quad \text{recurrence relation} \\
&= 6 \cdot 9^b + \frac{1}{3} \cdot (3^{b+1})^2 \quad \text{inductive hypothesis} \\
&= 6 \cdot 9^b + 3 \cdot 9^b = 9^{b+1} \quad \text{simple manipulation} \quad \blacksquare
\end{align*}
\]

Conclusion

Combining the base case, hypothesis and the inductive step, we are able to conclude \(T(n) = n^2 \) (where \(T(n) \) is recursively defined as above) when \(n = 3^k \) for \(k > 1 \).

2

Let \(T(n) \) be the running time needed to perform the binary search in a sorted array \(A[1 \cdots n] \). Then, we have:

\[
T(n) = \begin{cases}
O(1) & n = 1 \\
T(\frac{n}{2}) + O(1) & n > 1
\end{cases}
\]

because we always discard a half of the given array at each recurrence.
1 Initialize an output matrix $A'_{m \times o}$ to all zeroes;
2 for $i = 1 \rightarrow m$ do
3 for $j = 1 \rightarrow o$ do
4 for $k = 1 \rightarrow n$ do
5 \[A'_{m \times o}[i][j] = A'_{m \times o}[i][j] + A_{m \times n}[i][k] \cdot A_{n \times o}[k][j]; \]
6 end
7 end
8 end

Algorithm 1: Multiplication $A_{m \times n} \times A_{n \times o}$

If we assume the time complexities of an addition and a multiplication are both $O(1)$, we can conclude the time complexity is $\Theta(nmo)$ due to the three for-loops.

4

The functions sorted according to their growth rates (non-increasing order):

\[
\begin{align*}
n^n & \quad (n+1)! \quad \sqrt{n}(n/e)^n \quad 2^{\lg n} \quad \sqrt{2}^{\lg n} \quad \lg n^2
\end{align*}
\]

Justifications are shown below.

- n^n is $\omega((n+1)!)$ because

\[
\lim_{n \to +\infty} \frac{n^n}{(n+1)!} = \lim_{n \to +\infty} \frac{n^n}{\sqrt{2\pi(n+1)(n+1/e)}^{n+1}} = \lim_{n \to +\infty} \frac{e^{n+1}}{\sqrt{2\pi(n+1)(n+1)(1+1/n)^n}} = +\infty
\]

Therefore, $n^n = \Omega((n+1)!)$

- $(n+1)! = \omega(\sqrt{n}(n/e)^n)$ because

\[
(n+1)! \approx \sqrt{2\pi(n+1)}\left(\frac{n+1}{e}\right)^{n+1} = \Theta\left(\sqrt{n+1}(n+1)\left(\frac{n+1}{e}\right)^n\right) = \omega(\sqrt{n}(n/e)^n)
\]

Therefore, $(n+1)! = \Omega(\sqrt{n}(n/e)^n)$ as well.

- $2^{\lg n} = n^{\lg 2} = n^2 \Rightarrow \sqrt{n}(n/e)^n = \Theta(n!) = \omega(2^{\lg n}) \Rightarrow \sqrt{n}(n/e)^n = \Omega(2^{\lg n})$

- For the rest, it is obvious to see the ranks because $\sqrt{2}^{\lg n} = n^{\lg \sqrt{2}} = n^{0.5}$ and $\lg n^2 = 2\lg n$.

5

Using Master Theorem

\[
a = 2, b = 2, f(n) = n \Rightarrow \frac{af(n/b)}{f(n)} = \frac{2(n/2)}{n} = 1
\]

Therefore, $T(n) = \Theta(f(n) \log_b n) = \Theta(n \log n)$
Using secondary recurrence

Let $n_i = n$ and $n_{i-1} = n/2$. Further, we assume $T(1)$ is the base case and $n_0 = 1$. This does not affect the final result since we are solving for the Θ notation of the function. Then,

$$n_i = 2n_{i-1} \Rightarrow n_i = \alpha 2^i \quad \text{(corresponds to } (E - 2)\text{)}$$

Since $n_0 = 1$, $\alpha = 1$ and $n_i = 2^i$. Further, define $F(i) = T(n_i)$. Then, the original recurrence:

$$T(n) = T(n_i) = 2T(n/2) + n = 2T(n_{i-1}) + n$$

becomes

$$F(i) = 2F(i - 1) + n$$

We have supposed $n = n_i$, and we derived that $n_i = 2^i$. Therefore, the final recurrence to solve is:

$$F(i) = 2F(i - 1) + 2^i$$

which is annihilated by $(E - 2)^2$. The corresponding closed formula is $(\alpha_1 i + \alpha_2)2^i$, which is $\Theta(i2^i)$. Recall that $n = 2^i$. We can achieve the final Θ notation by undoing the substitution as follows:

$$T(n) = F(i) = \Theta(i2^i) = \Theta(\log_2 n \cdot 2^{\log_2 n}) = \Theta(n \log n)$$