Binary Search Trees

A binary search tree labels each node in a binary tree
with a single key such that for any node z, and nodes
in the left subtree of  have keys < z and all nodes in
the right subtree of =z have key’'s > z.
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Left: A binary search tree. Right: A heap but not a
binary search tree.

The search tree labeling enables us to find where any
key is. Start at the root - if that is not the one we want,
search either left or right depending upon whether what
we want is < or > then the root.



Searching in a Binary Tree

Dictionary search operations are easy in binary trees ...

TREE-SEARCH(X, k)
if (x = NIL) OR (k = key[z])
then return x
if (k< key[x])
then return TREE-SEARCH(left[x],k)
else return TREE-SEARCH(right[x],k)

The algorithm works because both the left and right
subtrees of a binary search tree are binary search trees
— recursive structure, recursive algorithm.

This takes time proportional to the height of the tree,
O(h).
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Maximum and Minimum

Where are the maximum and minimum elements in a
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TREE-MAXIMUM(X)
while right[z] % NIL
do x = right[x]
return x

TREE-MINIMUM(x)
while left[z] %= NIL
do x = left[x]
return x

Both take time proportional to the height of the tree,
O(h).



Where iIs the predecessor?

Where is the predecessor of a node in a tree, assuming
all keys are distinct?
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PREDECESSOR(X)  SUCCESSOR(X)

If X has two children, its predecessor is the maximum
value in its left subtree and its successor the minimum
value in its right subtree.



What if a node doesn’t have

children?
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If it does not have a left child, a node's predecessor is
its first left ancestor.

The proof of correctness comes from looking at the
in-order traversal of the tree.

Tree-Successor(z)
if right[z] # NIL
then return Tree-Minimum(right[z])
y < plz]
while (y # NIL) and (z = right[y])
doxz <+ vy

y < ply]
return y

Tree predecessor/successor both run in time propor-
tional to the height of the tree.



In-Order Traversal
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Inorder-Tree-walk(z)
if (¢ <> NIL)
then Inorder-Tree-Walk(left[z])

print key[z]
Inorder-Tree-walk(right[z])

A-B-C-D-E-F-G-H



Tree Insertion

Do a binary search to find where it should be, then
replace the termination NIL pointer with the new item.

Tree-insert(T, z)

y = NIL
x = root[T]
while ¢ # NIL
doy==x
if key[z] < key[z]
then z = left[x]
else z = right[z]
plz] <y
if vy = NIL

then root[T] < =

else if key[z] < key[y]
then left[y] «+ =
else right[y] «+ =

y is maintained as the parent of x, since x eventually
becomes NIL.

The final test establishes whether the NIL was a left
or right turn from y.

Insertion takes time proportional to the height of the
tree, O(h).



Tree Deletion

Deletion is somewhat more tricky than insertion, be-
cause the node to die may not be a leaf, and thus effect
other nodes.

Case (a), where the node is a leaf, is simple - just NIL
out the parents child pointer.

Case (b), where a node has one chld, the doomed node
can just be cut out.

Case (c), relabel the node as its successor (which has
at most one child when z has two children!) and delete
the successor!

This implementation of deletion assumes parent point-
ers to make the code nicer, but if you had to save space
they could be dispensed with by keeping the pointers
on the search path stored in a stack.

Tree-Delete(T, z)
if (left[z] = NIL) or (right[z] = NIL)
then y « =z
else y «+ Tree-Successor(z)
if left[y] # NIL
then z « left[y]
else = < right[y]
if 2 £ NIL
then plz] < p[y]
if pl[y] = NIL
then root[T] < =

else if (y = left[ply]])
then left[p[y]] « =



else right[p[y]] « =
if (y<>=z)
then key[z] + key[y]
/* If y has other fields, copy them, too. */
return y

Lines 1-3 determine which node y is physically removed.
Lines 4-6 identify = as the non-nil decendant, if any.
Lines 7-8 give z a new parent.

Lines 9-10 modify the root node, if necessary

Lines 11-13 reattach the subtree, if necessary.

Lines 14-16 if the removed node is deleted, copy.

Conclusion: deletion takes time proportional to the
height of the tree.



Balanced Search Trees

All six of our dictionary operations, when implemented
with binary search trees, take O(h), where h is the
height of the tree.

The best height we could hope to get is Ign, if the tree
was perfectly balanced, since
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But if we get unlucky with our order of insertion or
deletion, we could get linear height!

insert(a)
insert(b)
insert(c)
insert(d)

In fact, random search trees on average have ©(lg N)
height, but we are worried about worst case height.

We can’t easily use randomization - Why?



Perfectly Balanced Trees

Perfectly balanced trees require a lot of work to main-
tain:

If we insert the key 1, we must move every single node
in the tree to rebalance it, taking ©(n) time.

Therefore, when we talk about " balanced” trees, we
mean trees whose height is O(lgn), so all dictionary
operations (insert, delete, search, min/max, succes-
sor/predecessor) take O(lgn) time.

Red-Black trees are binary search trees where each
node is assigned a color, where the coloring scheme
helps us maintain the height as ©(Ign).



