Binary Search Trees

A binary search tree labels each node in a binary tree
with a single key such that for any node z, and nodes
in the left subtree of  have keys < z and all nodes in
the right subtree of =z have key’'s > z.

A

Left: A binary search tree. Right: A heap but not a
binary search tree.

The search tree labeling enables us to find where any
key is. Start at the root - if that is not the one we want,
search either left or right depending upon whether what
we want is < or > then the root.



Searching in a Binary Tree

Dictionary search operations are easy in binary trees ...

TREE-SEARCH(X, k)
if (x = NIL) OR (k = key[z])
then return x
if (k< key[x])
then return TREE-SEARCH(left[x],k)
else return TREE-SEARCH(right[x],k)

The algorithm works because both the left and right
subtrees of a binary search tree are binary search trees
— recursive structure, recursive algorithm.

This takes time proportional to the height of the tree,
O(h).


Shuichi Maruyama

Shuichi Maruyama
OR


Maximum and Minimum

Where are the maximum and minimum elements in a

(/
> pe

TREE-MAXIMUM(X)
while right[z] % NIL
do x = right[x]
return x

TREE-MINIMUM(x)
while left[z] %= NIL
do x = left[x]
return x

Both take time proportional to the height of the tree,
O(h).



Where iIs the predecessor?

Where is the predecessor of a node in a tree, assuming
all keys are distinct?

/
ROO

PREDECESSOR(X)  SUCCESSOR(X)

If X has two children, its predecessor is the maximum
value in its left subtree and its successor the minimum
value in its right subtree.



What if a node doesn’t have

children?
O
predecessor(x) CD/
~0

JJ

x@/\
e

If it does not have a left child, a node's predecessor is
its first left ancestor.

The proof of correctness comes from looking at the
in-order traversal of the tree.

Tree-Successor(z)
if right[z] # NIL
then return Tree-Minimum(right[z])
y < plz]
while (y # NIL) and (z = right[y])
doxz <+ vy

y < ply]
return y

Tree predecessor/successor both run in time propor-
tional to the height of the tree.



In-Order Traversal
(H)

\
o o
}@
© ®
Inorder-Tree-walk(z)
if (¢ <> NIL)
then Inorder-Tree-Walk(left[z])

print key[z]
Inorder-Tree-walk(right[z])

A-B-C-D-E-F-G-H



Tree Insertion

Do a binary search to find where it should be, then
replace the termination NIL pointer with the new item.

Tree-insert(T, z)

y = NIL
x = root[T]
while ¢ # NIL
doy==x
if key[z] < key[z]
then z = left[x]
else z = right[z]
plz] <y
if vy = NIL

then root[T] < =

else if key[z] < key[y]
then left[y] «+ =
else right[y] «+ =

y is maintained as the parent of x, since x eventually
becomes NIL.

The final test establishes whether the NIL was a left
or right turn from y.

Insertion takes time proportional to the height of the
tree, O(h).



Tree Deletion

Deletion is somewhat more tricky than insertion, be-
cause the node to die may not be a leaf, and thus effect
other nodes.

Case (a), where the node is a leaf, is simple - just NIL
out the parents child pointer.

Case (b), where a node has one chld, the doomed node
can just be cut out.

Case (c), relabel the node as its successor (which has
at most one child when z has two children!) and delete
the successor!

This implementation of deletion assumes parent point-
ers to make the code nicer, but if you had to save space
they could be dispensed with by keeping the pointers
on the search path stored in a stack.

Tree-Delete(T, z)
if (left[z] = NIL) or (right[z] = NIL)
then y « =z
else y «+ Tree-Successor(z)
if left[y] # NIL
then z « left[y]
else = < right[y]
if 2 £ NIL
then plz] < p[y]
if pl[y] = NIL
then root[T] < =

else if (y = left[ply]])
then left[p[y]] « =



else right[p[y]] « =
if (y<>=z)
then key[z] + key[y]
/* If y has other fields, copy them, too. */
return y

Lines 1-3 determine which node y is physically removed.
Lines 4-6 identify = as the non-nil decendant, if any.
Lines 7-8 give z a new parent.

Lines 9-10 modify the root node, if necessary

Lines 11-13 reattach the subtree, if necessary.

Lines 14-16 if the removed node is deleted, copy.

Conclusion: deletion takes time proportional to the
height of the tree.



Balanced Search Trees

All six of our dictionary operations, when implemented
with binary search trees, take O(h), where h is the
height of the tree.

The best height we could hope to get is Ign, if the tree
was perfectly balanced, since

Yt 2t mn

But if we get unlucky with our order of insertion or
deletion, we could get linear height!

insert(a)
insert(b)
insert(c)
insert(d)

In fact, random search trees on average have ©(lg N)
height, but we are worried about worst case height.

We can’t easily use randomization - Why?



Perfectly Balanced Trees

Perfectly balanced trees require a lot of work to main-
tain:

If we insert the key 1, we must move every single node
in the tree to rebalance it, taking ©(n) time.

Therefore, when we talk about " balanced” trees, we
mean trees whose height is O(lgn), so all dictionary
operations (insert, delete, search, min/max, succes-
sor/predecessor) take O(lgn) time.

Red-Black trees are binary search trees where each
node is assigned a color, where the coloring scheme
helps us maintain the height as ©(Ign).



