
Rotations

The basic restructuring step for binary search trees are

left and right rotation:

Y

a b

c
X

X

Y
a

b c

a

b c

Y

X

a b

c
X

Y

1. Rotation is a local operation changing O(1) point-

ers.

2. An in-order search tree before a rotation stays an

in-order search tree.

3. In a rotation, one subtree gets one level closer to

the root and one subtree one level further from

the root.

LEFT-ROTATE(T,x)

y right[x] (* Set y*)

right[x] left[y] (* Turn y's left into x's right*)

if left[y] = NIL

then p[left[y]] x

p[y] p[x] (* Link x's parent to y *)

if p[x] = NIL

then root[T] y

else if x = left[p[x]]

then left[p[x]] y

else right[p[x]] y

left[y] x

p[x] y

Note the in-order property is preserved.

2

3

4

6

7

11

9 18

19

22

20

17

14

12

Left-Rotate(T, x)

7

4

3

3

6

18

19

22

201712

14

11

9

x

y

y

x higher

samelower

Shuichi Maruyama

Shuichi Maruyama
≠

Red-Black Insertion

Since red-black trees have �(lgn) height, if we can pre-

serve all properties of such trees under insertion/deletion,

we have a balanced tree!

Suppose we just did a regular insertion. Under what

conditions does it stay a red-black tree?

Since every insertion take places at a leaf, we will

change a black NIL pointer to a node with two black

NIL pointers.

?

To preserve the black height of the tree, the new node

must be red. If its new parent is black, we can stop,

otherwise we must restructure!

How can we �x two reds in a
row?

It depends upon our uncle's color:

R

R R Assume

red uncle..

grandparent - MUST be black

Red

parent

Red

new node

If our uncle is red, reversing our relatives' color either

solves the problem or pushes it higher!

R

R

Note that after the recoloring:

1. The black height is unchanged.

2. The shape of the tree is unchanged.

3. We are done if our great-grandparent is black.

If we get all the way to the root, recall we can always

color a red-black tree's root black. We always will, so

initially it was black, and so this process terminates.

The Case of the Black Uncle

If our uncle was black, observe that all the nodes around

us have to be black:

R

R

B

A black uncle

For a RB tree, after a red

node was a black root
X

Left as RB trees by our color change or are nil

old red

new

red

Had to be

black given

red child.

Solution - rotate right about B:

R

A

B

X

Changing A to black is necessary

because of the color of X.

Then changing B to red

leaves everybodies

black height the same.

Since the root of the subtree is now black with the

same black-height as before, we have restored the col-

ors and can stop!

Deletion from Red-Black Trees

Recall the three cases for deletion from a binary tree:

Case (a) The node to be deleted was a leaf;

A

Y

A

Possible color height change

Case (b) The node to be deleted had one child;

A

Y

A

B

B

Possible color height change

Case (c) relabel to node as its successor and delete the

successor.

A

B

B

A

Y

possible color height change

Keep this

node the

same color

as before

relabeling.

Deletion Color Cases

Suppose the node we remove was red, do we still have

a red-black tree?

Yes! No two reds will be together, and the black height

for each leaf stays the same.

However, if the dead node y was black, we must give

each of its decendants another black ancestor. If an

appropriate node is red, we can simply color it black

otherwise we must restructure.

Case (a) black NIL becomes \double black";

Case (b) red � becomes black and black � becomes

\double black";

Case (c) red � becomes black and black � becomes

\double black".

Our goal will be to recolor and restructure the tree so

as to get rid of the \double black" node.

In setting up any case analysis, we must be sure that:

1. All possible cases are covered.

2. No case is covered twice.

In the case analysis for red-black trees, the breakdown

is:

Case 1: The double black node x has a red brother.

Case 2: x has a black brother and two black nephews.

Case 3: x has a black brother, and its left nephew is

red and its right nephew is black.

Case 4: x has a black brother, and its right nephew is

red (left nephew can be any color).

Conclusion

Red-Black trees let us implement all dictionary oper-

ations in O(logn). Further, in no case are more than

3 rotations done to rebalance. Certain very advanced

data structures have data stored at nodes which re-

quires a lot of work to adjust after a rotation | red-

black trees ensure it won't happen often.

Example: Each node represents the endpoint of a line,

and is augmented with a list of segments in its subtree

which it intersects.

We will not study such complicated structures, how-

ever.

