1 Minimum Spanning Trees Definitions

$G = (V, E)$ is an undirected graph whose edges have weight w. A spanning subgraph of G is identified with the its set of edges.

Let A be a set of edges $A \subseteq E$. We say that edge e is safe for A if the following property holds: if A is contained in some minimum spanning tree, then $A \cup \{e\}$ is contained in some minimum spanning tree.

A **cut** (S, \bar{S}) of a graph is a partition of V into two nonempty sets S and $ar{S} = V \setminus S$.

We say that an edge e crosses a cut (S, \bar{S}) if one of the endpoints of e is in S and the other endpoint is in \bar{S}.

We say that a cut respects a set of edges A if no edge of A crosses the cut.

An edge is a **light** edge crossing a cut if its weight is the minimum of any edge crossing the cut.

Theorem 1.1 Blue Rule. If the edge e is light for some cut which respects the set of edges A, e is safe for A.