
Optimization Problems

In the algorithms we have studied so far, correctness

tended to be easier than e�ciency. In optimization

problems, we are interested in �nding a thing which

maximizes or minimizes some function.

In designing algorithms for optimization problem - we

must prove that the algorithm in fact gives the best

possible solution.

Greedy algorithms, which makes the best local decision

at each step, occasionally produce a global optimum -

but you need a proof!

Dynamic Programming

Dynamic Programming is a technique for computing

recurrence relations e�ciently by sorting partial results.



Computing Fibonacci Numbers

Fn = Fn�1+ Fn�2

F0 = 0; F1 = 1

Implementing it as a recursive procedure is easy but

slow!

We keep calculating the same value over and over!

F(3)

F(2)

F(1) F(0)

F(1)

F(2)

F(1)

F(2)

F(1)

F(4)

F(3)

F(0)

F(1)

F(2)

F(1)

F(2)

F(1)

F(4)

F(3)

F(0)

F(1)

F(6)=12

F(5)

F(0)

F(0)

How slow is slow?

F
n+1=Fn � � = (1+

p
5)=2 � 1:61803

Thus Fn � 1:6n, and since our recursion tree has 0 and

1 as leaves, means we have � 1:6n calls!



What about Dynamic
Programming?

We can calculate Fn in linear time by storing small

values:

F0 = 0

F1 = 1

For i = 1 to n

Fi = Fi�1+ Fi�2

Moral: we traded space for time.

Dynamic programming is a technique for e�ciently

computing recurrences by storing partial results.

Once you understand dynamic programming, it is usu-

ally easier to reinvent certain algorithms than try to

look them up!

Dynamic programming is best understood by looking

at a bunch of di�erent examples.

I have found dynamic programming to be one of the

most useful algorithmic techniques in practice:

� Morphing in Computer Graphics

� Data Compression for High Density Bar Codes

� Utilizing Gramatical Constraints for Telephone Key-

pads


