Optimization Problems

In the algorithms we have studied so far, correctness
tended to be easier than efficiency. In optimization
problems, we are interested in finding a thing which
maximizes or minimizes some function.

In designing algorithms for optimization problem - we
must prove that the algorithm in fact gives the best
possible solution.

Greedy algorithms, which makes the best local decision
at each step, occasionally produce a global optimum -
but you need a proof!

Dynamic Programming

Dynamic Programming is a technique for computing
recurrence relations efficiently by sorting partial results.

Computing Fibonacci Numbers

Fn: n—1+Fn—2

Fo=0F =1

Implementing it as a recursive procedure is easy but
slow!

We keep calculating the same value over and over!

F(6)=12

/

F5) F4)

T 7N

F(4) F FG))

N N SN /N

3 F2) F2) F) e FO Ry RO
/N

F(2) F(1) F(1) F0) F(1) F(0) F1) F(0)

FD) RO

How slow is slow?

Foi1/Fo~¢=(14++5)/2~ 1.61803

Thus F,, =~ 1.6™, and since our recursion tree has O and
1 as leaves, means we have =~ 1.6™ calls!

What about Dynamic
Programming?

We can calculate F, in linear time by storing small
values:

Fo 0

Fi 1

For: =1 ton
F,=F,_1+ F_>

Moral: we traded space for time.

Dynamic programming is a technique for efficiently
computing recurrences by storing partial results.

Once you understand dynamic programming, it is usu-
ally easier to reinvent certain algorithms than try to
look them up!

Dynamic programming is best understood by looking
at a bunch of different examples.

I have found dynamic programming to be one of the
most useful algorithmic techniques in practice:

e Morphing in Computer Graphics
e Data Compression for High Density Bar Codes

e Utilizing Gramatical Constraints for Telephone Key-
pads

