
Optimization Problems

In the algorithms we have studied so far, correctness

tended to be easier than e�ciency. In optimization

problems, we are interested in �nding a thing which

maximizes or minimizes some function.

In designing algorithms for optimization problem - we

must prove that the algorithm in fact gives the best

possible solution.

Greedy algorithms, which makes the best local decision

at each step, occasionally produce a global optimum -

but you need a proof!

Dynamic Programming

Dynamic Programming is a technique for computing

recurrence relations e�ciently by sorting partial results.



Computing Fibonacci Numbers

Fn = Fn�1+ Fn�2

F0 = 0; F1 = 1

Implementing it as a recursive procedure is easy but

slow!

We keep calculating the same value over and over!
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How slow is slow?

F
n+1=Fn � � = (1+

p
5)=2 � 1:61803

Thus Fn � 1:6n, and since our recursion tree has 0 and

1 as leaves, means we have � 1:6n calls!



What about Dynamic
Programming?

We can calculate Fn in linear time by storing small

values:

F0 = 0

F1 = 1

For i = 1 to n

Fi = Fi�1+ Fi�2

Moral: we traded space for time.

Dynamic programming is a technique for e�ciently

computing recurrences by storing partial results.

Once you understand dynamic programming, it is usu-

ally easier to reinvent certain algorithms than try to

look them up!

Dynamic programming is best understood by looking

at a bunch of di�erent examples.

I have found dynamic programming to be one of the

most useful algorithmic techniques in practice:

� Morphing in Computer Graphics

� Data Compression for High Density Bar Codes

� Utilizing Gramatical Constraints for Telephone Key-

pads


