Multiplying a Sequence of Matrices

Suppose we want to multiply a long sequence of matrices $A \times B \times C \times D \ldots$.

Multiplying an $X \times Y$ matrix by a $Y \times Z$ matrix (using the common algorithm) takes $X \times Y \times Z$ multiplications.

We would like to avoid big intermediate matrices, and since matrix multiplication is associative, we can parenthesise however we want.

Matrix multiplication is not commutitive, so we cannot permute the order of the matrices without changing the result.
Example

Consider $A \times B \times C \times D$, where A is 30×1, B is 1×40, C is 40×10, and D is 10×25.

There are three possible parenthesizations:

- \[(AB)(CD) = 30 \times 1 \times 10 + 40 \times 10 \times 25 + 30 \times 40 \times 25 = 41,200\]
- \[(AB)CD = 30 \times 1 \times 40 + 30 \times 40 \times 10 + 30 \times 10 \times 25 = 20,700\]
- \[A(BC)D = 1 \times 40 \times 10 + 1 \times 10 \times 25 + 30 \times 1 \times 25 = 1400\]

The order makes a big difference in real computation. How do we find the best order?

Let $M(i,j)$ be the minimum number of multiplications necessary to compute $\prod_{k=i}^{j} A_k$.

The key observations are

- The outermost parentheses partition the chain of matrices (i, j) at some k.
- The optimal parenthesization order has optimal ordering on either side of k.
A recurrence for this is:

\[
M(i, j) = \min_{i \leq k \leq j-1} [M(i, k) + M(k+1, j) + d_{i-1}d_kd_j]
\]

\[
M(i, j) = 0
\]

If there are \(n \) matrices, there are \(n + 1 \) dimensions.

A direct recursive implementation of this will be exponential, since there is a lot of duplicated work as in the Fibonacci recurrence.

Divide-and-conquer is seems efficient because there is no overlap, but …

There are only \(\binom{n}{2} \) substrings between 1 and \(n \). Thus it requires only \(\Theta(n^2) \) space to store the optimal cost for each of them.

We can represent all the possibilities in a triangle matrix:

SHOW THE DIAGONAL MATRIX

We can also store the value of \(k \) in another triangle matrix to reconstruct to order of the optimal parenthesisation.

The diagonal moves up to the right as the computation progresses. On each element of the \(k \)th diagonal \(|j - i| = k \).

For the previous example:

SHOW BIG FIGURE OF THE MATRIX
Procedure MatrixOrder
for $i = 1$ to n do $M[i, j] = 0$
for diagonal = 1 to $n - 1$
 for $i = 1$ to $n - diagonal$
 $j = i + diagonal$
 $M[i, j] = \min_{k=1}^{i-1} [M[i, k] + M[k + 1, j] + d_{i-1} d_k d_j]$
 faster(i, j) = k
return $[m(1, n)]$

Procedure ShowOrder(i, j)
if ($i = j$) write (A_i)
else
 $k = \text{factor}(i, j)$
 write “(“
 ShowOrder(i, k)
 write “*”
 ShowOrder($k + 1, j$)
 write “)”
A dynamic programming solution has three components:

1. Formulate the answer as a recurrence relation or recursive algorithm.

2. Show that the number of different instances of your recurrence is bounded by a polynomial.

3. Specify an order of evaluation for the recurrence so you always have what you need.