
Multiplying a Sequence of

Matrices

Suppose we want to multiply a long sequence of ma-

trices A�B � C �D : : :.

Multiplying an X � Y matrix by a Y � Z matrix (using

the common algorithm) takes X�Y �Z multiplications.

2 3

3 4

4 5

2 3 4

3 4 5

13 18 23

18 25 32

23 32 41

We would like to avoid big intermediate matrices, and

since matrix multiplication is associative, we can paren-

thesise however we want.

Matrix multiplication is not communitive, so we cannot

permute the order of the matrices without changing the

result.

Example

Consider A�B�C�D, where A is 30�1, B is 1�40,

C is 40� 10, and D is 10� 25.

There are three possible parenthesizations:

((AB)C)D = 30�1�40+30�40�10+30�10�25 = 20; 700

(AB)(CD) = 30�1�10+40�10�25+30�40�25 = 41; 200

A((BC)D) = 1�40�10+1�10�25+30�1�25 = 1400

The order makes a big di�erence in real computation.

How do we �nd the best order?

Let M(i; j) be the minimum number of multiplications

necessary to compute
Qj

k=i
Ak.

The key observations are

� The outermost parentheses partition the chain of

matricies (i; j) at some k.

� The optimal parenthesization order has optimal or-

dering on either side of k.

A recurrence for this is:

M(i; j) = Mini�k�j�1[M(i; k) +M(k+1; j) + di�1dkdj]

M(i; j) = 0

If there are n matrices, there are n+1 dimensions.

A direct recursive implementation of this will be expo-

nential, since there is a lot of duplicated work as in the

Fibonacci recurrence.

Divide-and-conquer is seems e�cient because there is

no overlap, but . . .

There are only

�
n

2

�
substrings between 1 and n. Thus

it requires only �(n2) space to store the optimal cost

for each of them.

We can represent all the possibilities in a triangle ma-

trix:

SHOW THE DIAGONAL MATRIX

We can also store the value of k in another triangle

matrix to reconstruct to order of the optimal paren-

thesisation.

The diagonal moves up to the right as the computation

progresses. On each element of the kth diagonal jj �

ij= k.

For the previous example:

SHOW BIG FIGURE OF THE MATRIX

Procedure MatrixOrder

for i= 1 to n do M[i; j] = 0

for diagonal = 1 to n� 1

for i= 1 to n� diagonal do

j = i+ diagonal

M[i; j] = min
j�1

i=k[M[i; k] +M[k+1; j] + di�1dkdj]

faster(i; j) = k

return [m(1; n)]

Procedure ShowOrder(i; j)

if (i= j) write (Ai)

else

k =factor(i; j)

write \("

ShowOrder(i; k)

write *"

ShowOrder (k+1; j)

write \)"

A dynamic programming

solution has three components:

1. Formulate the answer as a recurrence relation or

recursive algorithm.

2. Show that the number of di�erent instances of

your recurrence is bounded by a polynomial.

3. Specify an order of evaluation for the recurrence

so you always have what you need.

