
Approximate String Matching

A common task in text editing is string matching -

�nding all occurrances of a word in a text.

Unfortunately, many words are mispelled. How can we

search for the string closest to the pattern?

Let p be a pattern string and T a text string over the

same alphabet.

A k-approximate match between P and T is a substring

of T with at most k di�erences.

Di�erences may be:

1. the corresponding characters may di�er: KAT!

CAT

2. P is missing a character from T : CAAT! CAT

3. T is missing a character from P : CT! CAT

Approximate Matching is important in genetics as well

as spell checking.



A 3-Approximate Match

A match with one of each of three edit operations is:

P = unescessaraly

T = unnecessarily

Finding such a matching seems like a hard problem

because we must �gure out where you add blanks, but

we can solve it with dynamic programming.

D[i; j] = the minimum number of di�erences between

P1; P2; : : : ; Pi and the segment of T ending at j.

D[i; j] is the minimum of the three possible ways to

extend smaller strings:

1. If Pi = ti then D[i� 1; j � 1] else D[i� 1; j � 1]+ 1
(corresponding characters do or do not match)

2. D[i� 1; j]+1 (extra character in text { we do not

advance the pattern pointer).

3. D[i; j�1]+1 (character in pattern which is not in

text).

Once you accept the recurrence it is easy.

To �ll each cell, we need only consider three other cells,

not O(n) as in other examples. This means we need

only store two rows of the table. The total time is

O(mn).

Shuichi Maruyama

Shuichi Maruyama
T

Shuichi Maruyama
j



Boundary conditions for string

matching

What should the value of D[0; i] be, corresponding to

the cost of matching the �rst i characters of the text

with none of the pattern?

It depends. Are we doing string matching in the text

or substring matching?

� If you want to match all of the pattern against all

of the text, this meant that would have to delete

the �rst i characters of the pattern, so D[0; i] = i

to pay the cost of the deletions.

� if we want to �nd the place in the text where the

pattern occurs? We do not want to pay more of

a cost if the pattern occurs far into the text than
near the front, so it is important that starting cost

be equal for all positions. In this case, D[0; i] =

0, since we pay no cost for deleting the �rst i

characters of the text.

In both cases, D[i;0] = i, since we cannot excuse delet-

ing the �rst i characters of the pattern without cost.

SHOW FIGURE/TABLE OF DYNAMIC PROGRAM-

MING TABLE



What do we return?

If we want the cost of comparing all of the pattern

against all of the text, such as comparing the spelling
of two words, all we are interested in is D[n;m].

But what if we want the cheapest match between the
pattern anywhere in the text? Assuming the initial-

ization for substring matching, we seek the cheapest

matching of the full pattern ending anywhere in the

text. This means the cost equals min1�i�mD[n; i].

This only gives the cost of the optimal matching. The

actual alignment { what got matched, substituted, and

deleted { can be reconstructed from the pattern/text

and table without an auxiliary storage, once we have

identi�ed the cell with the lowest cost.



How much space do we need?

Do we need to keep all O(mn) cells, since if we evaluate

the recurrence �lling in the columns of the matrix from

left to right, we will never need more than two columns

of cells to do what we need. Thus O(m) space is
su�cient to evaluate the recurrence without changing

the time complexity at all.

Unfortunately, because we won't have the full matrix

we cannot reconstruct the alignment, as above.

Saving space in dynamic programming is very impor-

tant. Since memory on any computer is limited, O(nm)

space is more of a bottleneck than O(nm) time.

Fortunately, there is a clever divide-and-conquer algo-

rithm which computes the actual alignment in O(nm)

time and O(m) space.


