The Principle of Optimality

To use dynamic programming, the problem must ob-
serve the principle of optimality, that whatever the ini-
tial state is, remaining decisions must be optimal with
regard the state following from the first decision.

Combinatorial problems may have this property but
may use too much memory/time to be efficient.

Example: The Traveling Salesman
Problem

Let T'(7; 51,752,...,J,) be the cost of the optimal tour
for z to 1 that goes thru each of the other cities once
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Here there can be any subset of 31, 72,..., 7% instead of
any subinterval - hence exponential.

Still, with other ideas (some type of pruning or best-
first search) it can be effective for combinatorial search.
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When can you use Dynamic
Programming?

Dynamic programming computes recurrences efficiently
by storing partial results. Thus dynamic programming
can only be efficient when there are not too many par-
tial results to computel

There are n! permutations of an n-element set — we
cannot use dynamic programming to store the best so-
lution for each subpermutation. There are 2™ subsets
of an n-element set — we cannot use dynamic program-
ming to store the best solution for each.

However, there are only n(n — 1)/2 continguous sub-
strings of a string, each described by a starting and
ending point, so we can use it for string problems.

There are only n(n —1)/2 possible subtrees of a binary
search tree, each described by a maximum and mini-
mum key, so we can use it for optimizing binary search
trees.

Dynamic programming works best on objects which
are linearly ordered and cannot be rearranged — char-
acters in a string, matrices in a chain, points around
the boundary of a polygon, the left-to-right order of
leaves in a search tree.

Whenever your objects are ordered in a left-to-right
way, you should smell dynamic programming!



Minimum Length Triangulation

A triangulation of a polygon is a set of non-intersecting
diagonals which partiions the polygon into diagonals.

The length of a triangulation is the sum of the diagonal
lengths.

We seek to find the minimum length triangulation. For
a convex polygon, or part thereof:

k

Once we identify the correct connecting vertex, the
polygon is partitioned into two smaller pieces, both of
which must be triangulated optimally!
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Evaluation proceeds as in the matrix multiplication ex-
ample - (g) values of t, each of which takes O(j — 1)

time if we evaluate the sections in order of increasing
size.

1 Ji=2
13, 24, 35, 46, 51, 62

Ji=3
14, 25, 36, 41, 52, 63

Ji=4

15, 26, 31, 42, 53, 64
Finish with 16

What if there are points in the interior of the polygon?



