
The Principle of Optimality

To use dynamic programming, the problem must ob-

serve the principle of optimality, that whatever the ini-

tial state is, remaining decisions must be optimal with

regard the state following from the �rst decision.

Combinatorial problems may have this property but

may use too much memory/time to be e�cient.

Example: The Traveling Salesman
Problem

Let T (i; j1; j2; : : : ; jk) be the cost of the optimal tour

for i to 1 that goes thru each of the other cities once

T (i; i1; j2; : : : ; ji) = Min1�m�kC[i; jm] + T (jm; j1; j2; : : : ; jk)

T (i; j) = C(i; j) + C(j; 1)

Here there can be any subset of j1; j2; : : : ; jk instead of

any subinterval - hence exponential.

Still, with other ideas (some type of pruning or best-

�rst search) it can be e�ective for combinatorial search.

SHOW PICTURE OF PRUNING TREE



When can you use Dynamic
Programming?

Dynamic programming computes recurrences e�ciently

by storing partial results. Thus dynamic programming

can only be e�cient when there are not too many par-

tial results to compute!

There are n! permutations of an n-element set { we

cannot use dynamic programming to store the best so-

lution for each subpermutation. There are 2n subsets

of an n-element set { we cannot use dynamic program-

ming to store the best solution for each.

However, there are only n(n � 1)=2 continguous sub-

strings of a string, each described by a starting and

ending point, so we can use it for string problems.

There are only n(n�1)=2 possible subtrees of a binary

search tree, each described by a maximum and mini-

mum key, so we can use it for optimizing binary search

trees.

Dynamic programming works best on objects which

are linearly ordered and cannot be rearranged { char-

acters in a string, matrices in a chain, points around

the boundary of a polygon, the left-to-right order of

leaves in a search tree.

Whenever your objects are ordered in a left-to-right

way, you should smell dynamic programming!



Minimum Length Triangulation

A triangulation of a polygon is a set of non-intersecting

diagonals which partiions the polygon into diagonals.

The length of a triangulation is the sum of the diagonal

lengths.

We seek to �nd the minimum length triangulation. For

a convex polygon, or part thereof:

i j

k

Once we identify the correct connecting vertex, the

polygon is partitioned into two smaller pieces, both of

which must be triangulated optimally!

t[i; i+ 1] = 0

t[i; j] =
j

min
k=i

t[i; k] + t[k; j] + jikj+ jkjj



Evaluation proceeds as in the matrix multiplication ex-

ample -

�
n
2

�
values of t, each of which takes O(j � i)

time if we evaluate the sections in order of increasing

size.

1

6

5

4

3

2

J-i = 2

13, 24, 35, 46, 51, 62

J-i = 3

14, 25, 36, 41, 52, 63

J-i = 4

15, 26, 31, 42, 53, 64

Finish with 16

What if there are points in the interior of the polygon?


