Exam Statistics

XXX students took the exam. The range of scores was XX–XX, with a mean of XX.XX, a median of XX, and a standard deviation of XX.XX. Very roughly speaking, if I had to assign final grades on the basis of this exam only, XX and above would be an A (XX), XX–XX a B (XX), XX–XX a C (XX), XX–XX a D (XX), below XX an E (XX).

Problem Solutions

1. Fibonacci Heaps

 (a) Tall-Heap(1, b) clearly produces

 b

 because line 1 creates an empty Fibonacci heap, after which line 2 inserts b. Tall-Heap(2, b) creates an empty Fibonacci heap T in line 5, after which lines 6–8 insert $b - 1$, b, and $b + 1$, respectively, all singleton nodes at the root level. The EXTRACT-MIN(T) deletes $b - 1$, but then the consolidation phase then combines the two remaining roots each have degree 0 into

 b

 $b + 1$

 That takes care of the base cases. Now assume that Tall-Heap(h, b) produces
Tall-Heap\((h + 1, b)\), for \(h + 1 > 2\) first calls Tall-Heap\((h, b + 1)\) producing the heap

by induction. Inserting \(b - 0.5\), \(b\), and \(b + 0.5\) adds these three values as roots of degree 0. Extracting the minimum deletes \(b - 0.5\), and the consolidation phase first merges degree 0 roots \(b\), and \(b + 0.5\) into

and then combines the two roots of degree 1 to form
whereupon deleting $b + 0.5$ produces

as desired.

(b) Although generally both extracting the minimum or deleting an element require amortized time $O(\log n)$ in a Fibonacci heap of n elements, here the consolidation phase takes only $O(1)$ worst-case time; making the heap initially and doing the insertions are all $O(1)$ worst-case time. Thus Tall-Heap($h + 1, b$) takes time $O(h)$.

(c) By part (a), Tall-Heap($n, 1$) produces
2. Depth First Search

function DFS-visit(u)
1: color[u] ← GRAY
2: d[u] ← time ← time + 1
3: for all v ∈ Adj[u] do
4: if color[v] = WHITE then
5: Tree edge
6: π[v] ← u
7: DFS-visit(v)
8: else if color[v] = GRAY then
9: Back edge
10: else if d[u] < d[v] then
11: Forward edge
12: else
13: Cross edge
14: end if
15: end for
16: color[u] ← BLACK
17: f[u] ← time ← time + 1

3. Shortest Paths

(a) Consider two paths: \(P_1 = (u, u_1, u_2, \ldots, v) \) and \(P_2 = (u, v_1, v_2, \ldots, v) \) of equal length, \(L = |P_1| = |P_2| \). Under the transformation, the path length telescopes:

\[
|P_1'| = \sum_{\text{edge } (a,b) \in P_1} \frac{w_V(a) + w_V(u_b)}{2} = |P_1| - \frac{w_V(u) + w_V(v)}{2} = L - \frac{w_V(u) + w_V(v)}{2}
\]

and

\[
|P_2'| = \sum_{\text{edge } (a,b) \in P_2} \frac{w_V(a) + w_V(u_b)}{2} = |P_2| - \frac{w_V(u) + w_V(v)}{2} = L - \frac{w_V(u) + w_V(v)}{2}
\]

Thus, equal paths in the vertex-weighted graph also have equal path lengths in the edge-weighted graph.

(b) Reasoning as in part (a), the newly weighted paths differ by:

\[
|P_2'| - |P_1'| = |P_2| - \frac{w_V(u) + w_V(v)}{2} - |P_1| + \frac{w_V(u) + w_V(v)}{2} = |P_2| - |P_1|
\]

So that if \(P_1 \) is shorter than \(P_2 \) in the vertex-weighted graph, it will also be shorter in the edge-weighted graph.
4. NP-Completeness

The EXAM3-SCHEDULING decision problem is “Given an $n \times n$ graph job compatibility matrix C_{ij} and a constant d, can the n jobs be scheduled in d days?”

EXAM3-SCHEDULING is clearly in the class NP because given C_{ij} and a proposed schedule using d days, we can easily check in time $O(n^2)$ whether the schedule has two incompatible jobs scheduled for the same day.

To prove EXAM3-SCHEDULING is NP-hard, we reduce from GRAPH-COLORING (Problem 34-3 on page 1103 in CLRS; discussed at length in the lectures of April 11–13 and in HW 8). Given a graph $G = (V, E)$ and an integer $k > 0$, we can determine whether G can be k-colored by using the $|V| \times |V|$ Boolean matrix which is the adjacency matrix for G (see page 591 of CLRS or the lecture notes from March 28) as a compatibility matrix for $|V|$ jobs and k as the number of days. If the jobs can be scheduled, assign a unique color to each of the k days and color each job (vertex) with a color of the day on which it is scheduled. Similarly, if the graph can be colored with k colors, the coloring gives a k-day schedule for the $|V|$ jobs.

5. Spanning Tree Approximation

(a) The following graph achieves the desired result for any $k > 0$:

```
A
 /\ 2k
/   |
B     1
 \   |
  \ 1 |
   \ |
    C
```

The minimum spanning tree MST has edges AB and BC with cost 2. But the stupid algorithm could construct the spanning tree ST consisting of AC and BC with cost $2k + 1$. Now

$$\frac{|ST|}{|MST|} = \frac{2k + 1}{2} > k.$$

(b) The new approximation bound is clearly 2 because any spanning tree has $|V| - 1$ edges, and hence the MST has cost at least $|V| - 1$. But no edge costs more than 2, so the stupid tree will have cost at most $2|V| - 2$. Thus

$$\frac{|ST|}{|MST|} \leq \frac{2}{1} = 2.$$