
Graphs

A graph G consists of a set of vertices V together with

a set E of vertex pairs or edges.

Graphs are important because any binary relation is a

graph, so graphs can be used to represent essentially

any relationship.

Example: A network of roads, with cities as vertices

and roads between cities as edges.

vertices - cities

edges - roads 

Stony Brook Green Port

Orient Point

Montauk

Shelter Island

Sag Harbor

Riverhead

Islip

Example: An electronic circuit, with junctions as ver-

tices as components as edges.

vertices: junctions

edges: components

To understand many problems, we must think of them

in terms of graphs!



Data Structures for Graphs

There are two main data structures used to represent

graphs.

Adjacency Matrices

An adjacency matrix is an n�n matrix, where M[i; j] =

0 i� there is no edge from vertex i to vertex j

1 2

3

45

0     1     0     0     1

1     0     1     1     1 

0     1     1     0     1

0     1     0     1     0

1     1     0     1     0

It takes �(1) time to test if (i; j) is in a graph repre-

sented by an adjacency matrix.

Can we save space if (1) the graph is undirected? (2)

if the graph is sparse?



Adjacency Lists

An adjacency list consists of a N � 1 array of pointers,

where the ith element points to a linked list of the

edges incident on vertex i.

1 2

3

45

1

2

3

4

5

2 3

1 5 3 4

2 4

2 5 3

4 1 2

To test if edge (i; j) is in the graph, we search the ith

list for j, which takes O(di), where di is the degree of

the ith vertex.

Note that di can be much less than n when the graph

is sparse. If necessary, the two copies of each edge can

be linked by a pointer to facilitate deletions.

Shuichi Maruyama

Shuichi Maruyama
5



Tradeo�s Between Adjacency
Lists and Adjacency Matrices

Comparison Winner

Faster to test if (x; y) exists? matrices

Faster to �nd vertex degree? lists

Less memory on small graphs? lists (m+ n) vs. (n2)

Less memory on big graphs? matrices (small win)

Edge insertion or deletion? matrices O(1)

Faster to traverse the graph? lists m+ n vs. n2

Better for most problems? lists

Both representations are very useful and have di�erent

properties, although adjacency lists are probably better

for most problems.



Traversing a Graph

One of the most fundamental graph problems is to

traverse every edge and vertex in a graph. Applications

include:

� Printing out the contents of each edge and vertex.

� Counting the number of edges.

� Identifying connected components of a graph.

For e�ciency, we must make sure we visit each edge

at most twice.

For correctness, we must do the traversal in a system-

atic way so that we don't miss anything.

Since a maze is just a graph, such an algorithm must be

powerful enough to enable us to get out of an arbitrary

maze.



Marking Vertices

The idea in graph traversal is that we must mark each

vertex when we �rst visit it, and keep track of what

have not yet completely explored.

For each vertex, we can maintain two ags:

� discovered - have we ever encountered this vertex

before?

� completely-explored - have we �nished exploring

this vertex yet?

We must also maintain a structure containing all the

vertices we have discovered but not yet completely ex-

plored.

Initially, only a single start vertex is considered to be

discovered.

To completely explore a vertex, we look at each edge

going out of it. For each edge which goes to an undis-

covered vertex, we mark it discovered and add it to the

list of work to do.

Note that regardless of what order we fetch the next

vertex to explore, each edge is considered exactly twice,

when each of its endpoints are explored.



Correctness of Graph Traversal

Every edge and vertex in the connected component is

eventually visited.

Suppose not, ie. there exists a vertex which was un-

visited whose neighbor was visited. This neighbor will

eventually be explored so we would visit it:



Traversal Orders

The order we explore the vertices depends upon what

kind of data structure is used:

� Queue { by storing the vertices in a �rst-in, �rst

out (FIFO) queue, we explore the oldest unex-

plored vertices �rst. Thus our explorations radiate

out slowly from the starting vertex, de�ning a so-

called breadth-�rst search.

� Stack - by storing the vertices in a last-in, �rst-

out (LIFO) stack, we explore the vertices by lurch-

ing along a path, constantly visiting a new neigh-

bor if one is available, and backing up only if we

are surrounded by previously discovered vertices.

Thus our explorations quickly wander away from

our starting point, de�ning a so-called depth-�rst

search.

The three possible colors of each node reect if it is

unvisited (white), visited but unexplored (grey) or com-

pletely explored (black).



Breadth-First Search

BFS(G,s)

for each vertex u 2 V [G]� fsg do
color[u] = white

d[u] =1, ie. the distance from s

p[u] = NIL, ie. the parent in the BFS tree

color[u] = grey

d[s] = 0

p[s] = NIL

Q= fsg
while Q 6= ; do

u = head[Q]

for each v 2 Adj[u] do

if color[v] = white then

color[v] = gray

d[v] = d[u] + 1

p[v] = u

enqueue[Q,v]

dequeue[Q]

color[u] = black



Depth-First Search

DFS has a neat recursive implementation which elimi-

nates the need to explicitly use a stack.

Discovery and �nal times are sometimes a convenience

to maintain.

DFS(G)

for each vertex u 2 V [G] do

color[u] = white

parent[u] = nil

time= 0

for each vertex u 2 V [G] do

if color[u] = white then DFS-VISIT[u]

Initialize each vertex in the main routine, then do a

search from each connected component. BFS must

also start from a vertex in each component to com-

pletely visit the graph.

DFS-VISIT[u]

color[u] = grey (*u had been white/undiscovered*)

discover[u] = time

time= time+ 1

for each v 2 Adj[u] do

if color[v] = white then

parent[v] = u

DFS-VISIT(v)

color[u] = black (*now �nished with u*)

finish[u] = time

time= time+ 1


