
BFS Trees

If BFS is performed on a connected, undirected graph,

a tree is de�ned by the edges involved with the discov-

ery of new nodes:

r

This tree de�nes a shortest path from the root to every

other node in the tree.

The proof is by induction on the length of the shortest

path from the root:

� Length = 1 First step of BFS explores all neigh-

bors of the root. In an unweighted graph one edge

must be the shortest path to any node.

� Length = s Assume the BFS tree has the shortest

paths up to length s�1. Any node at a distance of

s will �rst be discovered by expanding a distance

s� 1 node.

Edge Classi�cation for DFS

What about the other edges in the graph? Where can

they go on a search?

Every edge is either:

3. A Forward Edge

4. A Cross Edge

to a different node

to a decendant1. A Tree Edge

2. A Back Edge

to an ancestor

On any particular DFS or BFS of a directed or undi-

rected graph, each edge gets classi�ed as one of the

above.

DFS Trees

The reason DFS is so important is that it de�nes a

very nice ordering to the edges of the graph.

In a DFS of an undirected graph, every edge is either

a tree edge or a back edge.

Why? Suppose we have a forward edge. We would

have encountered (4; 1) when expanding 4, so this is a

back edge.

1

2

3 4

Suppose we have a cross-edge

1

2

3 4 6

5 When expanding 2, we would discover

5, so the tree would look like:

1

2

3
4 5

6

Paths in search trees

Where is the shortest path in a DFS?

s

r

It could use multiple
back and tree edges,
where BFS only used
tree edges.

It could use multiple back and tree edges, where BFS

only uses tree edges.

DFS gives a better approximation of the longest path

than BFS.

1

2

4

8

12

14

15
3 5 7 9 11 13

6
10

The BFS tree can have height 1,
independant of the length of the
longest path.

The DFS must always have height
>= log P, where P is the length of
the longest path.

Topological Sorting

A directed, acyclic graph is a directed graph with no

directed cycles.

DAG NON-DAG

A topological sort of a graph is an ordering on the

vertices so that all edges go from left to right.

Only a DAG can have a topological sort.

Any DAG has (at least one) topological sort.

Applications of Topological

Sorting

Topological sorting is often useful in scheduling jobs

in their proper sequence. In general, we can use it to

order things given constraints, such as a set of left-

right constraints on the positions of objects.

Example: Dressing schedule from CLR.

Example: Identifying errors in DNA fragment assembly.

Certain fragments are constrained to be to the left or

right of other fragments, unless there are errors.

A B R A C
A C A D A
A D A B R
D A B R A
R A C A D

A B R A C

R A C A D

A C A D A

A D A B R

D A B R A

A B R A C A D A B R A

Solution { build a DAG representing all the left-right

constraints. Any topological sort of this DAG is a con-

sistant ordering. If there are cycles, there must be

errors.

A DFS can test if a graph is a DAG (it is i� there are

no back edges - forward edges are allowed for DFS on

directed graph).

Algorithm

Theorem: Arranging vertices in decreasing order of

DFS �nishing time gives a topological sort of a DAG.

Proof: Consider any directed edge u; v, when we en-

counter it during the exploration of vertex u:

� If v is white - we then start a DFS of v before we

continue with u.

� If v is grey - then u; v is a back edge, which cannot

happen in a DAG.

� If v is black - we have already �nished with v, so

f [v] < f [u].

Thus we can do topological sorting in O(n+m) time.

