Illinois Institute of Technology
Department of Computer Science

Course Information
CS 430 Introduction to Algorithms
Spring Semester, 2016

Staff
Professor: Edward M. Reingold (reingold@iit.edu)
Office: 228F, Stuart Building
Office Hours: Immediately after class, or by appointment

Teaching Assistants: Junze Han (jhan20@hawk.iit.edu)
Taeho Jung (tjung@hawk.iit.edu)
Jing Zhao (jing.john.zhao@gmail.com)
Office: 019A (JZ) and 019B (JH TJ) Stuart Building
Office Phones: (312) 567-5123 (JZ) or (312) 567-5869 (JH & TJ)
Office Hours: Monday 9am–12pm (JZ) & 1pm–4pm (TJ)
Tuesday 9am–12pm (TJ) & 1pm–4pm (JZ)
Thursday 8am–12pm (JH) & 2pm–4pm (JH)

Lecture/Recitation Schedule
Undergraduate section: Class meets 11:25am–12:40pm in 111 Life Sciences (southwest corner of 31st and State) on Mondays and Wednesdays from January 11 through April 30. The TA holds recitation sessions during the semester on Fridays, 11:25am–12:15pm in the same room.

Graduate section: Class meets 10am–11:15am in 111 Life Sciences (southwest corner of 31st and State) on Mondays and Wednesdays from January 11 through April 30. The TA holds recitation sessions during the semester on Fridays, 10am–10:50am in the same room.

Both sections: There will be no classes January 18 (Martin Luther King Day) or March 14–18 (Spring Break).

Textbook
Introduction to Algorithms, 3rd edition, by Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein, MIT Press, 2009. Earlier editions are not acceptable. Hardcopy is strongly suggested because the exams will be open book, but nothing electronic will be permitted.

Prerequisites
CS 331 and CS 330 or Math 230 or CS 401 or CS 403.
By topic: Recursion, lists, stacks, queues, trees, counting/recurrences, mathematical proofs

Course Outline
1 lecture] Introduction—How to draw a tree.
1 lecture] Review of asymptotics and recurrence relations (Chapters 1–4; notes).
4 lectures] Sorting (Chapters 6–9).
2 lectures] Binary search trees (Chapters 12–13, omitting section 12.4).
1 lecture] Augmenting data structures (Chapter 14).
Exam 1—Monday, February 15
2 lectures] Dynamic programming (Chapter 15).
1 lecture] Greedy Algorithms (Chapter 16, omitting sections 16.4 and 16.5).
2 lectures] Amortized analysis (Chapter 17).
1 lecture] Disjoint sets (Chapter 21, omitting section 21.4).
Exam 2—Wednesday, March 9
2 lectures] Heaps (Chapter 19).
4 lectures] Graphs (Chapters 22–25).
4 lectures] NP-completeness (Chapter 34).
1 lecture] Approximation Algorithms (Chapter 35, sections 35.1 and 35.2 only).
Exam 3—Wednesday, April 27
Homepage and Handouts

All handouts will be in PDF on the class webpage at: www.cs.iit.edu/~cs430. This web site may be used to post announcements, so look at it frequently.

Reading Assignments

The list of reading assignments (on the web site given above) for the semester indicates the material that is to be read before each lecture.

Homework & Honesty Pledge

There will be about eight homework assignments (roughly one every two weeks). You may discuss only general problem-solving strategies with other students; your homework solutions must be entirely your own work and clearly distinguished from other homeworks. Academic dishonesty will be severely punished.

You must sign a pledge (the form is on the web site given above) stating that all work you turn in will be your own, that you will neither give nor accept any collaboration or outside help, and that you will cite any reference used except the textbook, including any Web sites. This pledge must be turned in with the first assignment; no homework will be accepted until the signed pledge is submitted.

Homework may be handed in without penalty until solutions are posted, but may not be handed in thereafter.

Examinations

There will be three equally weighted, in class, open book exams:

- Exam 1: Monday, February 15
- Exam 2: Wednesday, March 9
- Exam 3: Wednesday, April 27

These exams are non-cumulative. There is no final exam.

During the lectures certain problems may be noted as “good exam questions.” Some of these problems will appear on the exam.

Grading Policy

The approximate weighting scheme will be 25% for the homework assignments and 25% for each of the exams.

Bugs

Occasionally Professor Reingold, being human, makes mistakes in lectures. If you catch one, and point it out on the spot in lecture, you’ll be rewarded with a very valuable green glow-in-the-dark plastic bug. Aside from its intrinsic beauty and value, it is worth extra credit toward your final grade: On “Bug Day” at the end of the semester, bring your collection in to be counted and noted in the Blackboard grade records.

Grade Distribution

The last time that Professor Reingold taught CS 430 (Fall, 2014), the distribution of final grades was 25 A, 30 B, 25 C, 5 D, and 4 E.