The Greedy Scheduling Algorithm

Input: Tasks \(\{t_1, t_2, \ldots, t_n\} \), each with starting time \(s_i \) and finish time \(f_i \) (satisfying \(f_i \geq s_i \)).

Solution: Valid scheduling on \(m \) machines. Precisely, a function \(g: \{1, 2, \ldots, n\} \to \{1, 2, \ldots, m\} \) such that, for any \(1 \leq i < j \leq n \), if \(g(i) = g(j) \), then tasks \(t_i \) and \(t_j \) do not overlap (that is, either \(f_i \leq s_j \) or \(f_j \leq s_i \)).

Measure: Minimize \(m \)

1 Sort the task according to starting time. At this moment, if \(i < j \), then \(s_i \leq s_j \).
2 \(m \leftarrow 0 \)
3 \textbf{for} \(i \leftarrow 1 \) \textbf{to} \(n \)
4 \hspace{1em} \textbf{if} (there is a machine \(j \) where task \(t_i \) fits)
5 \hspace{2em} \(g(i) \leftarrow j \) // put \(t_i \) on machine \(j \)
6 \hspace{1em} \textbf{else}
7 \hspace{2em} \(m \leftarrow m + 1 \)
8 \hspace{2em} \(g(i) \leftarrow m \) // put \(t_i \) on machine \(m \)
9 \hspace{1em} \textbf{endif}
10 \textbf{endfor}