Illinois Institute of Technology
Department of Computer Science

Solutions to Homework Assignment 8
CS 430 Introduction to Algorithms
Spring Semester, 2017

Solution:

1. a) In a looped tree, there is $O(E) = O(2V)$. So, the running time should be $O(V \log V)$.

 b) There are two cases here to find a shortest path from node u to v.

 First, v is a descendant of u. In this case, we only need to find the path from u to v in the tree, which takes $O(V)$. Second, v is not a descendant of u. In this case, we need to find the shortest path from u to a leaf, then back around to the root and down to v again. To find the shortest path from u to a leaf, we apply modified BFS with monitoring the weight cost of the link back to u. The time cost is $O(V)$ since $O(E) = O(2V)$ in the looped tree.

2. If we find a negative edge to a vertex v that is already out of priority queue (that is vertices for which a shortest path length has already been calculated assuming there were no negative edges connecting to it), then we should calculate new shortest path through the negative edge and update the $v.d$ value and again push this new vertex to the priority queue. Therefore, we need to modify the RELAX to allow visiting a vertex more than once as shown in Algorithm 1.

 Algorithm 1: RELAX-NEGATIVE\((u, v, w)\)

 1. if $v.d > u.d + w(u, v)$ then
 2. $v.d = u.d + w(u, v)$
 3. $v.\pi = u$
 4. if $v \notin Q$ then
 5. INSERT(Q, v)

 However, the modified Dijkstra’s algorithm can take exponential time in the worst case. Specifically, we can construct a weighted graph of n vertices with negative weights, such that Dijkstra’s algorithm calls $\Theta(2^{n/2})$ RELAX. For example, we can construct the graph with negative weights as follows. Let $T(n)$ be the number of relaxation on $v_1, \cdots v_n$. Then we can build a recurrence as

 $$T(n) = 2 + T(n - 2) + 1 + T(n - 2) = 2T(n - 2) + 3 = \Theta(2^{n/2}),$$

 where the first two relaxations are for (v_1, v_2) and (v_1, v_3), $T(n - 2)$ relaxations are for v_3, \cdots, v_n, one relaxation for (v_2, v_3) and $T(n - 2)$ relaxations are for v_3, \cdots, v_n. Note that $v_1.d < v_3.d < \cdots < v_{n - 2}.d < v_{n - 1}.d < v_{n - 3}.d < \cdots < v_2.d$ during the execution of the algorithm.
Algorithm 2: FLOYD-WARSHALL(W)

1. \(n = W.\text{rows} \)
2. \(D^0 = W \)
3. for \(k = 1 \) to \(n \) do
 4. let \(D^k = d^k \) be a new \(n \times n \) matrix
 5. for \(i = 1 \) to \(n \) do
 6. for \(j = 1 \) to \(n \) do
 7. \(d^k_{ij} = \min(d^{k-1}_{ij}, d^{k-1}_{ik} + d^{k-1}_{kj}) \)
 8. if \(i == j \) and \(d^k_{ij} < 0 \) then
 9. \(d^k_{ij} = -\infty \)
5. return \(D^n \)

3. Notice that the Floyd-Warshall algorithm computes the weight of the path from a node to itself. This weight will be updated if and only if there is a negative circle. Otherwise \(d_{ii} = 0 \) will be the minimum for any node \(i \). Therefore, we just need to modify the Floyd-Warshall algorithm by checking each update of \(d_{ii} \). If any update changes \(d_{ii} \) to be smaller than 0, there exists a negative weighted cycle and we set \(d_{ii} = -\infty \), and any path using that cycle will result in \(-\infty\). Algorithm 2 shows the modified algorithm. Checking if \(d_{ii} < 0 \) takes constant time (Line 8-10) and the running time will remain to be \(\Theta(n^3) \).