Solutions to Homework Assignment 9
CS 430 Introduction to Algorithms
Spring Semester, 2018

Solution:

1. To prove

\[|OPT| \geq 2 \sum_{i=\lceil \frac{n}{2} \rceil + 1}^{n} l_i, \]

consider \(n \)’s parity:

- When \(n \) is even, it’s the same as the inequality (2) in the lecture. The proof has already been shown in the lecture notes.
- When \(n \) is odd, we denote \(n \) as \(n = 2k + 1 \). What we need to prove is

\[|OPT| \geq 2 \sum_{i=k+2}^{2k+1} l_i \]

Following the same analysis in the lecture, we should have \(|OPT| \geq |T_{2k+1}| \geq \sum \min\{l_i, l_j\} \). Each \(l_i \) appears in this list at most twice. Still the edges were labeled in decreasing order, we can replace edges in the first \(k \) with members of the last \(k \) edges \((l_{k+2}, l_{k+3}, \cdots, l_{2k+1}) \), this process yields:

\[|OPT| \geq 2 \sum_{i=k+2}^{2k+1} l_i + l_{k+1} > 2 \sum_{i=k+2}^{2k+1} l_i \]

So we proved

\[|OPT| \geq 2 \sum_{i=\lceil \frac{n}{2} \rceil + 1}^{n} l_i, \]

2. By the triangle inequality, the last edge is no longer than the sum of the lengths of the other edges; therefore that edge can contribute no more than 1/2 to the ratio \(\frac{|NN|}{|OPT|} \). The last edge is thus not the cause of the logarithmic ratio.