Solution:

1. If we find a negative edge to a vertex v that is already out of priority queue (that is vertices for which a shortest path length has already been calculated assuming there were no negative edges connecting to it), then we should calculate new shortest path through the negative edge and update the $v.d$ value and again push this new vertex to the priority queue. Therefore, we need to modify the RELAX to allow visiting a vertex more than once as shown in Algorithm 1.

Algorithm 1: RELAX-NEGATIVE(u, v, w)

```plaintext
1. if $v.d > u.d + w(u, v)$ then
2. $v.d = u.d + w(u, v)$
3. $v.\pi = u$
4. if $v \not\in Q$ then
5. INSERT($Q, v$)
```

However, the modified Dijkstra’s algorithm can take exponential time in the worst case. Specifically, we can construct a weighted graph of n vertices with negative weights, such that Dijkstra’s algorithm calls $\Theta(2^{n/2})$ RELAX. For example, we can construct the graph with negative weights as follows. Let $T(n)$ be the number of relaxation on v_1, \ldots, v_n. Then we can build a recurrence as

$$T(n) = 2 + T(n-2) + 1 + T(n-2) = 2T(n-2) + 3 = \Theta(2^{n/2}),$$

where the first two relaxations are for (v_1, v_2) and (v_1, v_3), $T(n-2)$ relaxations are for v_3, \ldots, v_n, one relaxation for (v_2, v_3) and $T(n-2)$ relaxations are for v_3, \ldots, v_n. Note that $v_1.d < v_3.d \cdots < v_{n-2}.d < v_{n-1}.d < v_{n-3}.d < \cdots < v_2.d$ during the execution of the algorithm.
Algorithm 2: FLOYD-WARSHALL(W)

1. \(n = W.rows \)
2. \(D^0 = W \)
3. for \(k = 1 \) to \(n \) do
4. let \(D^k = d^k_{ij} \) be a new \(n \times n \) matrix
5. for \(i = 1 \) to \(n \) do
6. for \(j = 1 \) to \(n \) do
7. \(d^k_{ij} = \min(d^{k-1}_{ij}, d^{k-1}_{ik} + d^{k-1}_{kj}) \)
8. if \(i == j \) and \(d^k_{ij} < 0 \) then
9. \(d^k_{ij} = -\infty \)
10. return \(D^n \)

2. Notice that the Floyd-Warshall algorithm computes the weight of the path from a node to itself. This weight will be updated if and only if there is a negative circle. Otherwise \(d_{ii} = 0 \) will be the minimum for any node \(i \). Therefore, we just need to modify the Floyd-Warshall algorithm by checking each update of \(d_{ii} \). If any update changes \(d_{ii} \) to be smaller than 0, there exists a negative weighted cycle and we set \(d_{ii} = -\infty \), and any path using that cycle will result in \(-\infty\). Algorithm 2 shows the modified algorithm. Checking if \(d_{ii} < 0 \) takes constant time (Line 8-10) and the running time will remain to be \(\Theta(n^3) \).