Insertion Sort Input: Array A[1..n] Output: Array A is sorted

```
1)
          for j \leftarrow 2 to n
2)
                \mathbf{x} = \mathbf{A}[\mathbf{j}]
3)
                i = j - 1
4)
                while (i > 0 \text{ and } A[i] > x)
5)
                     A[i+1] \leftarrow A[i]
                     i \leftarrow i - 1
6)
                endwhile
                A[i+1] \leftarrow x
7)
          endfor
```


1 Analysis

The number of times each instruction is executed is given below.

- 1. The for loop has 1 assignment, n comparisons, and another n-1 assignments (the increment).
- 2. n-1 assignments, each with an extra memory access
- 3. n-1 assignments
- 4. $2t_j + 2$ comparisons checking the condition in the **while** loop for each j, where t_j is the number of elements of the array we need to move to insert A[j] among $A[1], \ldots, A[j-1]$. Another $t_j + 1$ AND operations. Total: $3(n-1) + 3\sum_{j=2}^{n} t_j$
- 5. t_j assignments for each j, with two extra memory access each. Total: $\sum_{j=2}^{n} t_j$
- 6. t_j assignments for each j. Total: $\sum_{j=2}^{n} t_j$
- 7. n-1 assignments, each with an extra memory access

The total overall is $n+3(n-1)+2\sum_{j=2}^{n}t_j$ assignments and $n+2(n-1)+2\sum_{j=2}^{n}t_j$ comparisons, and another $(n-1) + \sum_{j=2}^{n}t_j$ AND operations. Total $2n + 6(n-1) + 5\sum_{j=2}^{n}t_j$ "elementary" operations. Each assignment involves several (here, up to five) LOAD and STORE operations, as well as several arithmetic operations.