Insertion Sort

Input: Array $A[1..n]$

Output: Array A is sorted

1. for $j \leftarrow 2$ to n
2. \hspace{1em} $x = A[j]$
3. \hspace{1em} $i = j - 1$
4. \hspace{1em} while ($i > 0$ and $A[i] > x$)
5. \hspace{2em} $A[i + 1] \leftarrow A[i]$
6. \hspace{2em} $i \leftarrow i - 1$
7. \hspace{1em} endwhile
8. \hspace{1em} $A[i + 1] \leftarrow x$
9. endfor

Figure 1: Insertion Sort

Analysis

The number of times each instruction is executed is given below.

1. The `for` loop has 1 assignment, n comparisons, and another $n - 1$ assignments (the increment).
2. $n - 1$ assignments, each with an extra memory access
3. $n - 1$ assignments
4. $2t_j + 2$ comparisons checking the condition in the `while` loop for each j, where t_j is the number of elements of the array we need to move to insert $A[j]$ among $A[1], \ldots, A[j - 1]$. Another $t_j + 1$ AND operations. Total: $3(n - 1) + 3 \sum_{j=2}^{n} t_j$
5. t_j assignments for each j, with two extra memory access each. Total: $\sum_{j=2}^{n} t_j$
6. t_j assignments for each j. Total: $\sum_{j=2}^{n} t_j$
7. $n - 1$ assignments, each with an extra memory access

The total overall is $n + 3(n - 1) + 2 \sum_{j=2}^{n} t_j$ assignments and $n + 2(n - 1) + 2 \sum_{j=2}^{n} t_j$ comparisons, and another $(n - 1) + \sum_{j=2}^{n} t_j$ AND operations. Total $2n + 6(n - 1) + 5 \sum_{j=2}^{n} t_j$ “elementary” operations. Each assignment involves several (here, up to five) LOAD and STORE operations, as well as several arithmetic operations.