The Knuth-Pratt-Morris Algorithm

Input: Text $T[1 . . n]$ and pattern $P[1 . . m]$. Array $\Pi[1 . . m]$ where $\Pi[j]$ is the length of the longest string that is both a proper suffix and a proper prefix of $P[1 . . j]$.

Output: All positions $q(0 \leq q \leq n-m)$ where the pattern "occurs", that is, such that for all $i=1,2, \ldots, m$, we have that $P[i]=T[i+q]$.
$1 j \leftarrow 1$
$2 q \leftarrow 0$
3 while ($q \leq n-m$)
$4 \quad$ if $\quad(j==m+1)$
5
6
7
8

10 else
11
12
13
14 endwhile

For correctness, we maintain the invariant that $P[1 \ldots j-1]==T[q+1 \ldots q+j-1]$. For the running time analysis: every execution of the while increases the quantity $2 q+j$.

Computing the array Π
Input: Pattern $P[1 . . m]$.
Output: Array $\Pi[1 . . m]$ where $\Pi[j]$ is the length of the longest string that is both a proper suffix and a proper prefix of $P[1 . . j]$.

```
\(1 \Pi[1] \leftarrow 0\)
\(2 \Pi[0] \leftarrow-1\)
3 for \(q \leftarrow 2\) to \(m\)
\(4 \quad j \leftarrow \Pi[q-1]\)
\(5 \quad\) while \((j \geq 0\) and \(P[q] \neq P[j+1])\)
\(6 \quad j \leftarrow \Pi[j]\)
7 endwhile
\(8 \quad \Pi[q] \leftarrow j+1\)
9 endwhile
```

Idea/invariant used in the running time analysis: In Line 3 (except when executed the first time), j is incremented. q is also incremented, so every time we execute lines 4 and 8 , or 5 and 6 , the quantity $2 q-j$ increases.

