The Knuth-Pratt-Morris Algorithm

Input: Text $T[1..n]$ and pattern $P[1..m]$. Array $\Pi[1..m]$ where $\Pi[j]$ is the length of the longest string that is both a proper suffix and a proper prefix of $P[1..j]$.

Output: All positions q ($0 \leq q \leq n - m$) where the pattern “occurs”, that is, such that for all $i = 1, 2, \ldots, m$, we have that $P[i] = T[i + q]$.

1. $j \leftarrow 1$
2. $q \leftarrow 0$
3. while $(q \leq n - m)$
 4. if $(j == m + 1)$
 5. report q as an occurrence of P in T
 6. $q \leftarrow q + (j - 1) - \Pi[j - 1]$
 7. $j \leftarrow \Pi[j - 1] + 1$
 8. else if $(T[q + j] == P[j])$
 9. $j \leftarrow j + 1$
 10. else
 11. $q \leftarrow q + (j - 1) - \Pi[j - 1]$
 12. $j \leftarrow \Pi[j - 1] + 1$
 13. endif
4. endwhile

For correctness, we maintain the invariant that $P[1 \ldots j - 1] == T[q + 1 \ldots q + j - 1]$.

For the running time analysis: every execution of the while increases the quantity $2q + j$.

Computing the array Π

Input: Pattern $P[1..m]$.

Output: Array $\Pi[1..m]$ where $\Pi[j]$ is the length of the longest string that is both a proper suffix and a proper prefix of $P[1..j]$.

1. $\Pi[1] \leftarrow 0$
2. $\Pi[0] \leftarrow -1$
3. for $q \leftarrow 2$ to m
 4. $j \leftarrow \Pi[q - 1]$
5. while $(j \geq 0$ and $P[q] \neq P[j + 1])$
 6. $j \leftarrow \Pi[j]$
5. endwhile
6. $\Pi[q] \leftarrow j + 1$
9. endwhile

Idea/invariant used in the running time analysis: In Line 3 (except when executed the first time), j is incremented. q is also incremented, so every time we execute lines 4 and 8, or 5 and 6, the quantity $2q - j$ increases.