
The Knuth-Pratt-Morris Algorithm

Input: Text T [1..n] and pattern P [1..m]. Array Π[1..m] where Π[j] is the length of the longest
string that is both a proper suffix and a proper prefix of P [1..j].

Output: All positions q (0 ≤ q ≤ n − m) where the pattern “occurs”, that is, such that for all
i = 1, 2, . . . , m, we have that P [i] = T [i+ q].

1 j ← 1
2 q ← 0
3 while (q ≤ n−m)
4 if (j == m+ 1)
5 report q as an occurence of P in T

6 q ← q + (j − 1)−Π[j − 1]
7 j ← Π[j − 1] + 1
8 else if (T [q + j] == P [j])
9 j ← j + 1
10 else

11 q ← q + (j − 1)−Π[j − 1]
12 j ← Π[j − 1] + 1
13 endif

14 endwhile

For correctness, we maintain the invariant that P [1 . . . j − 1] == T [q + 1 . . . q + j − 1].
For the running time analysis: every execution of the while increases the quantity 2q + j.

Computing the array Π

Input: Pattern P [1..m].

Output: Array Π[1..m] where Π[j] is the length of the longest string that is both a proper suffix
and a proper prefix of P [1..j].

1 Π[1]← 0
2 Π[0]← −1
3 for q ← 2 to m

4 j ← Π[q − 1]
5 while (j ≥ 0 and P [q] 6= P [j + 1])
6 j ← Π[j]
7 endwhile

8 Π[q]← j + 1
9 endwhile

Idea/invariant used in the running time analysis: In Line 3 (except when executed the first
time), j is incremented. q is also incremented, so every time we execute lines 4 and 8, or 5 and
6, the quantity 2q − j increases.

1

