The Knuth-Pratt-Morris Algorithm

Input: Text T'[1..n] and pattern P[l..m]. Array II[1..m] where II[j] is the length of the longest
string that is both a proper suffix and a proper prefix of P[1..j].

Output: All positions ¢ (0 < ¢ < n —m) where the pattern “occurs”, that is, such that for all
i=1,2,...,m, we have that P[i| = T[i + ¢|.

1541

2q<+0

3 while (¢ <n —m)

4 if (j==m+1)

) report ¢ as an occurence of P in T
6 g q+(—1)—1[j —1]
7 jgIj—1]+1

8 else if (g + ] == P[j)

9 j—j+1

10 else

11 qq+(—1)—1[j 1]
12 jgIj—1]+1

13 endif

14 endwhile

For correctness, we maintain the invariant that P[1...5 — 1] ==T[g+1...q+j — 1].
For the running time analysis: every execution of the while increases the quantity 2q + j.

Computing the array Il
Input: Pattern P[1..m].

Output: Array II[1..m] where I1[j] is the length of the longest string that is both a proper suffix
and a proper prefix of P[1..j].

1I[1] « 0

2 0] + —1

3for g 2tom
4 J <« g —1]
5 while ( j > 0 and P[q] # P[j +1])
6 j « 11jj]

7 endwhile

8 Hig] +j+1

9 endwhile

Idea/invariant used in the running time analysis: In Line 3 (except when executed the first
time), j is incremented. ¢ is also incremented, so every time we execute lines 4 and 8, or 5 and
6, the quantity 2q — j increases.



