
Problem 1.2-6: How can we modify almost any algo-

rithm to have a good best-case running time?

To improve the best case, all we have to do it to be

able to solve one instance of each size e�ciently. We

could modify our algorithm to �rst test whether the

input is the special instance we know how to solve,

and then output the canned answer.

For sorting, we can check if the values are already or-

dered, and if so output them. For the traveling sales-

man, we can check if the points lie on a line, and if so

output the points in that order.

The supercomputer people pull this trick on the linpack

benchmarks!

Because it is so easy to cheat with the best case run-

ning time, we usually don't rely too much about it.

Because it is usually very hard to compute the average

running time, since we must somehow average over all

the instances, we usually strive to analyze the worst

case running time.

The worst case is usually fairly easy to analyze and

often close to the average or real running time.

Exact Analysis is Hard!

We have agreed that the best, worst, and average case

complexity of an algorithm is a numerical function of

the size of the instances.

1 2 3 4

However, it is di�cult to work with exactly because it

is typically very complicated!

Thus it is usually cleaner and easier to talk about upper

and lower bounds of the function.

This is where the dreaded big O notation comes in!

Since running our algorithm on a machine which is

twice as fast will e�ect the running times by a multi-

plicative constant of 2 - we are going to have to ignore

constant factors anyway.

Names of Bounding Functions

Now that we have clearly de�ned the complexity func-

tions we are talking about, we can talk about upper

and lower bounds on it:

� g(n) = O(f(n)) means C� f(n) is an upper bound

on g(n).

� g(n) =
(f(n)) means C � f(n) is a lower bound

on g(n).

� g(n) = �(f(n)) means C1�f(n) is an upper bound

on g(n) and C2 � f(n) is a lower bound on g(n).

Got it? C, C1, and C2 are all constants independent of

n.

All of these de�nitions imply a constant n0 beyond

which they are satis�ed. We do not care about small

values of n.

O,
, and �

(a) (b) (c)

c2g(n)

f(n)

c1g(n)

cg(n)

f(n)

f(n) = O(g(n))

f(n)

cg(n)

nn n
n0 n0 n0

The value of n0 shown is the minimum possible value;

any greater value would also work.

(a) f(n) = �(g(n)) if there exist positive constants n0,

c1, and c2 such that to the right of n0, the value of

f(n) always lies between c1 � g(n) and c2 � g(n) inclusive.

(b) f(n) = O(g(n)) if there are positive constants n0
and c such that to the right of n0, the value of f(n)

always lies on or below c � g(n).

(c) f(n) =
(g(n)) if there are positive constants n0
and c such that to the right of n0, the value of f(n)

always lies on or above c � g(n).

Asymptotic notation (O;�;
) are as well as we can

practically deal with complexity functions.

What does all this mean?

3n2 � 100n+ 6 = O(n2) because 3n2 > 3n2 � 100n+6

3n2 � 100n+ 6 = O(n3) because :01n3 > 3n2 � 100n+ 6

3n2 � 100n+ 6 6= O(n) because c � n < 3n2 when n > c

3n2 � 100n+ 6 =
(n2) because 2:99n2 < 3n2 � 100n+6

3n2 � 100n+ 6 6=
(n3) because 3n2 � 100n+ 6 < n3

3n2 � 100n+ 6 =
(n) because 1010
10

n < 3n2 � 100 + 6

3n2 � 100n+6 = �(n2) because O and

3n2 � 100n+6 6= �(n3) because O only

3n2 � 100n+6 6= �(n) because
 only

Think of the equality as meaning in the set of functions.

Note that time complexity is every bit as well de�ned

a function as sin(x) or you bank account as a function

of time.

Testing Dominance

f(n) dominates g(n) if limn!1 g(n)=f(n) = 0, which is

the same as saying g(n) = o(f(n)).

Note the little-oh { it means \grows strictly slower

than".

Knowing the dominance relation between common func-

tions is important because we want algorithms whose

time complexity is as low as possible in the hierarchy.

If f(n) dominates g(n), f is much larger (ie. slower)

than g.

� na dominates nb if a > b since

lim
n!1

n
b
=n

a = n
b�a

! 0

� na + o(na) doesn't dominate na since

lim
n!1

na=(na + o(na)) ! 1

Complexity 10 20 30 40

n 0.00001 sec 0.00002 sec 0.00003 sec 0.00004 sec

n
2 0.0001 sec 0.0004 sec 0.0009 sec 0.016 sec

n
3 0.001 sec 0.008 sec 0.027 sec 0.064 sec

n
5 0.1 sec 3.2 sec 24.3 sec 1.7 min

2n 0.001 sec 1.0 sec 17.9 min 12.7 days

3n 0.59 sec 58 min 6.5 years 3855 cent

