Graph-3-coloring

The graph-3-coloring problem is

Input: An undirected graph $G = (V, E)$.

Output: Is there a coloring

$$c : V \rightarrow \{\text{red, blue, green}\}$$

such that for every edge e in E the vertices joined by e are not colored with the same color?
Graph-3-coloring \leq_p 3-SAT

Construct a 2-or-3-SAT Boolean expression from G as follows.

For each vertex v_i include a subexpression

$$(R_i \lor B_i \lor G_i) \land (\overline{R_i} \land \overline{G_i}) \land (\overline{R_i} \land \overline{B_i}) \land (B_i \land G_i)$$

$$= (R_i \lor B_i \lor G_i) \land (\overline{R_i} \lor \overline{G_i}) \land (\overline{R_i} \lor \overline{B_i}) \land (\overline{B_i} \lor \overline{G_i})$$

For an edge e connecting v_i and v_j include a subexpression

$$(\overline{R_i} \land \overline{R_j}) \land (G_i \land G_j) \land (B_i \land B_j)$$

$$= (\overline{R_i} \lor \overline{R_j}) \land (\overline{G_i} \lor \overline{G_j}) \land (\overline{B_i} \lor \overline{B_j})$$

Replace each 2-literal term $(a \lor b)$ with

$$(a \lor b \lor p) \land (a \lor b \lor \overline{p})$$

for a new variable p.
3-SAT \leq_p Graph-3-coloring

Construct a graph G from the 3-SAT expression as shown by the following example:

$$(a \lor \overline{b} \lor c) \land (b \lor d \lor \overline{e})$$

Claim: These nodes colorable “T” iff at least one of the “inputs” is colored “T”.
Graph-3-coloring of Planar Graphs

\leq_p 3-SAT

The following crossover gadget can be used to prove that determining whether a planar graph is 3-colorable is an NP-complete problem: