Why don’t CS profs ever stop
talking about sorting?!

1. Computers spend more time sorting than anything
else, historically 25% on mainframes.

2. Sorting is the best studied problem in computer
science, with a variety of different algorithms known.

3. Most of the interesting ideas we will encounter in
the course can be taught in the context of sort-
ing, such as divide-and-conquer, randomized algo-
rithms, and lower bounds.

You should have seen most of the algorithms - we will
concentrate on the analysis.

Applications of Sorting

One reason why sorting is so important is that once
a set of items is sorted, many other problems become
easy.

Searching

Binary search lets you test whether an item is in a
dictionary in O(lgn) time.

Speeding up searching is perhaps the most important
application of sorting.

Closest pair

Given n numbers, find the pair which are closest to
each other.

Once the numbers are sorted, the closest pair will be
next to each other in sorted order, so an O(n) linear
scan completes the job.

Element unigueness

Given a set of n items, are they all unigue or are there
any duplicates?

Sort them and do a linear scan to check all adjacent
pairs.

This is a special case of closest pair above.

Frequency distribution — Mode

Given a set of n items, which element occurs the largest
number of times?

Sort them and do a linear scan to measure the length
of all adjacent runs.

Median and Selection

What is the kth largest item in the set?

Once the keys are placed in sorted order in an array,
the kth largest can be found in constant time by simply
looking in the kth position of the array.

Binary Heaps

A binary heap is defined to be a binary tree with a key
in each node such that:

1. AIll leaves are on, at most, two adjacent levels.

2. All leaves on the lowest level occur to the left,
and all levels except the lowest one are completely
filled.

3. The key in root is > all its children, and the left
and right subtrees are again binary heaps.

Conditions 1 and 2 specify shape of the tree, and con-
dition 3 the labeling of the tree.

Constructing Heaps

Heaps can be constructed incrementally, by inserting
new elements into the left-most open spot in the array.

If the new element is greater than its parent, swap their
positions and recur.

Since at each step, we replace the root of a subtree by
a larger one, we preserve the heap order.

Since all but the last level is always filled, the height A
of an n element heap is bounded because:

h
Zzi:2h+1—1>n
=1

so h = [lgn].

Doing n such insertions takes ©(nlogn), since the last
n/2 insertions require O(logn) time each.

Heapify

The bottom up insertion algorithm gives a good way
to build a heap, but Robert Floyd found a better way,
using a merge procedure called heapify.

Given two heaps and a fresh element, they can be
merged into one by making the new one the root and
trickling down.

Build-heap(A)
n = |A|
For i = |n/2] to 1 do
Heapify(A,i)

Heapify(A,i)

left = 22

right = 2: 4+ 1

if (left <n) and (A[left] > A[:]) then
max = left
else max = i

if (right <n) and (A(right] > A[maz]) then
max = right

if (maz # 1) then
swap(A[i],A[max])
Heapify(A,max)

Heapsort

Heapify can be used to construct a heap, using the
observation that an isolated element forms a heap of
size 1.

Heapsort(A)
Build-heap(A)
for:=n to 1 do

swap(A[1],Ali])
n=n-—1

Heapify(A,1)

If we construct our heap from bottom to top using
Heapify, we do not have to do anything with the last
n/2 elements.

With the implicit tree defined by array positions, (i.e.
the ith position is the parent of the 2ith and (2:+4 1)st
positions) the leaves start out as heaps.

Exchanging the maximum element with the last ele-
ment and calling heapify repeatedly gives an O(nlgn)
sorting algorithm, named Heapsort.

The Lessons of Heapsort, II

Always ask yourself, “Can we use a different data struc-
ture?”

Selection sort scans throught the entire array, repeat-
edly finding the smallest remaining element.

For: =1 ton
A: Find the smallest of the first n — 74+ 1 items.
B: Pull it out of the array and put it first.

Using arrays or unsorted linked lists as the data struc-
ture, operation A takes O(n) time and operation B
takes O(1).

Using heaps, both of these operations can be done
within O(lgn) time, balancing the work and achieving
a better tradeoff.

Priority Queues

A priority queue is a data structure on sets of keys
supporting the following operations:

e Insert(S, x) - insert z into set S
e Maximum(S) - return the largest key in S

e ExtractMax(S) - return and remove the largest key
in S

These operations can be easily supported using a heap.
e Insert - use the trickle up insertion in O(logn).

e Maximum - read the first element in the array in
O(1).

o Extract-Max - delete first element, replace it with

the last, decrement the element counter, then heapify
in O(logn).

Greedy Algorithms

In greedy algorithms, we always pick the next thing
which locally maximizes our score. By placing all the
things in a priority queue and pulling them off in or-
der, we can improve performance over linear search or
sorting, particularly if the weights change.

Example: Sequential strips in triangulations.

