MST Algorithms

MST-KRUSKAL

MST-KRUSKAL(G, w)

1. $A \leftarrow \emptyset$
2. for each vertex $v \in V[G]$
3. do MAKE-SET(v)
4. sort the edges of E into nondecreasing order by weight w
5. for each edge $(u, v) \in E$, taken in nondecreasing order by weight
6. do if FIND-SET(u) \neq FIND-SET(v)
7. then $A \leftarrow A \cup \{(u, v)\}$
8. UNION(u, v)
9. return A

The implementation of Kruskal’s algorithm uses a disjoint-set data structure to maintain several disjoint sets of elements. The definitions of disjoint-set operations are listed in page 499 of the textbook.

We assume that the input undirected graph $G = (V, E)$ is connected. Let us first argue that Kruskal’s algorithm finishes with a tree. Indeed, Kruskal’s algorithm does not create cycles as we never add edges whose endpoints are already connected by the existing edges. And if we assume, for a contradiction, that Kruskal’s algorithm stops before it has a connected graph, then there must be a cut (S, \bar{S}) that no selected edge crosses. However, edges crossing (S, \bar{S}) do exist, since otherwise G would not be connected. The lightest of these edges crossing (S, \bar{S}) would have been selected by the algorithm.

The blue rule ensures that the output of Kruskal’s algorithm is a subset of a minimum spanning tree, so it is a minimum spanning tree.
MST-PRIM

MST-PRIM(G,w,r)

1. for each vertex $u \in V[G]$
2. do $\text{key}[u] \leftarrow \infty$
3. $\pi[u] \leftarrow \text{NIL}$
4. $\text{key}[r] \leftarrow 0$
5. $Q \leftarrow V[G]$
6. while $Q \neq \emptyset$
7. do $u \leftarrow \text{EXTRACT-MIN}(Q)$
8. for each $v \in \text{Adj}[u]$
9. do if $v \in Q$ and $w(u, v) < \text{key}[v]$
10. then $\pi[v] \leftarrow u$
11. $\text{key}[v] \leftarrow w(u, v)$
12. $\text{DECREASE-KEY}(Q, v, \text{key}[v])$

The implementation of Prim's algorithm uses a min-priority queue Q, containing vertices v using $\text{key}[v]$ as the key-value. The performance of Prim's algorithm depends on how we implement Q.

We assume that the input undirected graph $G = (V,E)$ is connected.

It is an invariant of the algorithm that, if $\text{key}[v] < \infty$, then the edge from v to $\pi[v]$ is a minimum-weight edge among the edges with one endpoint v and the other among the vertices not in Q.

Moreover, as long as $Q \neq \emptyset$, there always exists a vertex $v \in Q$ with $\text{key}[v] < \infty$. Indeed, if we reach the situation that for all $v \in Q$, $\text{key}[v] = \infty$, then there us no edge with one endpoint in Q and one outside Q, contradicting the fact that $G = (V,E)$ is connected.

Therefore Prim’s algorithm adds $|V| - 1$ edges, connecting all the vertices to r using the edges defined by $\pi[]$, and thus it outputs a tree.

The blue rule ensures that the output of Prim’s algorithm is a subset of a minimum spanning tree, so it is a minimum spanning tree.