
MST Algorithms

MST-KRUSKAL

MST-KRUSKAL(G,w)

1. A ←− ∅

2. for each vertex v ∈ V [G]

3. do MAKE-SET(v)

4. sort the edges of E into nondecreasing order by weight w

5. for each edge (u, v) ∈ E, taken in nondecreasing order by weight

6. do if FIND-SET(u) 6= FIND-SET(v)

7. then A←− A ∪ {(u, v)}

8. UNION(u, v)

9. return A

The implementation of Kruskal’s algorithm uses a disjoint-set data structure to maintain several
disjoint sets of elements. The definitions of disjoint-set operations are listed in page 499 of the text
book.

We assume that the input undirected graph G = (V.E) is connected. Thus |E| ≥ |V | − 1.
Let us first argue that Kruskal’s algorithm finishes with a tree. Indeed, Kruskal’s algorithm does

not creat cycles as we never add edges whose endpoints are already connected by the existing edges.
And if we assume, for a contradiction, that Kruskal’s algorithm stops before it has a connected graph,
then there must be a cut (S, S̄) that no selected edge crosses. However, edges crossing (S, S̄) do exist,
since otherwise G would not be connected. The lightest of these edges crossing (S, S̄) would have been
selected by the algorithm.

The blue rule ensures that the output of Kruskal’s algorithm is a subset of a minimum spanning
tree, so it is a minimum spanning tree.

Running time: O(|E| log |E|) - since sorting is O(|E| log |E|), and all the disjoint set operations
are O(log |V |) each (actually, they are faster).

1

MST-PRIM

MST-PRIM(G,w,r)

1. for each vertex u ∈ V [G]

2. do key[u]←−∞

3. π[u]←− NIL

4. key[r]←− 0

5. Q←− V [G]

6. while Q 6= ∅

7. do u←− EXTRACT-MIN(Q)

8. for each v ∈ Adj[u]

9. do if v ∈ Q and w(u, v) < key[v]

10. then π[v]←− u

11. key[v]←− w(u, v)

12. DECREASE-KEY(Q, v, key[v])

The implementation of Prim’s algorithm uses a min-priority queue Q, containing vertices v using
key[v] as the key-value. The performance of Prim’s algorithm depends on how we implement Q.

We assume that the input undirected graph G = (V.E) is connected.
It is an invariant of the algorithm that, if key[v] <∞, then the edge from v to π[v] is a minimum-

weight edge among the edges with one endpoint v and the other among the vertices not in Q.
Moreover, as long as Q 6= ∅, there always exists a vertex v ∈ Q with key[v] < ∞. Indeed, if we

reach the situation that for all v ∈ Q, key[v] = ∞, then there us no edge with one endpoint in Q and
one outside Q, contradicting the fact that G = (V.E) is connected.

Therefore Prim’s algorithm adds |V | − 1 edges, connecting all the vertices to r using the edges
defined by π[], and thus it outputs a tree.

The blue rule ensures that the output of Prim’s algorithm is a subset of a minimum spanning tree,
so it is a minimum spanning tree.

Running time: O(|E| log |V |) - since there are O(|E|) DECREASE-KEY() operations and each
can be done in O(log |V |) with binary heaps. Fibonnaci heaps achieve O(|E|) running time for all the
DECREASE-KEY() operations, and the running time becomes O(|V | log |V | + |E|), with O(log |V |)
enough to do each of the |V | EXTRACT-MIN(Q) operations.

2

