MST Algorithms

MST-KRUSKAL

MST-KRUSKAL(G, w)
1. A ←∅
2. for each vertex v ∈ V[G]
3. do MAKE-SET(v)
4. sort the edges of E into nondecreasing order by weight w
5. for each edge (u, v) ∈ E, taken in nondecreasing order by weight
6. do if FIND-SET(u) ≠ FIND-SET(v)
7. then A ← A ∪ {(u, v)}
8. UNION(u, v)
9. return A

The implementation of Kruskal’s algorithm uses a disjoint-set data structure to maintain several disjoint sets of elements. The definitions of disjoint-set operations are listed in page 499 of the textbook.

We assume that the input undirected graph G = (V,E) is connected. Thus |E| ≥ |V| − 1.

Let us first argue that Kruskal’s algorithm finishes with a tree. Indeed, Kruskal’s algorithm does not create cycles as we never add edges whose endpoints are already connected by the existing edges. And if we assume, for a contradiction, that Kruskal’s algorithm stops before it has a connected graph, then there must be a cut (S, \bar{S}) that no selected edge crosses. However, edges crossing (S, \bar{S}) do exist, since otherwise G would not be connected. The lightest of these edges crossing (S, \bar{S}) would have been selected by the algorithm.

The blue rule ensures that the output of Kruskal’s algorithm is a subset of a minimum spanning tree, so it is a minimum spanning tree.

Running time: O(|E| log |E|) - since sorting is O(|E| log |E|), and all the disjoint set operations are O(log |V|) each (actually, they are faster).
MST-PRIM

MST-PRIM(G,w,r)

1. for each vertex \(u \in V[G] \)
2. do \(\text{key}[u] \leftarrow \infty \)
3. \(\pi[u] \leftarrow \text{NIL} \)
4. \(\text{key}[r] \leftarrow 0 \)
5. \(Q \leftarrow V[G] \)
6. while \(Q \neq \emptyset \)
7. do \(u \leftarrow \text{EXTRACT-MIN}(Q) \)
8. for each \(v \in \text{Adj}[u] \)
9. do if \(v \in Q \) and \(w(u,v) < \text{key}[v] \)
10. then \(\pi[v] \leftarrow u \)
11. \(\text{key}[v] \leftarrow w(u,v) \)
12. \(\text{DECREASE-KEY}(Q, v, \text{key}[v]) \)

The implementation of Prim’s algorithm uses a min-priority queue \(Q \), containing vertices \(v \) using \(\text{key}[v] \) as the key-value. The performance of Prim’s algorithm depends on how we implement \(Q \).

We assume that the input undirected graph \(G = (V,E) \) is connected.

It is an invariant of the algorithm that, if \(\text{key}[v] < \infty \), then the edge from \(v \) to \(\pi[v] \) is a minimum-weight edge among the edges with one endpoint \(v \) and the other among the vertices not in \(Q \).

Moreover, as long as \(Q \neq \emptyset \), there always exists a vertex \(v \in Q \) with \(\text{key}[v] < \infty \). Indeed, if we reach the situation that for all \(v \in Q \), \(\text{key}[v] = \infty \), then there is no edge with one endpoint in \(Q \) and one outside \(Q \), contradicting the fact that \(G = (V,E) \) is connected.

Therefore Prim’s algorithm adds \(|V| - 1 \) edges, connecting all the vertices to \(r \) using the edges defined by \(\pi[] \), and thus it outputs a tree.

The blue rule ensures that the output of Prim’s algorithm is a subset of a minimum spanning tree, so it is a minimum spanning tree.

Running time: \(O(|E| \log |V|) \) - since there are \(O(|E|) \) \(\text{DECREASE-KEY}() \) operations and each can be done in \(O(\log |V|) \) with binary heaps. Fibonacci heaps achieve \(O(|E|) \) running time for all the \(\text{DECREASE-KEY}() \) operations, and the running time becomes \(O(|V| \log |V| + |E|) \), with \(O(\log |V|) \) enough to do each of the \(|V| \) \(\text{EXTRACT-MIN}(Q) \) operations.