Shortest Paths Algorithms

Dijkstra’s algorithm for single-source shortest paths in graphs with non-negative weight

DIJKSTRA(G,w,r)

1. for each vertex \(u \in V[G] \)
2. do \(d[u] \leftarrow \infty \)
3. \(\pi[u] \leftarrow NIL \)
4. \(d[r] \leftarrow 0 \)
5. \(Q \leftarrow V[G] \)
6. while \(Q \neq \emptyset \)
7. do \(u \leftarrow EXTRACT-MIN(Q) \)
8. for each \(v \in \text{Adj}[u] \)
9. do if \(d[u] + w(u,v) < d[v] \)
10. then \(\pi[v] \leftarrow u \)
11. \(d[v] \leftarrow d[u] + w(u,v) \)
12. DECREASE-KEY(Q, v, \(d[v] \))

The implementation of Dijkstra’s algorithm uses a min-priority queue \(Q \), containing vertices \(v \) using \(d[v] \) as the key-value. The running time of Dijkstra’s algorithm depends on how we implement \(Q \). At the end of the algorithm’s execution, \(d[v] \) equals the total weight of a least-weight path from \(r \) to \(v \). This path can be obtained, in reverse order, by following \(\pi \) links from \(v \) to \(NIL \).

FLOYD-WARSHALL(G,w,.) (here \(w \) is a \(|V| \times |V| \) matrix)

1. \(d^0 \leftarrow w / \) (here \(d^k \) is a \(|V| \times |V| \) matrix, for \(k = 0,1,\ldots,|V| \))
2. for \(k \leftarrow 1 \) to \(|V| \)
3. for \(i \leftarrow 1 \) to \(|V| \)
4. for \(j \leftarrow 1 \) to \(|V| \)
5. \(d^k[i,j] \leftarrow \min (d^{k-1}[i,j], d^{k-1}[i,k] + d^{k-1}[k,j]) \)