Shortest Paths Algorithms

The distance between two vertices \(u \) and \(v \) is the minimum, over all paths starting at \(u \) and ending at \(v \), of the weight of the path. The weight of a path is the sum of the weights of its (directed) edges. We sometimes use length instead of weight for edges and paths, and by shortest here we mean “of minimum length”. (The number of edges in a path is not relevant here, and we will explicitly say “number of edges” and not length if we refer to the number of edges).

Dijkstra’s algorithm for single-source shortest paths in directed graphs with non-negative weight

DIJKSTRA\((G, w, r)\)

1. for each vertex \(u \in V[G] \)
2. \(d[u] \leftarrow \infty \)
3. \(\pi[u] \leftarrow NIL \)
4. \(d[r] \leftarrow 0 \)
5. \(Q \leftarrow V[G] \)
6. while \(Q \neq \emptyset \)
7. \(u \leftarrow EXTRACT-MIN(Q) \)
8. for each \(v \in Adj[u] \)
9. \(\text{if } d[u] + w(u, v) < d[v] \) // This is called “Relax\((u, v, w(\))”
10. \(\text{then } \pi[v] \leftarrow u \)
11. \(d[v] \leftarrow d[u] + w(u, v) \)
12. \(\text{DECREASE-KEY}(Q, v, d[v]) \)

The implementation of Dijkstra’s algorithm uses a min-priority queue \(Q \), containing vertices \(v \) using \(d[v] \) as the key-value. The running time of Dijkstra’s algorithm depends on how we implement \(Q \). At the end of the algorithm’s execution, \(d[v] \) equals the total weight of a least-weight path from \(r \) to \(v \).

This path can be obtained, in reverse order, by following \(\pi \) links from \(v \) to \(NIL \). Similar to the analysis of BFS, we use \(dist[v] \) to denote the weight of the shortest path from \(r \) to \(v \) in the input weighted graph \(G, w \).

The correctness of Dijkstra’s algorithm relies on the following invariant of the **while** loop:

1. For each vertex \(v \) with \(d[v] < \infty \), we have a path from \(r \) to \(v \) of length \(d[v] \) which can be obtained, reversed, by taking \(\pi[] \) pointers from \(v \).
2. For all \(v \not\in Q \), \(d[v] = dist[v] \), while for all \(v \in Q \) with \(d[v] < \infty \), \(d[v] \) is equal to the length of the shortest path from \(r \) to \(v \) that has, except for \(v \), all the vertices not in \(Q \).
3. For all \(v \not\in Q \) and all \(v' \in Q \), we have \(d[v] \leq d[v'] \). The algorithm never modifies \(d[v] \) and \(\pi[v] \) for \(v \not\in Q \).
Running time: $O(|E| \log |V|)$ - since there are $O(|E|)$ DECREASE-KEY() operations and each can be done in $O(|V| \log |V|)$ with binary heaps. Fibonacci heaps achieve $O(|E|)$ running time for all the DECREASE-KEY() operations, and the running time becomes $O(|V| \log |V| + |E|)$, with $O(|V|)$ enough to do each of the $|V|$ EXTRACT-MIN(Q) operations.

FLOYD-WARSHALL(G,w) (here w is a $|V| \times |V|$ matrix)

1. $d^0 \leftarrow w$ (here d^k is a $|V| \times |V|$ matrix, for $k = 0, 1, \ldots, |V|$)
2. for $k \leftarrow 1$ to $|V$ |
3. for $i \leftarrow 1$ to $|V$ |
4. for $j \leftarrow 1$ to $|V$ |
5. $d^k[i,j] \leftarrow \min (d^{k-1}[i,j], d^{k-1}[i,k] + d^{k-1}[k,j])$

Explanation: $d^k[i,j]$ stands for the length of the shortest path from i to j that uses in its interior only vertices from $\{1,2,\ldots,k\}$.

Running time: $O(|V|^3)$.

