Shortest Paths Algorithms

The distance between two vertices u and v is the minumum, over all paths starting at u and ending at v, of the weight of the path. The weight of a path is the sum of the weights of its (directed) edges. We sometimes use *length* instead of weight for edges and paths, and by shortest here we mean "of minimum length". (the number of edges in a path is not relevant here, and we will explicitly say "number of edges" and not length if we refer to the number of edges).

Dijkstra's algorithm for single-source shortest paths in directed graphs with non-negative weight

DIJKSTRA(G, w, r)

1. for each vertex $u \in V[G]$

2. do
$$d[u] \leftarrow \infty$$

3.
$$\pi[u] \leftarrow NIL$$

4.
$$d[r] \leftarrow 0$$

5.
$$Q \leftarrow V[G]$$

- 6. while $Q \neq \emptyset$
- 7. **do** $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 8. for each $v \in Adj[u]$
- 9. do if d[u] + w(u, v) < d[v] // This is called "Relax(u, v, w())"
- 10. then $\pi[v] \longleftarrow u$
- 11. $d[v] \leftarrow d[u] + w(u, v)$
- 12. DECREASE-KEY(Q, v, d[v])

The implementation of Djikstra's algorithm uses a min-priority queue Q, containing vertices v using d[v] as the key-value. The running time of Djikstra's algorithm depends on how we implement Q. At the end of the algorithm's execution, d[v] equals the total weight of a least-weight path from r to v. This path can be obtained, in reverse order, by following π links from v to NIL.

Similar to the analysis of BFS, we use dist[v] to denote the weight of the shortest path from r to v in the input weighted graph G,w.

The correctness of Dijkstra's algorithm relies on the following invariant of the while loop:

- 1. For each vertex v with $d[v] < \infty$, we have a path from r to v of length d[v] which can be obtained, reversed, by taking $\pi[]$ pointers from v
- 2. For all $v \notin Q$, d[v] = dist[v], while for all $v \in Q$ with $d[v] < \infty$, d[v] is equal to the length of the shortest path from r to v that has, except for v, all the vertices not in Q.
- 3. For all $v \notin Q$ and all $v' \in Q$, we have $d[v] \leq d[v']$. The algorithm never modifies d[v] and $\pi[v]$ for $v \notin Q$.

Running time: $O(|E|\log|V|)$ - since there are O(|E|) DECREASE-KEY() operations and each can be done in $O(\log|V|)$ with binary heaps. Fibonnaci heaps achieve O(|E|) running time for all the DECREASE-KEY() operations, and the running time becomes $O(|V|\log|V| + |E|)$, with $O(\log|V|)$ enough to do each of the |V| EXTRACT-MIN(Q) operations.

FLOYD-WARSHALL(G, w) (here w is a $|V| \times |V|$ matrix)

- 1. $d^0 \leftarrow w //$ (here d^k is a $|V| \times |V|$ matrix, for $k = 0, 1, \ldots, |V|$)
- 2. for $k \leftarrow 1$ to |V|
- 3. for $i \leftarrow 1$ to |V|
- 4. for $j \leftarrow 1$ to |V|
- 5. $d^{k}[i,j] \longleftarrow \min\left(d^{k-1}[i,j], d^{k-1}[i,k] + d^{k-1}[k,j]\right)$

Explanation: $d^{k}[i, j]$ stands for the length of the shortest path from i to j that uses in its interior only vertices from $\{1, 2, \ldots, k\}$.

Running time: $O(|V|^3)$.