Recurrence Relations

Many algorithms, particularly divide and conquer al-
gorithms, have time complexities which are naturally
modeled by recurrence relations.

A recurrence relation is an equation which is defined in
terms of itself.

Why are recurrences good things?

1. Many natural functions are easily expressed as re-
currences:

an =an,_1+1,a1 =1 —a,=n (polynomial)
an = 2an_1,01 =1 — a, = 2" ! (exponential)

a, = na,_1,a1 =1 — a, = n! (weird function)

2. It is often easy to find a recurrence as the solution
of a counting problem. Solving the recurrence can
be done for many special cases as we will see,
although it is somewhat of an art.



Recursion is Mathematical
Induction!

In both, we have general and boundary conditions, with
the general condition breaking the problem into smaller
and smaller pieces.

The initial or boundary condition terminate the recur-
sion.

As we will see, induction provides a useful tool to solve
recurrences — guess a solution and prove it by induction.

T, =2Th-1+1,To =0

n |0 1 3 4 5 6 7
T, | O 7 1

5 31 63 127

Guess what the solution is?

Prove T,, = 2™ — 1 by induction:
1. Show that the basis is true: To = 2° — 1 = 0.
2. Now assume true for T},_1.

3. Using this assumption show:

T, =2T, 1+1=202"1-1)+1=2"-1



Try backsubstituting until you
know what is going on

Also known as the iteration method. Plug the recur-
rence back into itself until you see a pattern.

Example: T(n) = 3T(|n/4]) + n.
Try backsubstituting:

T(n) n+ 3(|n/4] + 3T(|n/16])
n+ 3|n/4] + 9(|n/16] + 3T(|n/64]))
n+ 3|n/4| +9|n/16]| + 27T (|n/64])

The (3/4)" term should now be obvious.

Although there are only log,n terms before we get to
T(1), it doesn’t hurt to sum them all since this is a
fast growing geometric series:

T(n) <nY ) + O3 x (1)

1=0

T(n) =4n + o(n) = O(n)



Recursion Trees

Drawing a picture of the backsubstitution process gives
you a idea of what is going on.

We must keep track of two things — (1) the size of
the remaining argument to the recurrence, and (2) the
additive stuff to be accumulated during this call.

Example: T(n) = 2T(n/2) + n?

T(n)
/ \ e ;
T(/2) T(/2) / \ 2 ,
/ \ / \ /(nIZ)\ /(n/2) \% n2
2 2 2 2 2
T(n/4) T(n/4) T(n/4) T(n/4) (w4)  (v4) (n/4) (n/4) = na

The remaining arguments are on the left, the additive
terms on the right.

Although this tree has height Ign, the total sum at
each level decreases geometrically, so:

T(n) = inQ/Qi = n? i 1/2' = ©(n?)
=0 =0

The recursion tree framework made this much easier
to see than with algebraic backsubstitution.



See if you can use the Master
theorem to provide an instant
asymptotic solution
The Master Theorem: Let a > 1 and b > 1 be con-
stants, let f(n) be a function, and let T'(n) be defined
on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n)

where we interpret n/b as |n/b| or [n/b]. Then T(n)
can be bounded asymptotically as follows:

1. If f(n) = O(n!°%2—¢) for some constant € > 0, then
T(n) = ©(n'°%2),

2. If f(n) = ©(n'°%), then T(n) = ©(n'!°%2ign).

3. If f(n) = Q(n'°9%**¢) for some constant € > 0, and
if af(n/b) < cf(n) for some constant ¢ < 1, and all
sufficiently large n, then T'(n) = ©(f(n)).



Examples of the Master
T heorem

Which case of the Master Theorem applies?

e T'(n) =4T(n/2) +n
Reading from the equation, a = 4, b = 2, and
f(n) = n.
Is n = O(n'!°9:4-¢) = O(n29)?
Yes, so case 1 applies and T(n) = ©(n?).

o T(n) =4T(n/2) + n?
Reading from the equation, a = 4, b = 2, and
f(n) = n2.
Is n? = O(n'°9:4¢) = O(n?"¢)?

No, if e > 0, but it is true if e = 0, so case 2 applies
and T(n) = ©(n?logn).

o T(n) =4T(n/2) + n3
Reading from the equation, a = 4, b = 2, and
f(n) = n3.
Is n3 = Q(n!°9%=41¢) = Q(n21¢)?
Yes, for 0 < e < 1, so case 3 might apply.
Is 4(n/2)> < c-n37?

Yes, for ¢ > 1/2, so there exists a ¢ < 1 to sat-
isfy the regularity condition, so case 3 applies and
T(n) = ©(n3).



