EUGENIAN PATH

- Traverse graph edges so as to "visit" each edge once.

HAMILTONIAN PATH

- Traverse graph edges so as to "visit" each edge once, and return to the start.

DFS Algorithm

- \(O(V + E) \)

Cuscin a path

- \(O(V + E) \)

Verify

NP-Complete

- **NP-hard**
- \(N \) is prime

P \(\neq \) NP

- \(P \) \(\subseteq \) \(\text{SAT} \)
- \(\text{RFP} \) \(\subseteq \) any problem in \(\text{NP} \)
- \(\text{RFP} \) \(\subseteq \) any problem in \(\text{NP} \)

Length

- \(n \) is prime

\(\Theta(n) \) bits

Satisifiability

- \(\text{SAT} \)
- \(\text{SAT} \) \(\subseteq \) \(\text{NP} \)

\(\text{RNP} \) \(\subseteq \) \(\text{NP} \)
Boolean Expression - n variables - \(2^n\) lines in truth table

\[x \land (\neg y \lor z) \]

Satisfiable?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(y)</td>
<td>(z)</td>
</tr>
<tr>
<td>(f)</td>
<td>(f)</td>
<td>(f)</td>
</tr>
<tr>
<td>(f)</td>
<td>(f)</td>
<td>(t)</td>
</tr>
<tr>
<td>(t)</td>
<td>(f)</td>
<td>(f)</td>
</tr>
<tr>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
<tr>
<td>(t)</td>
<td>(t)</td>
<td>(f)</td>
</tr>
<tr>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
</tbody>
</table>

Homework Problem in NP - Satisfiability of Boolean expressions