Min Spanning Trees

$G = (V, E)$

$ST = (V, T)$

$T \subseteq E$

No cycle

$O(E + |V| \log |V|)$

Steiner Points

Min Steiner Tree

No known polynomial time algorithm!

None is believed to exist!

Prim's Algorithm

- Find shortest edge that doesn't add to S. T
- Add to S. T
- Delete edge from graph

until S. T is finished

1) Analyze
2) Correct?

Fib heap

- $\text{extract-min} \in \Theta(\log n)$
- $\text{merge} \in O(1)$

Multiple vertices

Distance is closest point w.r.t.
Prim's

$O(|V|^2)$

draw

Extract min

Current? M.S.T.?

Suppose not - look at first mistake

M.S.T.
Kruskal's Algorithm:

- Edges, sorted by length \(O(\log n) \)

Odd, unorder, edges that don't cause a cycle w/ previously added edges.

```
union/find
MAKESET for each vertex
```

```
\begin{align*}
\forall u \in V &: \left[ \text{find}(u) = \text{parent} \right] = \text{parent} \\
\forall e \in E &: \left[ \text{find}(u) = \text{parent} \right] \\
\end{align*}
```

- A.F. : \(\alpha(n) \)

- \(0 \left(|E| \alpha(n) \right) \)
Shortest Path

BFS Single source / multi destination

\[O(1V_1 + 1E_1) \]

Dijkstra's

Add length to edge

\[1O_1 + O(1V_1 1V_1) \]

Priority Queue

\[O(1V_1) \]

\[\text{edge length positive} \]

\[\text{negative cycle} \]

\[A \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow t \]