TSP

Heuristic

\[\frac{1 + \varepsilon}{10\log n} \leq \frac{\log n}{n} \]

Quality of the approach

Vertex cover - NP-hard

A subset of vertices that "cover" all edges

\[\Rightarrow \text{vertex cover} \]

Any vertex cover contains at least one from either column or column b

Any vertex cover has at least \(\frac{1 + \varepsilon}{2} \) vertices

Optimization \(\geq \frac{1 + \varepsilon}{2} \)

\[\frac{1 + \varepsilon}{10\log n} \leq 2 \]
\[\text{Goal} \quad \frac{|H|}{\log |P|} \leq \rho \quad \text{NP-hard} \]

H.C. — every edge has cost 1 \(G = (V,E) \)

odd min-cut edge and
with cost \(\rho |V| + 1 \)

H.C. \(\Rightarrow \) opt 2SP has cost \(|V| \)

No H.C. at least one

\[(|V| - 1) \text{ long edges} \]

\[\rho |V| + 1 \text{ expander edge} \]

\[(\rho + 1) |V| \]
Approximate TSP with symmetry + 5-inequality

\[2 |OPT| \geq |st-mst| \geq 2 |MST| \]

\[|WALK| = 2 |MST| \geq |HT| \]

\[2 |OPT| \geq |HT| \implies \frac{|HT|}{|OPT|} \leq 2 \]

Start at some city

Nearest neighbor

Greedy strategy

\[\frac{|NN|}{|OPT|} \leq \left\lceil \frac{\log n}{2} \right\rceil + 1 \]

Opt. tour = \{l_1, l_2, l_3, \ldots, l_n\}

|OPT| = 2 \sum l_i \\

\[l_1 \geq l_2 \geq l_3 \geq \ldots \geq l_n \]

\[|OPT| \geq 2 l_1 \]
cheapest in the

\[\leq 2 \]